
Realistic and Controllable Fire Simulation

Philippe Beaudoina,b Sébastien Paqueta Pierre Poulina

aLIGUM
Département d’informatique et de recherche opérationnelle

Universit́e de Montŕeal, Canada

bMatrox Graphics
Dorval, Canada

Abstract

We introduce a set of techniques that are used together
to produce realistic-looking animations of burning ob-
jects. These include a new method for simulating spread-
ing on polygonal meshes. A key component of our ap-
proach consists in using individual flames as primitives
to animate and render the fire. This simplification en-
ables rapid computation and gives more intuitive control
over the simulation without compromising realism. It
also scales well, making it possible to animate phenom-
ena ranging from simple candle-like flames to complex,
widespread fires.

Key words: Fire, simulation, natural phenomena, implicit
surfaces, volume rendering, propagation on surfaces.

1 Introduction

Producing and controlling real natural phenomena for
special effects realization can be challenging, costly, and
sometimes dangerous, if not impossible. Computer simu-
lations of such effects represent an interesting alternative
as it can reduce or eliminate some of these obstacles. Fire
being a very common natural phenomenon, its simulation
can be expected to find uses in several contexts.

In this paper, we introduce a set of techniques that are
used together to produce realistic-looking animations of
burning objects. In addition to exhibiting convincing vi-
sual behavior, these techniques are efficient and provide
easier control over the appearance of fire than previous
simulation methods. This improvement is mainly due to
our representation of fire which uses a relatively small set
of flames instead of dealing with large numbers of parti-
cles.

1.1 Overview
Our work is motivated by the following two observations:

• Approaches to modeling fire that are based on dif-
ferential equations can result in accurate animation
[10], but to achieve this, they require the tracking of
a large number of variables. In addition, the simu-
lations they produce are difficult to control because

Propagation

Animation

Rendering

Figure 1: Overview of our fire model.

their parameters are physical constants whose rela-
tionship to the desired visual effect is usually hard
to figure out. Moreover, as the physics of fire is not
fully understood [2], the values of many parameters
have to be guessed.

• Most fire models [7, 8, 10, 11] are based on parti-
cle systems. A limitation of particle-based fire mod-
els is related to rendering. Although particles sets
succeed in picturing the fuzzy, bumpy boundaries of
clouds, they fail to show the characteristically crisp,
sleek outlines of actual flames (unless an extremely
large number of particles is used).

Our answer to these issues is a model that simplifies
the physics involved in fire while retaining control over
its important visual features. A key novel idea in our
model is to represent fire as a set offlames, which are
essentially deformable chains of vertices rooted on the

surface. This representation captures well the behavior
of simple flames while scaling up easily to picture intri-
cate, turbulent fires. Another contribution of this work
is the introduction of a new fire spreading algorithm that
increases user control while maintaining realism.

Figure 1 outlines our approach. We divide the problem
of simulating fire into the following three subproblems:
fire propagation, flame animation, and rendering.Prop-
agation refers to the spreading of fire over time, even-
tually engulfing the entire object. It is done by tracking
the boundary between burning and not burning regions.
Flame genesis and animationconsist in placing flames
on a surface and deforming them according to a space and
time-dependent vector field in order to capture the visual
dynamics of fire. Finally,renderingis achieved by defin-
ing implicit surfaces around these chains and displaying
them using a volumetric technique.

This approach improves on previous methods for simu-
lating fire in several respects. First, it produces more con-
vincing images of isolated flames as well as burning ob-
jects. Second, the relative simplicity of our model results
in reduced time and memory requirements compared to
other approaches. Last but not least, our simplifications
make the simulation more controllable, which means it is
easier and takes less time to obtain desired effects.

The rest of the paper is organized as follows. In Sec-
tion 1.2, we discuss previous work in the area of fire sim-
ulation. Section 2 describes our technique for evolving a
fire front on the surface of an object. The following two
sections explain how to create and animate flames and de-
tail our method for rendering fire. Finally, we present and
discuss our results, summarize the achievements and lim-
itations of our techniques, and give directions for further
investigations.

