
Compressed Multisampling
for Efficient Hardware Edge Antialiasing

Philippe Beaudoin Pierre Poulin

LIGUM
Dép. I.R.O., Universit́e de Montŕeal

Abstract
Today’s hardware graphics accelerators incorporate tech-
niques to antialias edges and minimize geometry-related
sampling artifacts. Two such techniques, brute force su-
persampling and multisampling, increase the sampling
rate by rasterizing the triangles in a larger antialiasing
buffer that is then filtered down to the size of the frame-
buffer. The sampling rate is proportional to the num-
ber of subsamples in the antialiasing buffer and, when
no compression is used, to the memory it occupies. In
turn, a larger antialiasing buffer implies an increase in
bandwidth, one of the limiting resources for today’s ap-
plications. In this paper we propose a mechanism to com-
press the antialiasing buffer and limit the bandwidth re-
quirements while maintaining higher sampling rates. The
usual framebuffer-related functions of OpenGL are sup-
ported: alpha blending, stenciling, color operations, and
color masking. The technique is scalable, allowing for
user-specified maximal and minimal sampling rates. The
compression scheme includes a mechanism to nicely de-
grade the quality when too much information would be
required. A lower bound on the quality of the result-
ing image is also available since the sampling rate will
never be less than the user-specified minimal rate. The
compression scheme is simple enough to be incorporated
into standard hardware graphics accelerators. Software
simulations show that, for a given bandwidth, our tech-
nique offers improved visual results over multisampling
schemes.

Key words: graphics hardware, edge antialiasing, multi-
sampling

1 Introduction

Scan converting triangles is the core of today’s hardware
graphics accelerators. This process, which is really the
act of discretizing a continuous signal, is usually per-
formed by sampling triangles at the center of each pixel
of the screen. We know that sampling can give rise to ar-
tifacts that are due to the presence of high frequencies in
the continuous signal. In fact, the Nyquist formula tells
us that such artifacts can occur as soon as the frequency

of the input signal is greater than half the sampling rate.
Signals with such high frequencies are often witnessed

in textures and that is why various methods have been
designed to try to minimize texture-related sampling ar-
tifacts. The idea behind these techniques is to prefilter
the input signal in order to remove all components above
the Nyquist frequency. One such technique, trilinear
mipmapping [17], is available on almost every hardware
graphics accelerator.

Even though textures are usually the most important
source of high frequencies in the input signal, the geom-
etry itself can cause artifacts that will not be handled by
texture filtering. That is because the triangle edges create
discontinuities in the input signal resulting in arbitrarily
high frequencies. The presence of such frequencies can
create various artifacts. One of these is the staircase pat-
tern visible along polygon edges. This problem, often
referred to as “jaggies”, is probably the most frequent ge-
ometry sampling artifact. However, Moiré patterns can
also occur and tend to become more important as the size
of triangles decreases.

Unfortunately, since the geometry-related input signal
is not known in advance, prefiltering techniques such as
mipmapping cannot be applied. In fact, the techniques
available today in hardware do not filter out the compo-
nents above the Nyquist frequency. Instead they increase
the sampling rate, thus resulting in a higher Nyquist fre-
quency leading to reduced artifacts.

With the usual techniques, a higher sampling rate re-
sults in an important increase in the internal bandwidth
requirements of the graphics accelerator. Bandwith be-
ing one of the most limiting resources in today’s appli-
cations, high sampling rates can result in an important
performance degradation.

In this paper we present a technique to reduce the in-
ternal bandwidth requirements for a given sampling rate
through the use of a compressed antialiasing buffer. This
technique supports the usual framebuffer-related func-
tions of OpenGL such as alpha blending, stenciling, color
operations, and color masking. The compression scheme
includes a mechanism to nicely degrade the quality when



too much information would be required. To do so, two
sampling rates are provided by the user: a maximal rate
used over most of the image and a minimal rate that lim-
its quality degradation. This minimal rate offers a lower
bound on the quality of the resulting image, ensuring no
erroneous results and reducing sampling artifacts.

