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Abstract— Interactive software visualization offers a promising
support for program comprehension, including program dynam-
icity. We present, the extension of an existing visualization tool
with heat maps to explore the time and other dimensions of
software. To this end, we first propose a framework to unify
the two main software dynamicities, execution and evolution.
Then, this unified framework is exploited to define a visualization
environment based on heat maps. We illustrate our approach
on two comprehension tasks: understanding the behavior of
programmers during the evolution of an application and under-
standing class contributions in use cases. The case studies show
that the heat-map metaphor contributes to answer, more easily,
many of the questions important to program comprehension.

I. INTRODUCTION

There is a consensus today that program comprehension
is a major challenge in software maintenance [8]. Many
studies show that comprehension consumes the largest part of
resources dedicated to maintenance [16]. This fact encourages
the maintenance research community to develop tools to
support program comprehension. Among these tools, software
visualization environments are increasingly popular.

Visualization of multi-dimensional data helps program com-
prehension by involving human analysts in data exploration
without overwhelming them. Unlike automated tools, visu-
alization allows free exploration without a predefined and
hard-coded process. Several dimensions may be explored
simultaneously, such as structure, quality, and bug tracking.

At the same time, much effort has been dedicated to
consider the time dimension in program comprehension. For
many tasks, it is essential to understand the dynamicity of a
program, for example, from the point of view of execution or
of evolution. Nevertheless, it is difficult to represent efficiently
the time dimension in a visualization tool. It is even more
difficult when the time representation is combined with the
representation of other dimensions. Roughly speaking, three
types of approaches may be used to represent the dynamicity
of a program: (1) different snapshots, corresponding to differ-
ent time steps, displayed side by side [25], (2) an animated
sequence displaying the program’s state changes [14], and
(3) aggregation of the data into a single view [24].

The existing contributions consider execution and evolution
dynamicities as two different problems, irrespective of the
approach used to represent them. Consequently, tools proposed
in one community are usually not reused in the other. Nev-
ertheless, the two dynamicity problems present similarities in
many aspects, which suggests that their unification is possible.

In this paper, we propose a first step towards the unification
of execution and evolution software dynamicities. This unified

framework is exploited to define a visualization environment
based on heat maps. Heat maps are commonly applied on
existing representations to display the intensity of a particular
phenomenon with respect to the represented entities. We
extend an existing visualization environment, VERSO [13],
in which different dimensions are already represented. In
our extension, heat maps are used either to visualize basic
properties related to time or combinations of such properties.
Our adaptation of the heat map metaphor is not straightfor-
ward. Indeed, heat maps are commonly used on concrete
representations where the entities’ positions are meaningful,
such as in meteorology. In our context, software is intangible.
It is intended to be understood by humans and computers, and
has no concrete reality outside of these purposes.

We illustrate our approach on two comprehension tasks: un-
derstanding the behavior of programmers during the evolution
of an application and understanding class contributions in use
cases. These case studies show that a heat-map based metaphor
contributes to answer, more easily, many of the questions
important to program comprehension.

The rest of the paper is organized as follows. Section II
introduces the necessary background and presents the related
work. It gives a brief overview of heat-map visualization, and
discusses other software dynamicity visualizations. Finally, it
recalls the main features of VERSO environment, which is used
as a basis to our heat-map technique. The unification of exe-
cution and evolution dynamicities is described in Section III.
Section IV details our heat-map visualization technique and
how it is integrated to VERSO. Section V presents two case
studies used to evaluate our approach. Section VI summarizes
the the paper, discusses encountered challenges and limitations
of our approach, and gives future research extensions.

II. BACKGROUND & RELATED WORK

A. Heat maps

Heat maps are 2D graphical elements that employ a heat
metaphor to color artifacts and represent the intensity or
importance of a particular phenomenon [19]. The latter is
represented by a 2D array of data, where each 2D coordinate
is associated with a value, bounded by a minimum and a
maximum value. Colors are interpolated according to the
distribution of these data values. The mapping between data
values and colors provides insight about the phenomenon.

There has been much research about heat maps as a vi-
sualization technique. Of particular interest are the studies
on of eye movements to the visualization [21], [5]. Heat
maps have also been used as a visualization technique for



clustering and highlighting the most significant data in high-
density information, such as user traffic in an Internet radio
station [15]. Pryke et al. [17] show with heat maps the quality
of solutions in a multi-objective optimization problem, where
the results correspond to a population of solutions consisting
of values of parameters and scores on multi-objectives.

