
Sampling Visibility in Three-Space

Martin Blais Pierre Poulin

Département d’Informatique et de Recherche Op´erationnelle
Université de Montréal�

Abstract

We present a visibility algorithm that is based on sampling the
scene for visible surfaces. The subset of lines for which the
visibility is pre-calculated is defined by a two-plane parame-
terization. Each sample represents the portion of geometry that
is visible for the lines through that sample’s region. Lumping
geometry together in grid cells allows achieving visibility at
a coarser level, and improves the solution. A rendering algo-
rithm that uses this visibility pre-calculation is presented. Us-
ing this method, most hidden geometry is culled and a speedup
in rendering time is obtained.

Some problems remain, however, and are discussed here.
Particularly, some cells are left unrendered because they are
missed by the discrete sampling procedure, thus potentially
creating holes in surfaces. Techniques to improve the solu-
tion are proposed. In particular, modifying the pre- and post-
filtering algorithms used in creating/resampling the field helps
remove some of the artifacts. Nonetheless, the algorithm re-
mains useful for cases where only coarse visibility is needed.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling - surfaces and object repre-
sentations.

Keywords: Visibility, Occlusion, Culling, Image-Based Ren-
dering

1 Introduction

Determining visibility has been an important topic in com-
puter image synthesis since the advent of raster graphics two
decades ago. The need for faster computation of the visible
parts of 3D geometric representations of objects has led to re-
search in several directions, each of which has had its own
successes and problems. The method we present here com-
bines results from the emergent field of image-based render-
ing and visibility algorithms to produce a new method for pre-
computing visibility for a scene.

We modify the light field rendering technique of Hanrahan
and Levoy [9] to be used to identify visible surfaces. Radi-
ance values in the field are replaced by indexes to chunks of
geometry. We call this structure the “visibility field”. We use
the fact that the visibility of surfaces does not change along a
line in free space, just as for radiance. The visibility field is
computed offline, and is resampled at render time to find out
which surfaces are visible from the camera viewpoint. These

�Département d’Informatique et de Recherche Op´erationnelle,
Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montr´eal,
Québec, Canada, H3C 3J7
Email:fblais jpoulin g@iro.umontreal.ca

surfaces are then treated by a classical rendering and visibil-
ity algorithm. Thus most of the invisible surfaces do not have
to be considered for rendering. The reduced amount of scene
geometry to be rendered implies possibly faster renderings.

2 Related Work

2.1 Visibility Culling

The visibility determination problem has been one of the pri-
mary areas of research in computer graphics since the early
1970’s. Many simple hidden-surface removal algorithms have
been proposed and are widely in use. However, as we are
dealing with increasingly large model databases, more com-
plex algorithms are becoming necessary to reduce the cost of
visibility computation in the context of rendering.

Many techniques implement visibility culling from image-
space structures (the z-buffer is one such example). One such
recent method [14] uses hierarchical occlusion maps created
from a subsets of objects to cull away most of the geometry.
That technique is similar to the technique presented here, in
the sense that it is based on sampling visibility “images”. An-
other similarity is that this technique provides the possiblity of
performingapproximate visibility culling, which is what our
method performs.

Recently, characterizations on the exact content of the vis-
ibility function have been developed [4]. The visibility func-
tion contains many discontinuities. Detecting the important
discontinuities in this function is very important for radiosity
solutions. A method for pre-computing global visibility for a
scene has been proposed by Durandet al. [5]. Their method
computes theexactvisibility from one point to all other points
in space. Although their structure may be computed lazily, it
is not suited for fast or real-time rendering.

The approach we suggest here relies on sampling the visi-
bility function rather than computing all the possible visibility
changes.

2.2 Image-based Rendering

Image-based rendering systems create new views of a 3D en-
vironment from a set of pre-acquired images—that is, no in-
formation other than the images and their geometry is known
about the scene being rendered. These new rendering methods
offer the advantage that model complexity is unbounded, and
rendering time is independent of scene complexity.

The idea of capturing all the incoming light at a point in
space in an environment map [7] [1] is a forerunner to the more
recent approaches of image-based rendering. It was used to
efficiently compute reflections on shiny surfaces. It was shown
that although spherical projections of the scene would be most
appropriate, that it is more efficient to use a cube (six planes)
to store the environment map. Panoramic images (cylindrical

[2], or spherical [13]) have also been used to store environment
maps to enable one to explore a scene from a fixed viewpoint.
A shortcoming of these methods is that the view or shading
point is fixed.