The compression scheme is simple enough to be incor-
porated into standard hardware graphics accelerators at
reasonable cost. Memory locations of neighboring pixels
are close to one another, making the technique suitable to
caching.

We have devised a software simulation of our tech-
nique and counted the number of memory accesses,
which is a good measure of the required internal
bandwidth. The software implementation is based on
Mesa [20], an open source 3D library compatible with
OpenGL. For a given bandwidth we have observed that
our technique offers improved visual results over usual
hardware methods.

This paper is organized as follows. First, we review
previous work in software and hardware edge antialias-
ing. We then present our compressed antialiasing buffer
and show how it helps reduce internal bandwidth require-
ments. After that, the software implementation and re-
sults are discussed. Finally, a conclusion and some future
work are presented.

2 Previous Work

The two main techniques available today in hardware
edge antialiasing are brute force supersampling and mul-
tisampling [13, 2]. A comprehensive survey can be found
in [4]. The idea behind brute force supersampling is to
render the geometry to an antialiasing buffer of larger res-
olution than the framebuffer. Once the entire scene has
been rendered, the antialiasing buffer is filtered down to
the size of the framebuffer. The increase in sampling rate
is equal to the increase in resolution. A larger antialias-
ing buffer implies that more pixels will be generated by
scan conversion, resulting in more texture look-ups,Z-
reads, color-reads,Z-writes, and color-writes. All these
operations require internal bandwidth which is one of the
limiting resources in today’s applications. In practice, su-
persampling often results in a performance drop.

Multisampling tries to limit the bandwidth require-
ments by sharing some color information among neigh-
boring subsamples. This is made possible by the fact that
textures are already filtered through trilinear mipmap-
ping. Using multisampling, one can generate a number
of fragments (polygons clipped by a pixel) approximately
equal to the number of pixels in the framebuffer multi-
plied by the average depth complexity. Each fragment
is associated to an array of subsamples stored in the an-

tialiasing buffer. Therefore a fragment has a unique color,
multiple depths, and a mask indicating which subsamples
are covered. When updating the antialiasing buffer, only
the subsamples indicated by the coverage mask are mod-
ified.

Since multisampling relies on texture prefiltering, the
number of texture look-ups required is about the same
as when rendering directly to the framebuffer: much less
than required by supersampling. However, the number of
Z-reads, color-reads,Z-writes, and color-writes are the
same as supersampling. Therefore, multisampling still
has bandwidth requirements that quickly increase with
the sampling rate.

Other antialiasing approaches have also been imple-
mented in hardware. The Accumulation Buffer [8] su-
persamples the scene by rendering it multiple times to a
high precision framebuffer. Schilling [14] uses subpixel
masks and edge orientation to evaluate pixel coverage and
antialias edges. Deering and Naegle [7] perform super-
sampling using sparse non-repeating sampling patterns.
Many authors [10, 15, 18, 19] have proposed variations
on the A-buffer algorithm [6] better suited to hardware
implementation. However, these techniques do not focus
on minimizing bandwidth requirements.

More recently, Jouppi and Chang [9] propose to store
each fragment with its depth and twoZ gradients. Doing
so, they devise a technique that gives good antialiasing
results while storing only three fragments per pixel. Un-
fortunately, their approach can lead to undesirable results
where completely occluded fragments contribute to the
final image. A similar technique has been used by Ma-
trox in its Parhelia graphics accelerator [11]. Lightweight
multisampling schemes using 2 or even 1.25 sample per
pixel have also been proposed [5, 3]. These techniques
yield results similar in quality to the ones obtained with
4 samples per pixel but cannot be used to obtain higher
quality images. Aila et al. [1] present a framebuffer-
based algorithm to detect discontinuity edges. Antialias-
ing is then applied only to the pixels where discontinuity
occurs. However, their algorithm relies on delay streams,
a feature requiring important architecture modifications
to current hardware designs.