Rothlisberger et al. [19] evaluate the use of heat maps within
the views of an Integrated Development Environment (IDE).
Heat maps are displayed directly on the existing views of the
IDE. They assess the capacity of different heat maps to guide
developers in exploring software in an IDE. Heat maps are
also used to analyze geographical maps and identify trends
in a particular data set. Hence, heat maps need to be applied
on a 2D surface where each location, defined by a coordinate
system, has a representative value. However, the underlying
locations are usually natural and meaningful when applying
the heat map, and the challenge in our approach is that the
represented software entities do not have natural positions,
their position being rather determined during the visualization.

B. Software dynamicity visualization

There are several visualization tools designed for under-
standing software executions or evolution. In the remainder of
this section, we present some examples of each category.

Cornelissen et al. [7] are concerned with the dynamic
analysis of a program, and propose two views to visualize ex-
ecution traces: (1) a massive sequence view as an UML-based
view, and (2) a circular bundle view that utilizes hierarchical
edge bundles to represent dependencies occurring during an
execution trace. Renieris and Reiss [18] represent data for
temporal trace execution using two views: a spiral view shows
the complete trace, and a linear view highlights parts of
the execution trace. They also propose ways to coordinate
these two views and to take advantage of their respective
strengths. Trümper et al. [23] present a visualization method
for the comparison of large execution traces. The method uses
hierarchical edge bundles to match two traces to be compared
and detects similarities as well as execution permutations.
Bohnet et al. [4] propose a technique for visualizing pruned
execution traces, that supports programmers in comprehension
tasks. The technique generates a linear view of a pruned trace
which shows call similarities. This view cohabits with other
views on traces such as call graphs and sequences, etc.

EvoGraph by Fischer and Gall [9] explores program evolu-
tion and produces 2D visual representations of the evolution
of structural dependencies extracted from the system’s release
history. They propose a graph view (stickiness view) to analyze
co-change information and a longitudinal view to represent
structural dependencies. Wettel et al. [25] give a 3D visualiza-
tion (CodeCity) of an object-oriented program where software
elements are represented as buildings and districts by using a
city metaphor similar to the one of VERSO [13]. In this work,
colors represent one time dimension, i.e., the age of methods,
classes, and packages. Langelier et al. [14] are interested in
the study of large-scale programs’ evolution. The authors use
an approach based on real-time navigation and animation to

investigate programs composed of thousands of classes, over
multiple versions. They exploit the intrinsic coherence between
subsequent versions along with the human visual abilities,
to understand quality aspects of software evolution. Voinea
and Telea [24] augment existing visualization techniques by
displaying more information simultaneously. They encode up
to four attributes using colors and textures. Gevol by Collberg
et al. [6] uses graph visualization to represent evolutionary
aspects of a software, such as authors’ contributions in the de-
velopment process, changes in source code, or other structural
changes. The nodes are color-coded depending on the recency
of the changes. Gevol is intended to be used with other tools,
such as code browsers, to facilitate program comprehension
by the developers.

All the above-mentioned contributions consider one of the
two time aspects, and the associated metaphors are not meant
to visualize time dimensions concurrently with other properties
in an integrated and flexible environment. Moreover, to the
best of our knowledge, none of the proposed tools consider at
the same time evolution and execution understanding.

C. VERSO

As mentioned earlier, heat maps are applied to a 2D surface.
In this work, we associate heat maps to VERSO [13], [14], a
visualization framework that represents a program as a 3D
graphical scene. VERSO uses a base rectangular region and
a treemap layout to represent the hierarchical structure of the
program. The base rectangle is divided into different regions of
different sizes to represent software packages. Each region size
is proportional to the number of classes in its corresponding
packages. The treemap layout algorithm further subdivides
these regions to represent the packages’ descendants, and so
on. Finally, classes are represented as 3D boxes lying on these
regions. In summary, VERSO gives a 3D visualization of a
program by representing packages as regions and classes as
3D boxes within these regions. VERSO enables a developer
to map software metrics to the graphical properties of 3D
boxes representing classes. For instance, classes’ coupling can
be mapped to the boxes’ color, classes’ complexity to boxes’
height, and classes’ cohesion to boxes’ rotation angle around
the Y -axis. Other metrics could be mapped dynamically to the
boxes’ attributes such as the number of open bugs associated to
a class or simply a developer color identifier. These kinds of in-
formation represented in VERSO describe static properties of a
program during visualization. In contrast to the program static
dimension, heat maps intend to represent program changing
state over time. Software states can change in time in different
manners. In our approach, we study program states during its
execution and during its evolution.