To address this problem, many techniques using the for-
ward mapping approach have been developed [3] [11]. These
methods often rely on a disparity map to project the original
images’ pixels on the viewplane. These methods suffer from
the problem ofholes. Hidden regions in the original images
become visible when the viewpoint is changed and no infor-
mation about those regions is known. Several interpolation
techniques have been devised to try to fill in those gaps.

A slightly different approach, that relies on a more com-
plete sampling of the light field, has been proposed recently
[9] [6]. Dubbed light field rendering, or Lumigraph, these
methods are not constrained to using only a few selected im-
ages. Instead, a parameterization of a subset of lines in space
is established and discretized to contain radiance values for
many positions/directions. Rendering is achieved by querying
and interpolating the radiance values stored in the parameteri-
zation from the camera viewpoint. Appropriate filtering, both
when creating the field and when resampling from it, is crucial
for the success of this method. Since a large amount of sam-
ples is needed to produce decent images, a good compression
technique is required to limit the field storage size.

A related rendering technique (Lucifer) has also been pro-
posed by Lewiset al. [10] for propagating light between re-
gions in a scene. The technique iteratively propagates and in-
teracts the light field in/with scene voxels. They propose using
a wavelet representation of the light field for each of these vox-
els.

In the light field renderingapproach, it was shown how to
effectively sample and filter the four-dimensional light field
in space. In particular, two-plane parameterizations [8] are
used for efficiently accessing sample values of the light field.
The intersection of a line in space with the two fixed param-
eterization planes (uv andst planes) is determined, yielding
(u; v; s; t) values which directly index into the field array.
This method is both simpler and more computationally effi-
cient than using Pl¨ucker coordinates or position/angle repre-
sentations because it only involves linear operations.

2.3 View-based Rendering

Another technique in-between image-based rendering and
model-based rendering has been proposed by Pulliet al. [12].
This technique first precomputes visibility at afixed number
of viewpoints around an object by keeping texture-mapped
partial submeshes of the model for each of these viewpoints.
To render a view from a vantage viewpoint, the three closest
views are chosen and the three corresponding submeshes are
rendered from the new camera viewpoint.

The three renderings are then combined according to a
weighting scheme (“soft z-buffering”), where the following
parameters are taken into account: the position of the cam-
era relative to each sample viewpoint, a measure of the surface
sampling density, and feathering at the meshes’ edges. Most
of these operations can be done in hardware, so it is quite effi-
cient.

However, there is a lot of redundancy in the information
that is kept (the submeshes), if the meshes overlap.

3 Sampling Visibility

The method presented here consists of using a two-plane
parameterization to sample the visibility of scene geometry.
Each scene object is divided in basic blocks of geometric prim-
itives. We sample the scene by raytracing all lines subtended
by the two planes, storing which primitives are hit from any
one ray, thus creating a 4D structure similar to the light field
structure used in light field rendering [9]. We render a view
by first resampling from thevisibility field to mark the visible
cells, then we use a standard rendering method to render only
those cells that are marked.

Equivalence between the light field and the visibility field
is discussed in section 3.1 and 3.2, and filtering issues are dis-
cussed in sections 3.3 and 4.1. Section 4 describes the render-
ing algorithm in detail, and section 5 presents our implemen-
tation. The results and a discussion are presented in sections 6
and 7.

3.1 Field Complexity

It has been shown that the plenoptic function reduces to a
4D light field in space free of occluders [9]. The plenop-
tic function is a 5D function in space (radiance values for all
x; y; z; �; �). However, we can simplify it to a 4D function by
assuming that we are representing the function in space free
of occluders (this, in conjunction with the fact that radiance is
constant along a line).

The same principle holds for visibility: in space free of oc-
cluders, the part of an object’s surface that is visible along a
line is constant. The visibility field can thus be represented as
a 4-dimensional field.