1.2 Related Work
A number of publications have been devoted to com-
puter simulation of fire. Among the early models, Reeves
[8] introduces particle systems as a modeling, animating,
and rendering primitive. It allows the simulation of sev-
eral natural phenomena, including the spreading and ren-
dering of fire. However, this approach produces effects
more akin to a series of small explosions than to gen-
uine flames. Perlin [6] models fire using a noise function.
The turbulent motion is incorporated by means of a frac-
tal perturbation. This allows for somewhat realistic two-
dimensional fire, but constrains the viewpoint to a single
position and does not allow the fire to propagate. Inakage
[4] uses a physical model of light emission and transmis-
sion around a combustion focus. The volume rendering
techniques he uses yield convincing images of a single
flame. However this work does not deal with multiple,
animated flames.

Chibaet al.[1] and Takahashiet al.[11] describe meth-
ods for propagating, animating, and rendering fire. They
divide space into a number of cells, each of which has an
associated temperature and contains a certain quantity of
fuel. Cell temperatures are evolved through a simulation
where each cell receives heat from its neighbors. A cell
ignites when its temperature exceeds a certain threshold.
Fire itself is modeled using a system of independent par-
ticles which are influenced by a vector field. Images are
produced by rendering a 3D primitive around each parti-
cle trajectory over a time step. Unless very large numbers
of particles are used, this method results in bumpy flame
contours.

Perry and Picard [7] simulate the evolution of a fire
front on a polygonal mesh starting from an initial igni-
tion point. The front is represented by a set of particles,
and new particles are added to it as it expands. However
the technique they describe does not give any guarantee
that these new particles will lie on the mesh, which is an
important requirement for properly depicting fire propa-
gation. The particles that make up the front deposit fire
sources along their path. These sources emit fire particles
that can be affected by a wind field. Rendering is done
using viewer-facing Gouraud-shaded hexagons whose as-
pect ratio depends on the fire particle’s age. This pro-
duces flames with a generally blurry outline.

Stam and Fiume [10] cover the flammable object with
a map that associates a fuel density, a temperature, and a
lit/unlit flag with each point on its surface. A finite dif-
ference numerical method is then applied to evolve the
system in time. This approach is somewhat costly and
does not offer very flexible control to the user. Fire ani-
mation is done with turbulent wind fields [9]. The authors
warn that their model “has a large set of interdependent
parameters which are not necessarily easy to manipu-
late”. Rendering is based on thewarped blobstechnique,
which defines blobs around particles and casts rays along
warped trajectories, computing a line integral along the
way to obtain the color. Similarly to the previous method,
the lack of well-defined contours prevents this technique
from producing believable individual flames.

2 Fire Propagation

As was mentioned previously, it is possible to model fire
propagation by numerically solving the differential equa-
tions that govern the evolution of temperature, pressure,
and velocity of the air surrounding the burning object. We
avoid the cost and complication of such simulation by ob-
serving that the main visual feature in fire propagation is
the growth of the burning zone. This expansion is mainly
driven by a few locally defined parameters: fuel density,
oxygen supply, wind, and surface orientation relative to

gravity. By tracking the boundaries between the parts of
the object that are burning and those which have not yet
been reached by the fire, it is possible to capture the es-
sential characteristics of fire propagation at a relatively
low computational cost. Our method for simulating fire
propagation is inspired by that presented by Perry and Pi-
card [7]. We improve on this work by ensuring that com-
puted boundaries will always be continuous and lie on the
burning object’s surface, which is a necessary condition
for the rest of the method to work properly.

2.1 Representing the Boundaries
A boundary is represented by a closed curve on the sur-
face of the object. In this work the object is a closed
triangular mesh and we use a broken line to represent the
boundary, as Figure 2 illustrates. This line will always
satisfy the following property:

A1. If two consecutive vertices are on different faces,
then one of these vertices lies on an edge shared by
those faces.

This prevents the broken line from leaving the surface.

Burning region

Fire front

Boundary vertex

p
1

p
0

p
2

p
3

p
4

p
5

p
6

p
7

p
8

Figure 2: Broken-line representation of the fire front.