III. UNIFYING TIME DIMENSIONS

Software dynamicity shows itself in two dimensions: exe-
cution and evolution, i.e, software changes over time while
executing and also during its evolution. This differentiation
between software time dimensions reflects in the software
visualization communities. We can distinguish between two



visualization communities in the representation of software
dynamics. First, execution visualization that is interested in the
depiction of the execution states of software and understanding
its dynamic behavior (see [7], [18]). Second, evolution visu-
alization that is concerned with the representation of software
changes from one version to another (see [14], [25]). These
two communities treat software dynamicity visualization in
a disconnected manner. There exist similarities in the two
visualizations, which suggests their possible unification.

A. Examples of software dynamicity problems

Here are two examples of software dynamicity problems,
one for each time dimension stated above.

1) Software execution problem: Consider the task of un-
derstanding and analyzing classes’ roles in different execution
scenarios. We collect data about multiple executions that
represent use cases with their main scenario and alternative
scenarios. The main scenario describes the normal execu-
tion of the use case, while alternative scenarios detail the
possible extensions and special cases of the main scenario.
Each execution scenario brings into play several classes that
contribute to its fulfillment. Classes intervene in an execution
scenario at different degrees depending on their roles in the
software. For instance, core classes are triggered in a majority
of scenarios but with low frequencies and generally at the
beginning of the execution. On the other hand, specialized
classes appear in specific scenarios with high frequencies.
When analyzing classes’ contributions in program execution
using visualization, one must consider the representation of
the time aspect with respect to classes interventions in the ex-
ecution. Also, the aggregation of different execution scenarios
in one visualization is key to detect differences or similarities,
such as core classes.

2) Software evolution problem: The second example of
a software dynamicity concerns the study of developers’
collaborations and contributions during software evolution.
Usually, software development projects are run by teams of
developers. Each developer contributes to the software with
a certain degree. Also, several developers may concurrently
collaborate to the software or at different periods of time.
Developers operate on software classes and perform changes
on them from one version to another. The developers’ changes
differ in importance, size, and frequency. The visualization of
developers’ contributions using visualization must take into
consideration the evolutionary behavior of software as well
as the sequence of changes made by developers on software
entities. Furthermore, it has to provide a mean of comparing
and combining multiple developers’ contributions.

B. Dynamicity representation framework

Software dynamicity as defined earlier can be described
using a representation framework that defines its key elements.
Here is such framework:

Event: It is an action that occurs periodically during the
time dimension. An event is triggered by subjects over time
and causes the overall state to change.

In example (1), an execution event occurs when a method
in a class is executed. It is triggered by the execution of
an instruction and causes the execution state to change. In
example (2), an evolution event is defined as a change in the
software structure. It is triggered by developers who change
the software at a certain time of its life cycle. The event is
characterized by the importance of the change, its size, and
the time of the change (version).

Entity: There are two types of entities: entities that trigger
the event (subjects) and entities that undergo the event (ob-
jects). Usually, the entity of interest is the subject as it con-
tributes to the software. Subjects’ contributions are evaluated
on objects and both entities are central in the representation.
In both examples, the objects are the software classes, while
the subjects are the use cases (1) and the developers (2).

State: It is state of the software at a given moment. The
subjects cause events that impact on objects. The change
incurred by the objects results in an overall state change.
The execution event in example (1) is triggered by the use
case execution (entity) that changes the execution state (call
stack, objects and variables’ values, etc.). In example (2), the
developers (subjects) contribute to a software by modifying
its classes (objects) code. Hence, the software structure (state)
changes due to the event.

Entities’ contribution over time: Each entity contributes
to a certain degree to the software and it does that at different
moments of the time scale considered.
The classes’ appearances in the different use cases are an
example of entities’ contributions in example (1). Developers
changes to the software’s classes over time constitute the
entities’ contribution in example (2).

Aggregation of entities’ contributions: The entities’ con-
tributions give valuable information for the analysis tasks at
hand but one often needs to combine several entity contribu-
tions to be able to answer analysis questions involving several
entities’ contributions.
In example (1), the core classes’ identification brings into
play several classes’ contributions (one for each scenario)
that have to be aggregated to identify classes appearing in
most use cases and early during execution. In example (2),
consider the task of studying the developers’ collaboration
and determining which classes are subject to contributions by
several developers. Several developers’ contributions must be
aggregated to identify classes changed by multiple developers
at a given time.

IV. VISUALIZING DYNAMICITY WITH HEAT MAPS

Our primary goal is to analyze how different subjects
(e.g., use-case scenarios or developers) contribute over a time
period (e.g., execution or evolution) to the state change (e.g.,
execution time or code) of a given large-scale software system.
In our setting, we are interested in changes made to the
states at different levels: classes, packages, and system. In
the remainder of this section, we first show how heat maps
allow rendering the state changes. Three important aspects are
discussed, in particular:



• Integration with an existing visualization metaphor to
add dynamic information to other displayed software
dimensions.