3.2 Visibility along a Ray

We need to define how visibility along a ray will be repre-
sented. We assume that the scene is composed of polygon
meshes. We chose to represent it as the “geometry element”
that is first encountered by a ray. This “geometry element”
could be defined as either

1. The object (polygon) that is directly hit by the ray ;

2. A grid cell that contains the polygon that is directly hit
by the ray ;

3. The set of objects hit by a cone in the direction of the ray.

Each of these choices has its advantages and associated
problems. The first method, which consists of associating
a polygon id with the sample, will minimize the amount of
multiply-referenced geometry, because few rays will hit the
same polygon (see figure 1). We want to avoid multiply-
referenced geometry elements, because the more we have sim-
ilar adjacent geometry elements in the visibility field, the more
time will be wasted in the resampling algorithm, marking the
same geometry elements for rendering which, in such a case, is
an indicator that visibility sampling could have been achieved
with a lower sampling resolution. However, since the individ-
ual geometry elements (polygons) can be quite small for de-
tailed models, the sampling rate has to be quite high in order
to cover the whole visible geometry (see section 7.3).

The second option, lumping together parts of the visible ge-
ometry in grid cells, alleviates the problem of missing geom-
etry because of insufficient sampling by creating larger geom-
etry elements. However, a problem with this approach is that

polygon
Marked

Ray

(s,t)

(u,v)

Scene geometry

cell
Marked

Ray

(s,t)

(u,v)

Scene geometry

Cone

cells
Marked

(s,t)

Scene geometry

(u,v)

Figure 1: Sampling polygon ids Figure 2: Sampling object grid cells Figure 3: Sampling the cone of cells

the size of the grid cells depends on the position of the objects
in the scene, i.e. after projection, they may be very small.

The third option, keeping ids to all the visible objects or
grid cells enclosed in a cone originating at the ray, resolves
the problems of the preceding two options at the expense of
keeping multiple object ids for a single sample of the visibility
field. A problem with this method is that it requires a much
more complex data structure: the samples may be of varying
size. It is thus hard to bound the size of this structure, since it
depends directly on local scene complexity.

There is a tradeoff between the quantity of geometry that is
referenced in the parameterization and the quality of the vis-
ibility estimation. If geometry is referenced in large lumps,
then we may be rendering more geometry than is actually nec-
essary. On the other hand, if the geometry is finely subdivided,
then the visibility sampling might miss some important geom-
etry elements.

In our implementation, we have chosen the use a compro-
mise between the second and third technique. We divide each
object in grid cells and each sample in the visibility field con-
tains the id to this object and cell. Furthermore, each sample
may contain more than one cell/object id, but only up to afixed
number. We allocate the field by setting the maximum number
of ids for each sample, so that the structure remains a simple
4D array in memory.

Note that we chose to subdivide each object separately,
rather than subdividing the scene as a whole. Subdividing the
whole scene, regardless of objects, would also be a working
solution (see section 7).

3.3 Pre-filtering

In the context of light field rendering, pre-filtering the input is
necessary to reflect all of the possible values that a particular
radiance sample represents. This is also true for the visibility
field, and it corresponds to keeping all of the geometry ele-
ments visible from within a cone passing through the sampling
grid elements in the(u; v) and(s; t) planes (see figure 3).

The visibility field is created by casting rays in the scene
through all of the possibleu; v; s; t values on the parameteri-
zation planes. At the time of creating the visibility field, the
maximum number of cell idsn, that the field will contain is
fixed. For a sample, we supersample the scene by using a grid
of 3 � 3 positions on both theuv andst planes, thus yielding
81 different rays. Since a limited number of cells are available
for the sample, we rank the cell ids bysorting themaccording
to the number of times they occur among the 81 rays. We then
store then first cell ids in the sample. If there are less thann

cells hit, we store the remaining cell ids for this sample as null
ids (empty).

4 Rendering Algorithm

We render a novel view of the scene by resampling the visibil-
ity field by using rays from the new camera viewpoint, mark-
ing those cells that are encountered as visible. Then we render
only the marked cells, with a traditional rendering method (in
our case, z-buffering with SGI hardware). The procedure is
depicted in figure 4.

procedureRender(grid cells)is ;
begin

Project the(u; v) and(s; t) slab planes and rasterize intersection
for each pixel in intersectionloop

Resample the visibility field to find which cells are visible
Mark the grid cells associated with the sample

end loop
for each cell in the gridsloop

if the cell is markedthen
Render the cell’s geometry (with OpenGL)

end if
end loop

endRender

Figure 4: The rendering algorithm

In comparison with the usual straightforward rendering
method—that is, rendering all of the geometry in the scene—
our rendering technique has the additional cost of rasterizing
and resampling the grid. There is a gain in rendering speed if

Krasterize+resample+ trender visible cells< trender all cells

whereKrasterize+resampleis constant time for a fixed slab reso-
lution and subsampling level for resampling. Also, we will
compare withvisibility tracing—that is, applying the ray cast-
ing technique to find visible cells at rendering time (see section
6).