Boundary vertices have two vector-valued attributes:
position and velocity. The positions of vertices in the ini-
tial boundary coincide with the ignition point and their
velocities are spread uniformly (in proper order) along a
circle that lies within the plane of the initial face.

2.2 Displacing Vertices
In what follows, each boundary vertex will move on the
triangular mesh according to its velocity. As long as the
vertex remains on a face, this is not complicated to deal
with. Denoting its position bypi and its velocity byvi,
we havepi(t+∆t) = pi(t)+vi(t)∆t. However a vertex
may leave a face by crossing an edge, as in Figure 3; it
is thus necessary to specify what its velocity will become
when it travels onto the other face.

In this situation, we define the new velocityv′i using

ip

viNi

v’i

Original face

Destination face

Figure 3: Transforming a velocity using Equation 1.

the following equation:

v′i = η(Ni × vi)×N′. (1)

In this equation,vi is the original velocity,Ni is the lin-
early interpolated normal at the crossing point, andN′ is
the vector normal to the destination face. Coefficientη
is chosen to preserve the magnitude of the velocity. This
equation has a nice geometrical interpretation: vectorv′i
is parallel to the intersection of the plane containingvi
andNi with the plane of the destination face, as shown
in Figure 3.

When used with closed manifold meshes with well-
defined interpolated normals1, Equation 1 has three in-
teresting properties:

B1. The velocity does not change when the origin and
destination faces are coplanar.

B2. Vector v′i is nonzero and oriented away from the
crossed edge.

B3. The continuity of a curve is preserved, i.e., no two
neighboring points can be separated, even if they
leave a face through different edges.

PropertyB1 lets the propagation process behave cor-
rectly for an arbitrarily tesselated planar surface. Prop-
erty B2 ensures that no point of the front will get stuck
near an edge, forever crossing it in successively opposite
directions. PropertyB3 , which was not enforced by the
technique of Perry and Picard [7], is needed in the next
subsection to enforce propertyA1 of the front.

2.3 Evolving the Front
We wish to let the burning zone grow over time. This
means that its boundary must expand with each time step.

1 We say that an interpolated normal iswell-definedif it has a posi-
tive dot product with its associated face normal(s).

t+ t∆()p
i

t+ t∆()
i+ 1

p

i+ 1
t()p

()tp
i

Figure 4: Enforcing propertyA1.

This is achieved by the following two-step update proce-
dure. First we let each vertex of the boundary move ac-
cording to its velocity vector, updating its velocity along
the way whenever an edge is crossed. Second, we ensure
that the final boundary enforces propertyA1 by introduc-
ing new vertices on edges where needed.

To perform this last step, we first identify two consec-
utive vertices which are no longer on the same face (if
there are any). Using propertyB3, we know that the line
segment which joined these two vertices at the previous
time-step will be displaced into a new continuous curve.
This curve crosses the edges where new vertices must be
added (see Figure 4). To compute the intersection be-
tween this curve and the edges, we find which points
on the original line are displaced directly onto an edge.
These points are found efficiently using a binary search
along the original line segment. Our boundary evolution
algorithm may eventually produce a very sparse or very
dense distribution of vertices along the front. To avoid
this, we include another step where new points are in-
serted on boundary segments when two consecutive ver-
tices get too far apart. As well, if it happens that vertices
come too close together on the same triangle, we simply
remove one of them.

2.4 Nonuniform Propagation Speeds

As was noted earlier, the evolution of a burning surface
is driven by locally defined parameters. To account for
these parameters during front propagation, we can alter
the vertex velocities at the beginning of each time step.
To make sure the front never shrinks, we only allow mod-
ification to the magnitude of these velocities. This magni-
tude can be computed as a function of the velocity direc-
tion, gravity, fuel density, and any other surface-defined
parameter. Using this, for example, a front would propa-
gate faster along an upward direction.

t+ t∆()
i+ 1

p

i+ 1
t()p

()tp
i

t+ t∆()p
i

Figure 5: Sampling points on the surface.