• Choice of the color schemes to ease the perception
of dynamic information despite the size of the studied
system.

• Package and class placement to use a heat map to
highlight regions of interest rather than the coloration of
individual classes.

The second part of this section is dedicated to the combi-
nation of multiple heat maps to perform analysis that involves
many subject contributions. Finally, the last part details the
navigation features that help analysts in their tasks.

A. Representing entities’ contributions

Entities’ contributions, e.g., classes’ participation in an ex-
ecution scenario or classes’ code change made by a developer
during the evolution, are represented using heat maps. A heat
map offers a convenient technique to visualize the software’s
time dimension, as it adds a visualization layer on top the
actual software visualization.

Integration with VERSO: In our work, we use VERSO
as the visualization basis, and extend it with heat maps to
represent the entities’ contributions over the time. As men-
tioned earlier, VERSO provides a visualization of a program
(packages, classes, relationships between classes, etc.). A heat
map augments this representation by applying a color gradient
on the software visualization, which adds different information
from the one already conveyed by VERSO. The heat map
visualization is orthogonal to VERSO’s visualization. It can be
used on other software visualizations with minor modifications
when 3D elements are placed on a plane (2D).

Fig. 1: The heat map is applied on the entire square region
representing a package with three classes: A, B, and C. It
shows that the state of B does not change, while the state of
A changes with a lesser degree than one of C.

Given an object-oriented program composed of a hierarchy
of packages, where each package contains classes, the root
package represents the rectangle encompassing the entire
scene and determines the size of the heat map. A heat map
covers the entire rectangle of the root package and conveys
the proper dynamic information about each class contribution
by associating the class’ data to a corresponding color as
shown in Figure 1. Hence, we consider the implementation of
heat maps as color textures (2D array of color pixels, known

as “texels” for texture elements). This implementation choice
comes naturally considering the graphical properties that we
want to visualize. A data array containing the information to
be visualized is computed and used to generate a color texture
with the appropriate colors at the corresponding coordinates.
As stated earlier, heat maps are meant to represent the time
dimension of a software, and as such, we introduce two ways
of representing this dimension. Firstly, the colors of the heat
map may represent the time or age of a certain information,
e.g., time since the last change made by developer Joe on the
classes. On a color scheme representing the heat map, the color
intensity represents the age of the last changes. Secondly, heat
maps may represent accumulation events’ effects triggered by
the same subject. For example, the color intensity represents
the total execution time used by the methods of each class.
In some cases, we want the heat map colors to be “plain”
colors, for instance, to compare two specific colored regions.
In other cases, the visualization requires color interpolation
to give a visual impression of the phenomenon as a whole.
We use bilinear color interpolation between the regions (see
Figure 2). The color interpolation helps highlight regions of
interest by blurring the edges of the individual colored cells.

(a) With interpolation. (b) Without interpolation.

Fig. 2: Interpolation of heat map colors.

Colors: A color texture is represented by an array con-
taining the different color values computed. These colors
must reflect the data distribution that they represent. For this
matter we considered several color systems that have different
visualization characteristics.

Color scales for uni-variate data, as used in heat map visu-
alization, should respect some desired visual properties [20],
such as colors chosen to visualize ordered data values must be
perceived as following the same order. We use the analogy of
heat to produce this perception of order. Colder colors (green)
are lower than warmer colors (red). The distance between two
colors should also be representative of the distance between the
two corresponding data values. Furthermore, clearly separated
data values should be represented by distinguishable colors,
and closer data values should correspond to variations of the
“same” color. The color visualization should not introduce
perception side effects, and not create fake boundaries, i.e.,
if data values do not have boundaries, the colors should not
suggest that there are some. Also, the color visualization must
not convey a certain organization of data if it is not present
in the data itself. For example, color arrangement should not
suggest clusters if the corresponding data do not aggregate.



Element placement: Usually heat maps are used on rep-
resentations in which concerned elements have meaningful
positions. In the case of software systems, the positions of
classes and packages are not absolute and are determined to
show a given property such as the system architecture. The
treemap layout algorithm used in VERSO arranges software
entities on a rectangular region. The algorithm operates on a
tree structure to subdivide the rectangle into smaller regions
representing software elements (packages and classes). It
processes the software elements starting from the tree root
and recursively traverses the tree, but the processing order of
the node’s children is random. Therefore, we take advantage
of the two degrees of freedom (subpackages and classes) to
augment our heat map visualization by enforcing particular
element placements according to the visualization needs. In
order to take full advantage of the heat map visualization, we
group classes that are part of the heat map, i.e., classes that
have a data value to be displayed in the heat map visualization.
This element placement allows for a better analysis of the heat
map because interesting elements that have similar values and
therefore similar colors in the heat map are put closer together.
This was motivated by the fact that when analyzing a heat map,
it is easier to have the interesting software elements closer to
each other rather than scattered over the entire base rectangle.
Hence, we consider element placements that minimize the
distances between all the interesting software elements.