The extent of this gain will depend on the following factors:

� The amount of total cell occlusionin the scene:if there
are a lot of completely hidden cells, we avoid rendering
them. The more occlusion there is between grid cells, the
more we gain, because the technique essentially culls the
hidden grid cells ;

� The amount of partial cell occlusionin the scene: if
a lot of partially visible cells are present, then we end
up sending the hidden geometry in them to the rendering
pipeline as well. This can happen, for example, through
holes in the scene, or near silhouette edges ;

� The distribution of geometry in the scene:if there is a
lot of self-occlusionwithin the cells, we end up rendering
the hidden geometry in those cells too ;

� The number of geometric primitives (polygon count):
the cost of rasterizing and resampling the slabs is con-
stant and is thus amortized over the total rendering cost.
If we have a lot of primitives to render, the cost of this re-
sampling procedure is negligible over the gain in culled
geometry ;

� The resolution of grid subdivisions: if we use finely
divided grids, it is more costly to go through all of them
to check for marked nodes for rendering.

4.1 Post-filtering

In light field rendering, post-filtering is applied when resam-
pling from the field: the neighboring samples may be linearly
interpolated to avoid the aliasing effect induced by the dis-
cretization of the slab planes.

Similarly, we can use the neighboring samples in the visibil-
ity field to improve our visibility approximation. We option-
ally consider the 16 neighboring samples of the(u; v; s; t) ray
intersection when resampling, and mark the associated cells as
visible. In doing so, we often mark cells that were “missed” by
the point-sampling procedure as visible. However, we proba-
bly also increase the amount of hidden geometry that is sent to
the rendering pipeline.

5 Implementation

The software was programmed in C++, and running times
were computed on an SGI R10000 with Solid Impact graphics
and 128 MB of memory. Compression of the visibility field
was not implemented. Although the method could be gener-
alized to any kind of geometry, our implementation only sup-
ports polygonal geometry (triangle and quad meshes).

Each slab sample contains an array of one or more of the
following structure (see figure 5): an id to the mesh that the
visible grid cell is in (-1 for an empty cell), and the coordinates
of the grid cell in that mesh.

typedef struct {
unsigned char meshidx ; /* mesh index */
unsigned char cx ; /* cell coordinates */
unsigned char cy ;
unsigned char cz ;

} VisFieldSample;

Figure 5: Structure of visibility field sample

The system is able to run at interactive rates and can support
multiple polygonal meshes (each with its own grid of cells),
and multiple visibility fields (“slabs”).

Figure 6: Side view of non-culled cells as computed from
a viewpoint in front of a scene of 6 turtles

6 Results

We tested our algorithm on a few scenes containing moderate
occlusion. A normal rendering of theturtle test scene is shown
in figure 12 (all geometry rendered).

An image produced by rendering only the cells marked by
our algorithm, using no interpolation, and only one cell id per
sample, is shown in figure 13. Theuv plane is very large and
placed at infinity, and thest plane close to the object. Both
planes are discretized with a16�16 resolution. Resampling is
done by subsampling the viewpoint by using 1 out of 4 pixels
only (half-size image).

Notice the holes in this figure: they correspond to miss-
ing cells. We observe that marking neighboring samples’ cells
(“interpolation”, see section 4.1) removes some of these holes,
but not completely (see figure 14). Also, using more than one
cell id per sample greatly improves the visibility estimation
(see figure 15, which uses 5 cell ids per sample).

In figure 6, the scene is shown from a different viewpoint,
with only the geometry that would be rendered from a view-
point in front of it, to clearly show that occluded cells of the
model are not being rendered.

Results on other test scenes (carsandbunny) are available
online at our web page associated with this paper1.