3 Compressed Antialiasing Buffer

Our technique improves on earlier approaches through
the use of a compressed antialiasing buffer. The main
idea behind our compression scheme is to take advantage
of the fact that multisampling generates a single color per
fragment.

The antialiasing buffer will store color, depth, and sten-
cil information. For the rest of this paper, we use 32-bit
colors. We also consider that depth and stencil informa-



tions are combined within a 32-bit word, and refer to it
simply as the depth.

3.1 Buffer Structure
Our compressed antialiasing buffer shares the same log-
ical structure as the buffer used for standard multisam-
pling. That is, all the subsamples are stored in a rect-
angular array. However, since multisampling generally
produces a small number of colors per pixel, we store the
colors as indices referring to entries in a color table.

In order to benefit from spatial coherency and to limit
the size of indices, we partition the antialiasing buffer in
sets of neighboring subsamples. Each set is contained
within one pixel of the framebuffer and uses a single color
table. Therefore, the indices used by subsamples in a set
all refer to the same table. We shall refer to these sets of
subsamples as the antialiasing buffer entries (Figure 1).

Figure 1: Structure of a single antialiasing buffer entry
for a set of 4 subsamples.

We use a similar compression scheme for the depth
information. However, since a fragment has more than
one depth, using a table would not be efficient. To over-
come this problem, we sample the depth of triangles once
per fragment. This increases artifacts along the junction
of interpenetrating surfaces, but allows our compression
scheme to remain simple. In practice, edge aliasing due
to interpenetrating polygons is usually negligible. The
resulting depths are stored in the buffer entries using a ta-
ble of the same size as the color table. Therefore, indices
simultaneously refers to the color and depth tables.

For most fragments the depth is sampled at the center
of the pixel. However, this can cause important artifacts
when the fragment does not cover the pixel center. We
avoid this problem by adjusting the sample location so
that it remains within the fragment. We could adjust the
color sample location in a similar fashion, but this was
not required in practice.

Since we want to reduce the internal bandwidth re-
quired to transfer pixels, we will use tables that hold less
colors and depths than the number of subsamples in an
antialiasing buffer entry. The proposed technique can

support tables of sizes ranging from one value per pixel
to one value per subsample. For example, if a buffer en-
try contains 16 subsamples, we can use color and depth
tables of size 1 to 16.

Holding an index to a table of sizesc requires
dlog2(c)e bits. For the rest of the method to work cor-
rectly we require an extra index referring to an invalid
subsample. Therefore, if we want to storec colors and
depths per table, the number of bitsB required for an
antialiasing buffer entry containings subsamples would
be:

B(c, s) = sdlog2(c + 1)e + 64c. (1)

3.2 Handling Overflow
It is possible to encounter a situation where more colors
are required for a buffer entry than what we can fit in
the table. We therefore need a way to handle color table
overflow that lets us control image quality degradation.

The first solution would be to quantize colors when a
table overflows. To do this, two colors are selected and
replaced by their average color. Unfortunately, this can
lead to severe artifacts due to the fact that the quantization
has to be done during rendering without knowledge of
future incoming fragments (Figure 2).

Figure 2: Possible error when color quantization is used
to resolve overflow. In this example, the original pixel
contains 3 colors while the color table can only hold
2. After quantization, the black and gray fragments are
merged into a dark gray one. After the second black frag-
ment is added, the pixel should be completely black, but
it shows influence from the original gray fragment, now
completely occluded.

Such problems can cause a completely occluded ob-
ject to bleed through and contribute to the final image.
In some applications, such as simulators or games, this
effect can cause hidden information to become known to
the user. For example, a player looking at a wall could
know that something is moving behind it by looking for
flickering pixels.

As mentioned by Jouppi and Chang [9], it is possible to
reduce this artifact by selecting the colors of two subsam-
ples having similar depths. However the problem cannot
be completely eliminated since we can always encounter
a buffer entry with greatly differing depths.