The search space covers all possible permutations of the
subpackages, and for each package, all possible classes po-
sitions within their parent packages. The size of this search
space is prohibitively large and results in a combinatorial
explosion. Therefore, a brute force or an exhaustive search
would be very inefficient. Moreover, we do not necessarily
need the optimal solution to element placement, as our goal
is to improve the heat map visualization. Therefore a near-
optimal solution should prove satisfactory for our goal. For
this matter, we view element placement as an optimization
problem that could be solved using a meta-heuristic algorithm.

In order to search for a layout that minimizes distances
between classes with similar colors in the heat map, we use
a simulated annealing (SA) algorithm [12]. SA is a local
search meta-heuristic inspired by the metal annealing process
of metallurgy, where a crystalline solid is heated and then
cooled down according to a cooling schedule until it reaches
its optimal energy state, and thus is free of defects. For the
layout optimization, we start by an initial layout, and using
a pseudo temperature with a cooling scheme, we simulate
iteratively the state change by exploring neighboring solutions.
The generation of a neighboring solution from a current one
combines two strategies. First, we randomly choose a level
in the software package tree structure, from which we select
two sibling packages. We swap those two sibling packages’
position, which does not alter the software structure (first
degree of freedom). Then, we randomly choose two packages,
not necessarily the ones chosen in the first stage. We select
two classes from each chosen package, and we swap their
relative positions within their parent package (second degree

of freedom). Each candidate solution is evaluated using an
objective function that computes the sum of the relative
euclidean distances between the classes involved in the heat
map, and compared with the current solution. Solutions that
improve the fitness are automatically accepted. Those with
a fitness deterioration could be accepted with a probability
that decreases along with the cooling process and the level of
deterioration.

(a) Initial random placement. (b) Optimized element placement.

Fig. 3: Element placement optimization starts with an initial
solution that is then optimized by swapping sibling packages
and sibling classes.

Figure 3(a) displays a heat map of the method executions
per class when using Pooka [2] system for a use-case scenario,
where element placement is done with the treemap and random
order of the sub-packages and classes. Figure 3(b) illustrates
the same data with the optimization of element placement.
The heat map visualization is easier to analyze when classes
involved, with the same degree, in the execution scenario are
closer to each other. For instance, to compare two classes
with similar colors, we should minimize the distance between
them, thus reducing the scanning effort and potential visual
perturbations. In addition, it becomes easier to perform an
action of zooming on features if the area of interest is smaller.

Another placement issue is when a heat map displays data
related to evolution. Indeed, software structure changes over
time, as from one version to another, classes and packages
may be removed, added, or modified. The representation of
these changes should not alter the visual coherence of the
overall navigation and interaction with the scene. For instance,
a class is removed and another is added at a certain version,
the added class should not be positioned at the location of
the removed class to avoid confusion. The same is true for
entire packages. To have consistent heat maps, we used a fixed
positions layout [14] where all software elements remain at
the same positions during the visualization of each version.
The elements’ positions are computed for all versions at the
beginning of the visualization by constructing a virtual tree
representing all elements that existed at any version. The
virtual tree contains the hierarchy level of the elements that
is used for the treemap layout explained above. Figure 4
illustrates the fixed positions layout computed for four versions
of JHotDraw [1]. The package P , which contains tests, is
added only in version 5.4.1 and hence appears only in the last
two versions, but its space is present since the initial version.
The class C remains in the same position throughout the



(a) 5.2 (b) 5.3 (c) 5.4.1 (d) 6.0.1

Fig. 4: Fixed positions layout for four versions of JHotDraw system.

entire system evolution.

B. Aggregation entities’ contributions

For some comprehension tasks, it is necessary to analyze
two or more heat maps corresponding to the contributions of
different subjects. For example, one could execute different
scenarios of the same use case and study the involvement of
the classes for all the variations of the use case. To this end,
we utilize three different strategies:

Multiple windows: Each subject’s contribution is repre-
sented by a heat map and rendered on a separate scene
and window. The analysis is done by visually comparing the
different scenes where the different contributions are depicted.
Several interaction features are provided to facilitate the nav-
igation between the different windows (see Section IV-C).

Flipping: The heat maps representing the different contri-
butions are all displayed in the same scene. However, only one
heat map is rendered at any given time. The comparison of
heat maps is done by switching the rendered heat map, only
the heat map that is rendered on the surface plane is changed,
the scene remains the same.