2.5 Generating Points on the Surface
The propagation technique explained above makes it pos-
sible to generate points on the surface enclosed by the
front. Such points will appear at each time step inside
the area newly swept by the front. For a given segment
of the front, these points are generated by evolving a ran-
dom point on the segment during a randomly chosen time
between0 and∆t. Figure 5 illustrates this process.

3 Flame Genesis and Animation

As was stated earlier, we represent fire as a set of flames.
We picture a flame as a stream of incandescent gas which
follows the air flow surrounding it. In our implementa-
tion, this stream is modeled as a chain of connected par-
ticles, which we call the skeleton. The first particle of
the skeleton is the root of the flame and is attached to a
point on the burning surface. The rest of the chain moves
according to a turbulent, time-varying vector field which
accounts for the dynamic behavior of the fire. This field is
defined by the user and is meant to mimic the convection
air flow which occurs when combustion gives off heat.

3.1 Planting Flames on the Surface
The first step needed to perform the animation is to place
flames on the surface. To do this, we use the point gen-
eration technique of Section 2.5. Each of these points
becomes the root of a new flame. The density of points
generated on the surface can be adjusted to capture vari-
ous effects visible in fire. Increasing the number of points
generated within a given area will result in a more intense
fire.

3.2 Defining the Air Velocity Field
In our model each flame skeleton’s configuration at a
time t will depend on the air velocity fieldV(x, t) at that
moment. The functionV(x, t) is designed to exhibit fea-
tures specific to animated fire. It supports changes over
space and time, allowing for local and temporary wind
gusts, vortices, and other effects. To achieve this, we

s0 s0

s1

s2

s3

s4

Figure 6: Flame skeleton in an air velocity vector field.

build V from various components:

V(x, t) =
n∑
i=0

bi(x, t) Vi(x, t) . (2)

In this equation,bi is a blending function which defines
the region of space and time over which componentVi

will be effective. For better results,bi should either be a
constant or start from 0, smoothly evolve to 1 and return
to 0 for each of its four parameters.

The Vi functions are based on user input and cap-
ture characteristics of an animated flame: low frequency
wind blows, fast horizontal oscillation, vertical flicker-
ing, etc. Most importantly, a strong and steady compo-
nent opposite to gravity is included to account for heat-
induced convection. Noise functions [6] or predefined
vector functions [3] can be useful in definingVi.

3.3 Defining the Flame Skeleton
Once the root of a flame has been placed at a points0

on a surface, we create the skeleton which serves as a
basis for the flame shape. This skeleton approximates a
curve segment which begins at the root and is tangent at
every point to the instantaneous velocity fieldV(x). In
other words, this curve is the solution to the differential
equation drdu = V(r), whereu is the curve parameter,
with the initial conditionr(0) = s0.

The skeleton is a broken line approximation of func-
tion r (see Figure 6). If then+ 1 vertices of the skeleton
are denoteds0, . . . , sn we definesi = r

(
l(t) i/n

)
where

l(t) is a factor which affects the total length of the skele-
ton and varies over the flame’s lifetime as we describe
further on (in Section 3.4).

In the general case, the differential equation cannot be
solved analytically. We therefore use a simple Euler inte-
gration scheme. In practice, the precision ofr(u) is not
critical and we can use large integration steps without af-

fecting the visual results. For this reason, we use as many
steps as there are segments in the skeleton:

si = si−1 +
l(t)
n

V(si−1) . (3)

This technique yields good results even with a small
number of segments per skeleton. Results shown in this
paper usen = 4.

The skeleton obtained by evaluating Equation 3 may
penetrate the burning object, yielding undesirable results.
This is due to the fact that the air velocity field is de-
fined without reference to the geometry of the object and
thus does not necessarily flow around it. To make up for
this, we provisionally adjust the vector field by adding to
it a component that is normal to the surface at the root.
The magnitude of that component is chosen such thats1

is brought out of the object. When flames are small com-
pared to the features of the burning object, this eliminates
the majority of intersections between skeletons and ob-
jects; those which remain do not interfere significantly
with the rendering. The end effect is typical of flames
licking at an overhanging surface.