Moreover, we cannot directly average the depths of
two subsamples, therefore this technique cannot be used



to handle depth table overflow. Jouppi and Chang [9]
use the depth together with two extraZ gradients per
fragment. They propose a technique to compute the
new depth andZ gradients when merging two fragments.
However, their technique will still produce artifacts when
a pixel does not contain two fragments close inZ.

Instead of color quantization, we propose to locally re-
duce the sampling rate whenever the color or depth tables
overflow. To do so, we hierarchically subdivide each an-
tialiasing buffer entry (Figure 3). The last subdivision
level represents the maximum sampling rate and contains
all the subsamples of the antialiasing buffer entry. These
subsamples are partitioned into groups that represent a
lower sampling rate. This process is repeated until we
reach one single group covering the entire buffer entry.
In each of these groups we identify one subsample that
will be the parent of its group. The result can be repre-
sented as a tree (Figure 4).

Figure 3: Example of hierarchical subdivision of an an-
tialiasing buffer entry, parents of each group are shown in
gray.

Figure 4: Tree containing all the subsamples of Figure 3.
The subsamples are numbered starting from the lowest
left corner.

3.3 Compression and Decompression
To perform depth tests, we need to evaluate the depth at
each subsample of a pixel. This corresponds basically to
decompressing a buffer entry. To do so, we could sim-
ply look up the depth table using this subsample’s index.
However, when an entry has been down-sampled, some
subsamples may be using the invalid index mentioned in
Section 3.1. To resolve invalid indices we need to per-
form a breadth-first traversal of the hierarchy.

We begin traversal at the second subdivision level and
check if any of the nodes at this level are invalid. If we
find such a node, we replace its index by that of its parent.
Since we traverse the tree from top to bottom, and since
our compression ensures that the top node is always valid,
we know that this process will generate valid indices for
each node.

This resolved array of indices will only be used to ex-
tract the depths of subsamples. All other operations are
still performed on the original array. In particular, alpha
blending is done using the original indices. We also de-
fine that blending any color with an invalid color results
in an invalid color.

Inserting a new fragment into a pixel involves changing
the color and depth of some subsamples. When doing so,
we temporarily use as large a table and as many indices as
we need so we do not have to worry about table overflow.
We can therefore apply all the standard OpenGL frag-
ment operations such as alpha blending, stenciling, color
operations, and color masking. Complex pixel shaders
can also be applied. After the final fragment has been
computed, we need to generate a new compressed buffer
entry and write it back to the antialiasing buffer.

Compression is performed using a breadth-first traver-
sal of the hierarchy, counting the number of different in-
dices encountered. Whenever we find a subsample hav-
ing an index that would cause a table to overflow, we
mark the index of this subsample as invalid. Moreover,
whenever we generate or encounter an invalid node on
level i, we mark as invalid its level (i + 1) child and the
level (i + 1) child of its parent. For example, if we find
node(1, 4) to be invalid in the tree of Figure 4, we mark
nodes(2, 4) and(1, 3) as invalid.

This compression process makes sure that the top level
node will never be invalid. Moreover, it ensures that
whenever a subsample group cannot be completely valid,
then all the subsamples in this group are invalid. The
result of the execution of our compression and decom-
pression process on the example of Figure 2 is shown in
Figure 6. This technique correctly handles the incoming
of the second black fragment.

At best our method will have results identical to stan-
dard multisampling. However, some scenes will cause a
number of tables to overflow resulting in a loss of infor-
mation. Fortunately it is possible to find a lower bound
on quality degradation. To do so we notice that, given
color and depth tables of sizec, the firstc nodes of the
subsample tree will always be valid. Since these nodes
are attached to distinct subsample groups that cover the
whole pixel, we can assert that the worst case result is
equal to standard multisampling with a lower resolution.
Therefore, quality degradation depends onc and on the



Figure 5: From left to right: no antialiasing, 2×2 multisampling, 4×4 compressed multisampling, and 4×4 multi-
sampling.