Color weaving: To represent multi-variate data (multiple
heat maps), we tested color blending and color weaving. Both
techniques use multiple color scales, one for each variable
(heat map) to be visualized. Color blending consists of mixing
the color values of the represented variables, thus resulting in
one computed color. However, issues with color blending are
the identification of individual variables and the resulting col-
ors might not be very meaningful. Color weaving is performed
by representing the individual colors side by side in a higher-
frequency color texture. We explored the use of color weaving
to represent multi-variate data as it performs better than color
blending when the dimensionality of the data increases [11].
Figure 5 illustrates a close-up view of two different heat maps
combined in the same view. The resulting texture is obtained
by subdividing each individual region of a software element
into a number of texels (100× 100 texels, Figure 5 right) and
by introducing noise with the location of the two colors of the
same region in the heat maps to be combined.

C. Navigating in views

VERSO provides an interactive visualization environment.
Most software maintenance tasks are too complex to be com-
pletely automatic. Hence, human intervention is often needed

during the analysis tasks. Heat map visualization follows the
same principle and allows the analyst to navigate within the
3D scene. Some navigation and interaction features are:

Camera: The 3D scene camera allows the user to change
the point of view from anywhere in the scene, as well as
zooming in and out of it. In the multiple windows view,
a camera synchronisation feature helps maintaining a visual
coherence between the windows for comparison sake.

Color-scale manager: This feature permits to filter a heat
map within a subset of interesting values. It also allows the
user to re-map a range of values to a wider color range in order
to better distinguish between closer values. Figure 6 illustrates
these features.

Histogram: The color-scale manager interface provides a
histogram of the values displayed in the heat map. This
histogram gives an intuition about the distribution of the heat
map data. It also gives the user extra information about high
concentrations of values that may need to be filtered and re-
mapped in order to be analyzed separately.

Navigation: Switching between several heat maps must be
as simple as possible, because it is one of the most frequent
operation used during exploration and analysis of the data.
This is associated with the up/down arrow keys and its result
is instantaneous. We also use left/right arrow keys to switch
between versions of the software.

Scene clearing: Despite our efforts to make the scene less
cluttered, we sometimes need to clear the scene where all
the attributes are rendered (see Figure 7(a)) in order to better
visualize specific graphical elements. For this purpose, the user
may hide the 3D boxes and display only the heat map (see
Figure 7(b)) and vice versa (see Figure 7(c)). The user can
also keep some contextual information by given the 3D boxes
desaturated colors and fixed heights, as shown in Figure 7(d).

V. ILLUSTRATIVE CASE STUDIES

To illustrate the use of our heat map visualization, we
discuss two case studies involving two time-based software
comprehension tasks. The first case study concerns the evolu-
tion of the JHotDraw [1] software and the second one targets
the analysis of the Pooka [2] software’s features.

A. Software evolution

Objective: To understand some aspects of software evo-
lution, an analyst needs to combine time-related information



Fig. 5: The two heat maps on the left are combined on the right using color weaving with a high-frequency color texture.

(a) No filtering. (b) Filtering. (c) Remapping on a wider color gradient.

Fig. 6: The color gradient on the rectangle represents the time/age of the changes accomplished by developer mrfloppy in
JHotDraw 6.0.1.

(a) All attributes rendered. (b) Boxes not rendered. (c) Heat map not rendered. (d) Boxes’ size reduced and boxes’
colors desaturated.

Fig. 7: Options for scene clearing and color interpolation.

with other software properties. In VERSO, we used heat maps
to represent time information of software evolution in addition
to static software information mapped to the 3D boxes. For the
sake of illustration, tasks are defined as questions to answer
for program comprehension.

Tasks and Data: During maintenance tasks related to soft-
ware evolution, developers often ask recurrent questions. Fritz
and Murphy [10] determined several such questions by in-
terviewing professional developers. The developers’ questions
are organized by domains of information from which answers
can be found, such as source code, bug reports, test cases,

etc. Because we visualize program changes over time, we are
interested in two domains: source code and change sets. Here
are some of these developers’ questions, related to these two
domains, that we answered using our visualization technique:

A) Who is working on what?
B) What are coworkers working on?
C) Who changed this class?
D) What is the most popular class?
E) Who is working on the same classes as I am?
F) What classes have been changed?
G) Which class has been changed most?