3.4 Growing and Shrinking the Flames
To allow for the eventual extinction of the fire, flames are
assigned a life duration. Over its life span, the length fac-
tor l(t) (Equation 3) of a skeleton can vary according to
an arbitrary function. We use a clamped quadratic func-
tion of time starting and ending at zero, which prevents
popping and results in believable ignition and extinction.
The peak length of a flame is taken from a distribution
centered around a user-defined mean length. This length
and the flame’s life duration can be made to depend on the
point where the root was placed using per-vertex values
or texture mapping.

3.5 Detached Flames
The technique described previously works well in the
case of quiet fires, such as candle flames. However,
highly turbulent fires often feature flames that take off
from the surface and drift for a while before cooling down
and vanishing. To incorporate this effect, we track de-
tached flames whose root is free to move away from the
surface. These flames act like the particles used in pre-
vious techniques and, as such, benefit from the same ad-
vantages.

A detached flame behaves exactly like a normal flame,
with the difference that its root positions0 is updated at
every time step. The root moves like an ordinary particle
in the velocity field. At each time step the positions0,
now a function oft, is updated using an Euler integration
scheme:

s0(t+ ∆t) = s0(t) + ∆tV(s0(t), t) . (4)

After the root has been moved, the rest of the skeleton is
evaluated using Equation 3 where the length factorl(t)
varies over time in a manner similar to ordinary flames.

To decide whether to introduce a new detached flame,
we evaluate|V| at each vertex of the skeleton. If at some
point it exceeds a user-defined threshold then we insert a
new detached flame, its length initially being set to zero.
We then temporarily inhibit further detached flame emis-
sion for that skeleton. Other insertion mechanisms can
be devised, leading to various visual effects like sudden
flame bursts or brands.

4 Rendering and Modeling

Although the flame skeletons convey a lot of visual in-
formation and can be used effectively for previewing an
animation (as shown in Figure 11), they are not sufficient
for photorealistic rendering. To achieve higher quality
rendering, it is necessary to “dress up” the skeletons. In
actual fires, flames that are close enough smoothly blend
together while distant flames remain separate. Modeling
flames using implicit surfaces provides a convenient way
to emulate this behavior.

We therefore begin by defining an implicit surface
which describes the outline of a single flame. Next we
adjust the function so that it behaves well in the context
of a complete fire, where the contribution of many flames
are summed up. We then model the color variations that
are seen inside the fire. Finally, we render the final image
using a ray tracing algorithm.

4.1 Basic Shape Equation

The function which we use for the outline of a single
flame is initially defined using the physical analogy of
the electrical potential induced by a uniformly charged
rod. For the chain segmenti joining verticessi−1 andsi,
this function is expressed as:

Ei(x) =
∫ di

p=0

1√(
p− zi(x)

)2 + ri(x)2

dp

= sinh−1

(
zi(x)
ri(x)

)
− sinh−1

(
zi(x)− di
ri(x)

)
,

wherezi(x) andri(x) are cylindrical coordinates of point
x relative to segmenti (see Figure 7(a)) and wheredi =∣∣si − si−1

∣∣ is the length of segmenti. For a complete
flame, we add the contributions from all the skeleton seg-
ments:

E(x) =
n∑
i=1

Ei(x) . (5)

3z

x

4s

3s

2s

1s

0s

x()

x()

r

d3

3

(a) zi(x), ri(x).

0s

sn

x()r

x()z

x

(b) z(x), r(x)

Figure 7: Cylindrical coordinate systems of skeletons.

4.2 Making the Shape Asymmetrical
The isosurface obtained using Equation 5 does not distin-
guish between the root and the top of the flame. However,
real flames are bulged at the root and thin at the top. To
produce this asymmetrical shape, we transformx in the
previous equation according to a height-dependent radial
contractionx′(x) which spans across the entire flame:

x′(x) = x + exp
(

2z(x)
d
− 1
)

r(x) , (6)

where d is the length
∣∣sn − s0

∣∣. This function uses
the cylindrical coordinatez(x) relatively to the segment
(s0, sn). The vectorr(x) joins that segment and the point
x (see Figure 7(b)). When composed withE, the trans-
formation ensures that the isosuface is tightened at the top
while it remains bulgy at the root. This transformation
was designed empirically so that isosurfaces of function
E
(
x′(x)

)
would be suited for representing the shape of a

single flame.