Figure 6: Compression and decompression of an over-
flowing color table for the pixel in Figure 2, invalid sub-
samples are crossed out. The antialiasing buffer entry can
only hold 2 colors. We use the subsample hierarchy of
Figure 4.

subsample hierarchy. For example, using the hierarchy
of Figure 4 and tables of size 4 we know that the worst-
case result will be identical to 4 sample per pixel sparse
multisampling [16, 12].

4 Results

Our implementation is based on Mesa [20], an open
source 3D library compatible with OpenGL. We modified
the fragment processing code in order to support variable

rate supersampling, multisampling, and compressed mul-
tisampling.

When using compressed multisampling, our system
lets the user specify maximum and minimum sampling
rates independently for both geometry and depths. Given
these sampling rates we obtain the size of the color and
depth tables together with the number of subsamples per
pixel. We can then compute the memory required for
each antialiasing buffer entry. Using this modified ver-
sion of Mesa, any OpenGL application can now use com-
pressed multisampling.

We produced results using four different configura-
tions: no antialiasing, 2×2 multisampling, 4×4 multi-
sampling, and our 4×4 compressed multisampling. For
the compressed multisampling configuration we kept 3
colors and depths per table. Therefore, according to
Equation 1, each antialiasing buffer entry requires 28
bytes.

4.1 Quality
In Figure 5, a horizontal grid of squares is rendered us-
ing the four different techniques. In these images, each
square is composed of two triangles, creating a geometry
discontinuity between each of them.

It can be seen that, for nearly horizontal and vertical
lines, the 4×4 compressed multisampling scheme gives
better results than standard 2×2 multisampling. This in-
crease in image quality is even more noticeable in ani-
mated sequences.

In all the scenes we have rendered, 4×4 compressed
multisampling gives results very similar to 4×4 multi-
sampling. For example, the lower half of the third and
fourth images of Figure 5 are almost identical. Differ-
ences between compressed multisampling and standard
4×4 multisampling appear near the horizon, where the



Scene Resolution Average Valid Pixels with Number of Valid Subsamples
Subsamples per Pixel 1–4 5–8 9–12 13–15 16

Checker 200×280 15.85 79 908 46 97 54870
Fan 300×300 15.99 0 3 6 6 89985

Teapot 200×300 15.93 36 149 219 323 59270
Gears 640×480 15.91 103 605 1985 4815 299692

Springs 151×115 15.89 9 49 141 268 16898
Plant 640×448 15.27 5814 7058 9101 8303 256444

Table 1: Quality measures for various scenes.

number of fragments per pixel causes overflow in the
color and depth tables.

An example of bounded quality degradation can be
seen in Figure 7. The branches of the plant in the left
image were modeled using small triangles, resulting in
a very large number of fragments and in table overflow.
This can be seen in the top right image that shows with
bright colors the pixels having many invalid subsamples.
Leaves usually have more valid subsamples, thus appear-
ing darker or black.

We know that a pixel with more invalid subsamples
will result in a locally lower sampling rate. This is the
case on the edges of the branch shown in the lower right
image, yet we can see that a reasonable level of quality is
maintained.

Figure 7: On the left, a complex plant rendered using
4×4 compressed multisampling. On the top right, image
of the number of invalid subsamples for each pixel, dark
pixels have less invalid subsamples than bright ones. On
the bottom right, zoom on a branch of the plant.

We have evaluated the quality of our algorithm for the
various scenes shown in Figure 9. For each of these we
computed the average number of valid subsamples per
pixel together with the distribution of the pixels having
1 to 16 valid subsamples. These results are detailed in
Table 1.

4.2 Performance
For fixed color and depth table sizes, our compression
and decompression algorithms can easily be unrolled
and implemented in the hardware pipeline. Performance
would then be limited mostly by the efficiency of data
transfer to and from the antialiasing buffer.