We considered four versions of JHotDraw (5.2, 5.3, 5.4.1,
and 6.0.1), a Java GUI framework for technical and structured
graphics. The numbers range from 14 to 36 packages, and
from 171 to 498 classes. The SVN logs of each version were
extracted and parsed to retrieve information about the contri-
bution of the different developers in each version. There are
eight developers whom contributed to the JHotDraw project
over the four considered versions. The collected data have been
organized into a matrix, where the first dimension represents
developers, and the second represents versions. Such an orga-
nization permits to visualize a developer’s contribution over
several versions of a program with the possibility to compare
multiple contributions of the developers. The visualization
techniques offer a way to represent the developer’s contribu-
tion under different facets. For example, we can visualize the
importance of the contribution as the proportion of changes
made to different classes. We can also visualize the recency
of the contributions. The modifications can be filtered by type:
all changes, additions, modifications, and removals.

Fig. 8: ricardo padilha’s contributions to JHotDraw 6.0.1.

Analysis: We used our heat map visualization within the
VERSO framework to answer the selected questions by gener-
ating heat maps representing the system’s degree of changes,
which corresponds to the extent to which the software differs
between two time stages. The information about change is
organized by developer and by version of the system, hence,
a heat map corresponds to one developer who worked on a
particular version of JHotDraw. Figure 8 shows the changes
made by developer ricardo padilha in JHotDraw 6.0.1. The
changes include additions, modifications, and removals of
classes. The colors represent the importance of the changes
made. For instance, ricardo pardilha made the most changes
to class org.jhotdraw.figures.TextFigure, which appears in red
in the heat map of Figure 8. To answer most of the questions
with respect to a developer, we generate heat maps repre-
senting the developer’s contributions. These heat maps answer
question A. Question B can be answered by aggregating all
these heat maps and visualizing the resulting heat map, which
would include the contributions of all the developers and their
importance. For question E, we compare the heat maps one by
one with the heat map representing the developer asking the
question in order to identify classes in common. For instance,
developers mrfloppy and dnoyeb have 26 classes in common in

version 5.4.1. Figure 9(c) illustrates the contributions of these
two developers to JHotDraw 5.4.1. The analysis is done by
comparing the two heat maps. The comparison can be achieved
either by generating two scenes side by side displaying each
of the heat maps, as shown by Figures 9(a) and 9(b), or
by flipping interactively between the two heat maps on the
same scene, and noticing the differences, or by combining
the heat maps in the same view by weaving their colors (see
Figure 9(c)). We used a coarse-grained texture in this case
(compared to Figure 5 (right)) to highlight classes in common,
where there are two colors in the class region, in comparison
to classes that do not appear on both heat maps, where the
background color is weaved with the one color. Questions D, F,
and G can be answered in the same manner with the generation
of a heat map that represents the aggregation of all changes
made by all developers. This resulting heat map would show
the most popular classes in red (for question D). Filtering this
heat map to show only modifications will answer question F
(all classes with a heat map color) and question G (classes with
a color red). Finally, to answer question C, one can generate
a heat map for each developer with the age rather than the
amount of changes. Then, the heat maps are compared side
by side or by flipping. The responsible is the developer with
the heat map exhibiting the reddest color for this class.

B. Software execution

Objective: We consider program execution from the per-
spective of time, and visualize it using heat maps. These are
used as an exploratory technique as well as for specific tasks,
such as feature location or identification of core classes in
alternative executions. Our goal is to help the user gain insight
into a system without up-front knowledge, and also get into
the system’s features by performing alternative use cases.

Tasks and Data: We used our visualization technique to
analyze features from Pooka. We performed a visual analysis
of execution traces to understand classes’ participation in
different use cases. The tasks taken for the case study are
inspired by the case study reported by Cornelissen et al. [7].

We collected the execution traces of the software Pooka, an
email client written in Java, using the Javamail API. There
are 301 classes organized in 32 packages. We used a custom
extraction agent written in C that utilizes the jvmti API to
listen to events triggered at the method’s entry or exit. Each
time a method of our considered software is called during
the execution, the agent captures the entry event and returns
information about the method, such as its parent class, the
thread within which it is executed, its signature, a time stamp,
etc. The same information is collected when the method exit
event is captured. This information is then processed to be
aligned for each method to produce a call graph with the
execution time of methods. The execution time is relative, in
the sense that nested methods’ execution times are included in
the outer method. The call graph generated includes multiple
execution threads and can be traversed in the same order as
the events were triggered during the execution. It can also be
traversed by following a particular execution thread. System



(a) dnoyeb contribution.

(b) mrfloppy contribution.

(c) Combined contributions

Fig. 9: The combination of heat maps representing the contributions of developers dnoyeb and mrfloppy to JHotDraw 5.4.1.

Fig. 10: Class activity in the use case open email, add sender
to address book, and close email.

(a) open email and close it. (b) open email, add sender to ad-
dress book, and close email.