4.3 Defining a Complete Fire
Although the preceding function describes well a unique
flame, it can create problems when trying to define a com-
plete fire. Since functionE(x) falls off rather slowly with
distance from the skeleton, two distant skeletons can in-
fluence each other’s envelope. To remove these undesir-
able non-local effects while preserving the shape of a sin-
gle flame, we amplify the falloff ofE for values smaller
than the user-defined isovaluev. The following empiri-
cally derived function takes care of that:

F (E) =
v
(
eE − 1

)
ev − 1

. (7)

This function also has the advantage of reducing the
bounding volume for a flame, diminishing the time

Figure 8: Isosurfaces withv = 3 for three straight skele-
tons with lengths1, 0.5, and0.25.

needed for rendering an image (see Section 4.5). The
following function Is expresses the final contribution of
skeletons to the implicit function at pointx:

Is(x) = F
(
E
(
x′(x)

))
. (8)

FunctionI is the value for a complete fire:

I(x) =
∑
s

Is(x) . (9)

4.4 Various Color Layers
Until now, we have focused on modeling the flames’
shape. Because temperature rises towards the center of
a flame, radiation emitted by its different parts features
different wavelength distributions. For a single flame,
various colors appear in successive layers, each having
a shape similar to the flame outline. Temperature mainly
depends on distance from the base of the flame.

To model this, we compute Equation 9 using progres-
sively smaller flame skeletons for each layer. These
skeletons are obtained by removing a fixed proportion at
the top of each chain. If the same iso-valuev is used
with these new implicit functions, we obtain a sequence
of surfaces where each one encloses the next. For a single
flame, the result is shown in Figure 8. When rendering,
we assign different colors to the layers in order to obtain
a variety of fire effects.

4.5 Computing the Surface
We now describe how the surfaces defined above may be
computed. Given Equation 9 for a particular layer and a
user-defined iso-valuev, we use the marching cubes tech-
nique [5] to obtain the closed surface satisfyingI(x) = v.
This technique requires evaluatingI at each point of a
dense regular grid, a process which can be time consum-
ing. For a cubic grid of side lengtha with m flame skele-
tons, the time required is proportional toa3m.

To make the computation ofI independent of the grid’s
volume, we limit the contribution of each skeleton to its
neighborhood. To this end we start from the base of each

flame and perform a flood-fill type traversal of the grid
vertices, stopping whenIs takes on a value that is con-
sidered negligible (our implementation usesv/100).

4.6 Rendering the Fire
Each layer defined in Section 4.4 is a volume which emits
light of a particular color and intensity. Therefore, the
color and intensity of light reaching the eye following a
given path is a function of the path lengths inside each
layer.

We assume that light scattering occurring inside the
fire is not significant and thus consider only straight light
paths. The lengths of these paths inside each layer can
be computed easily by casting rays toward the polygons
obtained by the marching cubes algorithm. We there-
fore render the scene using a ray tracing technique which
considers the color contribution from each layer of fire.
A scanline rendering method processing polygons from
back to front could also be devised to produce the same
results more efficiently.

5 Results

We ran our simulation on a number of polygonal meshes.
Figure 9 illustrates front propagation on a moderately
complex cow model (5804 triangles). Boundary vertices
originate from a point above the cow’s leg and spread
progressively over the model surface. Figure 11 shows
the evolution of flame skeletons on a flammable sphere.
Still images from fully rendered animations are presented
in Figures 10 and 12. The complete animations can be
found on our web site associated with this paper from
www.iro.umontreal.ca/labs/infographie/papers.