We first compare the bandwidth required for fetching
textures. Instead of evaluating the number of bytes read
from texture memory, which depends on the type of fil-
tering, we have directly counted the number of texture
fetches. The results, for textured test scenes, are shown
in Table 2. The number of required texture fetches do not
change when using compression.

These results vary for each configuration even though
multisampling performs a single texture fetch per frag-
ment. This is due to the fact that the number of frag-
ments generated by a single triangle increases with the
number of subsamples per pixel. Table 2 therefore gives
a good indication of the increase in the number of frag-
ments processed by the pipeline when using multisam-
pling. However, the bandwidth required for these extra
texture fetches is much less important than the bandwidth
due to exchanges with the antialiasing buffer.

Scene No AA 2×2 4×4
Checker 16719 19997 22868

Fan 32827 34664 35469
Teapot 26239 32915 37331

Table 2: Number of texture fetches.

The most important increase in bandwidth is due to the
data transfer with the antialiasing buffer. Each fragment
going through the pipeline has to be compared with as
many depths as there are subsamples in a pixel. When
using standard multisampling, all these depths must be
read from the antialiasing buffer.

When using compressed multisampling, we must read
the set of indices together with the table of depths. How-
ever, the number of bytes transferred in this fashion will



usually be less than that of standard multisampling. This
is due to the fact that the size of the tables is less than the
number of subsamples per pixel.

When alpha blending is enabled the color of each sub-
sample must also be obtained in order to compute the fi-
nal color. In this case, compression allows us to transfer
only the colors in the table, which is less than one color
per subsample as required by standard multisampling.

Each fragment that passes through the pipeline without
being culled must be written to the antialiasing buffer. In
standard multisampling, this means transferring as many
depth and colors as there are subsamples in a pixel. With
compression, we must write back the antialiasing buffer
entry.

The number of bytes exchanged with the antialiasing
buffer is shown in Table 3. Notice that the number of
bytes exchanged for 4×4 compressed multisampling is
very similar to 2×2 multisampling.

Scene No AA 2×2 4×4 4×4
compressed

Checker 0.38 1.83 1.75 8.40
Fan 0.75 3.17 2.72 13.08

Teapot 0.32 1.64 1.59 7.47
Gears 3.80 33.15 31.04 148.70

Springs 0.18 0.86 0.79 3.79
Plant 1.76 23.43 28.41 138.73

Table 3: Megabytes exchanged with the antialiasing
buffer.

As we have seen, the visual results obtained with
our 4×4 compressed multisampling are about as good
as 4×4 multisampling. However, from Tables 2 and 3
we can see that it requires about the same bandwidth
as 2×2 multisampling. From Section 4.1 and Table 3
we conclude that, in the 4×4 case, compression reduces
bandwidth by about 80% without compromising quality.

5 Conclusion and Future Work

We have extended an edge antialiasing technique based
on multisampling to handle compression of the antialias-
ing buffer. This technique can be implemented in hard-
ware and achieves higher sampling rates while minimiz-
ing bandwidth requirements. It supports all the usual
OpenGL fragment-related functions and is compatible
with pixel shaders. As opposed to some previous an-
tialiasing techniques, our compression scheme ensures
that occluded subsamples will never contribute to the fi-
nal image. Also, we can evaluate the minimal number of
subsamples per pixel required by a given configuration of
our system, leading to a lower bound on image quality.

In the future, we would like to evaluate performance
and visual quality of compression when combined with
low-cost techniques [3, 5]. To do so, we could extend the
antialiasing buffer entries so that they contain subsamples
coming from more than one pixel, as shown in Figure 8.
We would also like to optimize memory organization in
order to maximize cache efficiency and reduce even more
the required data transfer. We could also antialias inter-
penetrating polygons through the use of low precisionZ
gradients [9]. Finally, we would want to study the impact
of merging subpixels that share similar colors and depths.