Fig. 11: Comparison of two alternative executions of use case.
Classes in the blue rounded square are active in Figure 11(b),
but have no activity in Figure 11(a).

method calls are filtered out as well as unnecessary events,
such as mouse hovers, panels repainting, etc. After filtering,
we organized the traces by use case; each use case regroups
several alternative execution traces. We recorded 37 traces of
user interactions with the system and organized them in three
main use cases: “read mail”, “inbox actions”, and “search
mail”. For example, use case “read mail” includes an execution
trace of opening an email without attachments, one of opening

an email with attachments, and one of opening an email and
searching for a word within the email, etc.

Several information types can be visualized using the tech-
niques presented in this paper. For instance, we can represent
the age of each class in the execution stack. We can visualize
the activity (cumulative execution time) of each class in an
execution trace. Finally, we can visualize the occurrence of
classes over several execution traces. These visualizations are
then used to compare different use cases and execution traces.

Analysis: We generate a heat map for each execution trace
representing an alternative use case. The resulting color gra-
dient reflects the appearance of the class in that particular use
case. Hence, every heat map shows the classes participating
in the use case and its contribution to its execution. A color
red indicates high activity within the use case, while a color
green indicates low activity. For instance, “open an email,
add the sender to the address book, and close the email”
triggers 31 classes in seven different packages. Each class has
a different level of activity when this use case is executed.
Figure 10 shows class activity during the execution of the
use case. We can see the 31 classes contributing to the use
case. There are eight classes with high activity (red) and the
class net.suberic.pooka.gui.dnd.DndUtils is the one with the
least activity in this particular use case. Another important
task that our technique helps the user to perform is the
identification of core classes that appear in several alternative
use cases. This task is achieved by aggregating multiple
alternative use cases and computing a heat map representing
the number of class occurrences. The heat map indicates the
number of alternative use cases where the classes appear.
Core classes appear generally in several executions of the use
case. The heat map visualization technique enables the user to
narrow the search for classes responsible for minor changes
in executions. For instance, consider the two alternative use
cases: “open email and close it” and “open email, add sender
to address book, and close email”. We generate two heat maps
representing the class activity of the two use cases, and we



compare them with the techniques stated above. The result
shown in Figure 11 indicates clearly that, for example, classes
FileResourceManager, ResourceManager, VcardAddressBook,
and Vcard (circled in blue) are active in Figure 11(b), but
not in Figure 11(a), which suggests that they are responsible,
with a few others, for the treatment of add sender to the
address book. To identify core classes, we generate heat maps
representing the classes’ activity in the alternative executions.
Then, we aggregate them and concentrate on classes that
appear in red, i.e., classes active in most alternative executions.

VI. CONCLUSION AND DISCUSSION

In this paper, we explore the visualization of software
dynamicity. We consider program changes that occur during
execution and evolution. The heat map metaphor used in our
visualization technique is suitable for the representation of a
program’s time dimensions. Hence, in an attempt of unifica-
tion, we apply the heat map metaphor for the representation
of program execution and evolution. Heat map visualization
allows the distinction between the software’s dynamicity and
its overall context. It allows the developer to analyze the
system’s temporal dimension and to keep in mind the general
context that is often needed to understand the system.

In order to illustrate the use of our visualization approach,
we realized two case studies on two different systems for the
two software dynamicity aspects. The case studies illustrate
that heat maps permit to answer practical questions and offer
a simple and precise way about where to start the search for
an answer. Consequently, they corroborate our claim that the
two software time dimensions studied may be represented and
analyzed using the same visualization metaphor.

Our studies have also revealed that there are still open issues
when representing time aspects on top of other software prop-
erties. The color systems used for the heat map visualization
are device-dependent models, and as such, do not relate well
with the way colors are perceived. In particular, the euclidean
distance between two color values in the color system should
be proportional to their perceptual distance. This property
is present in device-independent color systems such as CIE
LAB and CIE LUV, which are perceptually more uniform.
Even though we did not feel penalized by this limitation,
we plan to utilize a perceptually coherent color system in
order to augment the heat map visualization. Another issue
is the challenging problem of layout stability while working
on software evolution. Our layout algorithm works when we
consider previous versions up to the current version. However,
for future versions, our algorithm would completely re-arrange
the elements to consider a recent version. This would result
in a major change in classes’ positions from one version to
another, and temporal coherence in the scene could be affected.
We plan to tackle layout stability in future work in order to
preserve some coherence as the system’s structure evolves. We
consider two approaches: (1) use Voronoi treemaps [3], which
improves stability by relaxing the constraint of rectangular
subdivisions, thus allowing arbitrary shapes, or (2) use another
layout type, such as EvoStreets [22], which improves stability

by incrementally incorporating new changes to the software’s
structure.
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