The simulations ran on a 400 MHz Intel Celeron with
256 Mb of memory. For meshes with a few hundred tri-
angles, our propagation technique runs at around 15 Hz.
Skeleton animation with a hundred skeletons is done at
a rate averaging 4 Hz. Rendering with the same number
of skeletons is more time consuming: our program out-
puts 4 frames per minute. As was mentioned previously,
this could possibly be improved by replacing ray tracing
with a scanline rendering technique. The most important
memory requirement of the method was polygon storage
for rendering purposes, which remained below 20 Mb.

6 Discussion

Our aim in this work was to obtain a controllable,
realistic-looking, and fast fire simulation method. To this
end, we have introduced a new propagation technique and
have shown how flames could be used effectively as ani-
mation and rendering primitives. Our method allows for
quick previewing of an animation and features intuitive
parameters, which speeds up the iterative process toward
obtaining the desired effects. Moreover, it enables the

user to simulate simple as well as complex fires.
A limitation of our spreading model is that fire cannot

reach objects that are disconnected from a burning object.
This could be modeled by starting new propagation pro-
cesses from points located above existing flames. Other
directions for future work include taking into account the
illumination of objects by the fire itself, actually destroy-
ing or altering the surface of burning objects, and incor-
porating smoke into the animations.

7 Acknowledgements

We acknowledge financial support from FCAR and
NSERC.

8 References
[1] N. Chiba, S. Ohkawa, K. Muraoka, and M. Miura. Two-

dimensional visual simulation of flames, smoke and the
spread of fire.The Journal of Visualization and Computer
Animation, 5(1):37–54, January–March 1994.

[2] J. Chomiak. Combustion. A Study in Theory, Fact and
Application. Abacus Press/Gordon and Breach Science
Publishers, New York, 1990.

[3] T. L. Hilton and P. K. Egbert. Vector fields: an interactive
tool for animation, modeling and simulation with physi-
cally based 3D particle systems and soft objects.Com-
puter Graphics Forum, 13(3):329–338, 1994.

[4] M. Inakage. A simple model of flames. InProceedings
of Computer Graphics International 1989, pages 71–81,
1989.

[5] W. E. Lorensen and H. E. Cline. Marching cubes: A
high resolution 3D surface construction algorithm. InSIG-
GRAPH 1987 Conference Proceedings, volume 21, pages
163–169, July 1987.

[6] K. Perlin. An image synthesizer. InSIGGRAPH 1985
Conference Proceedings, volume 19, pages 287–296, July
1985.

[7] C. H. Perry and R. W. Picard. Synthesizing flames and
their spreading. InFifth Eurographics Workshop on Ani-
mation and Simulation, pages 105–117, September 1994.

[8] W. T. Reeves. Particle systems – a technique for modeling
a class of fuzzy objects.ACM Trans. Graphics, 2:91–108,
April 1983.

[9] J. Stam and E. Fiume. Turbulent wind fields for gaseous
phenomena. InSIGGRAPH 1993 Conference Proceed-
ings, volume 27, pages 369–376, 1993.

[10] J. Stam and E. Fiume. Depicting fire and other gaseous
phenomena using diffusion processes. InSIGGRAPH
1995 Conference Proceedings, pages 129–136, August
1995.

[11] J. Takahashi, H. Takahashi, and N. Chiba. Image synthesis
of flickering scenes including simulated flames.IEICE
Transactions on Information Systems, E80-D(11):1102–
1108, 1997.

Figure 9: Front propagation.

Figure 10: Animated candle flame.

Figure 11: Flame skeletons on a burning sphere.

Figure 12: Burning sphere.

	Introduction
	Overview
	Related Work

	Fire Propagation
	Representing the Boundaries
	Displacing Vertices
	Evolving the Front
	Nonuniform Propagation Speeds
	Generating Points on the Surface

	Flame Genesis and Animation
	Planting Flames on the Surface
	Defining the Air Velocity Field
	Defining the Flame Skeleton
	Growing and Shrinking the Flames
	Detached Flames

	Rendering and Modeling
	Basic Shape Equation
	Making the Shape Asymmetrical
	Defining a Complete Fire
	Various Color Layers
	Computing the Surface
	Rendering the Fire

	Results
	Discussion
	Acknowledgements
	References