Figure 8: Extended structure of a single antialiasing
buffer entry for a group of 16 subsamples shared by 4
neighboring pixels.

Acknowledgements

We would like to thank Jean-Jacques Ostiguy, at Matrox
Graphics, for providing ideas and support when develop-
ing early versions of this work. We acknowledge finan-
cial support from NSERC.

References

[1] T. Aila, V. Miettinen, and P. Nordlund. Delay
streams for graphics hardware. InProc. SIGGRAPH
2003, pages 792–800, 2003.

[2] K. Akeley. RealityEngine graphics. InProc. SIG-
GRAPH 1993, pages 109–116, 1993.

[3] T. Akenine-Möller. An extremely inexpensive mul-
tisampling scheme. Technical Report 03-14, Erics-
son Mobile Platform AB, February 2003.

[4] T. Akenine-Möller and E. Haines.Real-Time Ren-
dering. AK Peters, second edition, 2002.

[5] T. Akenine-Möller and J. Str̈om. Graphics for the
masses: A hardware rasterization architecture for
mobile phones. InProc. SIGGRAPH 2003, pages
801–808, 2003.

[6] L. Carpenter. The A-buffer, an antialiased hidden
surface method. InProc. SIGGRAPH 1984, pages
103–108, 1984.



Figure 9: Results for various scenes rendered using 4×4 compressed multisampling. From left to right, top to bottom:
Teapot, Gears, Checker, Springs, Fan, Plant.

[7] M. Deering and D. Naegle. The SAGE graphics
architecture. InProc. SIGGRAPH 2002, pages 683–
692, 2002.

[8] P.E. Haeberli and K. Akeley. The accumulation
buffer: Hardware support for high-quality render-
ing. In Proc. SIGGRAPH 1990, pages 309–318,
1990.

[9] N.P. Jouppi and C.-F. Chang. Z3: An econom-
ical hardware technique for high-quality antialias-
ing and transparency. InEurographics/SIGGRAPH
Workshop on Graphics Hardware, pages 85–93,
August 1999.

[10] A. Mammen. Transparency and antialiasing al-
gorithms implemented with the virtual pixel maps
technique.IEEE Computer Graphics and Applica-
tions, 9(4):43–55, 1989.

[11] Matrox. 16x fragment antialiasing. Technical re-
port, 2002.

[12] J.S. Montrym, D.R. Baum, D.L. Digham, and C.J.
Migdal. InfiniteReality: A real-time graphics sys-
tem. In Proc. SIGGRAPH 1997, pages 293–302,
1997.

[13] NVIDIA. HRAA: High-resolution antialiasing
through multisampling. Technical report, 2001.

[14] A. Schilling. A new simple and efficient anti-
aliasing with subpixel masks. InProc. SIGGRAPH
1991, pages 133–141, 1991.

[15] A. Schilling and W. Straßer. EXACT: Algorithm
and hardware architecture for an improved A-buffer.
In Proc. SIGGRAPH 1993, pages 85–92, 1993.

[16] P. Shirley. Physically Based Lighting Calculations
for Computer Graphics. PhD thesis, University of
Illinois at Urbana Champaign, 1990.

[17] L. Williams. Pyramidal parametrics. InProc. SIG-
GRAPH 1983, pages 1–11, 1983.

[18] S. Winner, M. Kelly, B. Pease, B. Rivard, and
A. Yen. Hardware accelerated rendering of an-
tialiasing using a modified A-buffer algorithm. In
Proc. SIGGRAPH 1997, pages 307–316, 1997.

[19] C.M. Wittenbrink. R-buffer: A pointerless A-
buffer hardware architecture. InEurograph-
ics/SIGGRAPH Workshop on Graphics Hardware,
pages 73–80, 2001.

[20] www.mesa3d.org.


	Introduction
	Previous Work
	Compressed Antialiasing Buffer
	Buffer Structure
	Handling Overflow
	Compression and Decompression

	Results
	Quality
	Performance

	Conclusion and Future Work