Statistics for our algorithm are shown in figures 8 and 9,
10, 11. Notice that since the trivialbunnyscene contains only
one convex object, only about half of the geometry is culled.
Much less cells are rendered for scenes with even moderate
occlusion.

We compare our method with two different techniques for
visibility calculations:

� Z-buffer rendering, by sending all of the geometry to the
rendering pipeline (without using display lists) ;

� Visibility tracing, which consists of casting rays from
the camera viewpointat render time, to determine which
cells are visible, and then rendering those with a typical
z-buffer algorithm.

1URL: http://www.iro.umontreal.ca/labs/infographie/papers/

Comparing our algorithm with visibility tracing allows assess-
ing the performance of the slab parameterization. If the set of
lines from which the visibility field is computed is too sparse
or badly chosen for most viewpoints, the visibility tracing al-
gorithm with subsampling will give better results (less holes)
in lesser time. However, considering the extra cost of perform-
ing the tracing, a good parameterization will deliver better re-
sults faster than the visibility tracing algorithm.

It is difficult to directly compare our results with the visibil-
ity tracing times obtained, but for most examples, the visibility
tracing technique gave roughly comparable results in slightly
more time (a few seconds) when subsampling at around 1 out
of 102 samples (with a few holes remaining). Using a resam-
pling procedure without subsampling was not practical (it took
several minutes to compute one image).

The results are analyzed with regards to the following cri-
teria:

� Quantity of geometry rendered (number of grid cells).
See figures 8, 10 and 11. For theturtle scene, these
show that typically less than 800 of the total 4680 cells
which contain geometry are rendered with our algorithm
(less than 20%). Furthermore, as figure 8 shows, there
is not a substantial amount of degradation as we sub-
sample less pixels (especially if we use more than one
cell id per sample). Note that these results assume that
most cells contain approximately the same amount of ge-
ometry. We could be more precise and count the actual
triangles/quads that are rendered ;

� Rendering time with and without visibility culling (with-
out display lists). Rendering the grid cells cannot be
achieved with display lists (unless one would have a dis-
play list per cell, which is not practical—the number of
display lists supported by the hardware is limited). Fig-
ures 9 and 10 show the rendering times obtained with
and without the culling algorithm. For theturtle scene,
we observe a speedup when we subsample 1 out of 9 pix-
els (compare with no subsampling, which mostly does
not achieve speedup), even withuv and st interpola-
tion. As pointed before, subsampling does not increase
the amount of error (missed cells) substantially, but de-
creases the resampling timeKrasterize+resample.

The display list mecanism offers great speedup for the naive
rendering strategy, but its speedup is linear with the number of
primitives sent to the pipeline. For this reason, we can expect
that using our algorithm, with the reduced number of geomet-
ric primitives to render, there is a number of geometric prim-
itives at which we still gain over that rendering strategy, even
with display lists. Furthermore, typical, more complex scenes
will usually exhibit more occlusion, hence further reducing our
algorithm’s relative rendering time when more primitives are
present in the scene.

The results were recorded over an animation of the camera.
For all renderings, we have kept the camera within the region
where the geometry is not “clipped” by the parameterization,
so as to not bias the results with partially rendering the geom-
etry because of the lack of slab samples for a particular view-
point (we can only render geometric primitives through the
(u; v) and (s; t) slab planes intersection). This is not really
a limitation of the technique, because we could use multiple
slabs to cover visibility from all viewpoints around the scene.

Figure 7: Equivalent resolution light field rendering with
no interpolation.

6.1 Resolution

Observe that we used some rather low resolutions here, com-
pared to the resolutions typically needed for light field render-
ing. The resolutions one needs to use depend on the grid reso-
lution, the placement of the parameterization slabs, the place-
ment of objects with regards to the slabs, and the output image
resampling resolution (subsampling). To get an idea of the
light field that would be captured with such small resolutions,
see figure 7. This figure exhibits a light field of a bunny with
corresponding resolution of8� 8(u; v); 32� 32(s; t), shown
with no interpolation.

7 Discussion

In this section, we describe some of the problems inherent with
this technique.

7.1 Memory Size

As for light field rendering, the visibility field structure oc-
cupies a large amount of memory and is costly to compute.
Hence it is not practical to pre-compute the visibility field for
multiple frames of an animation where some objects move:
the technique is only useful for static scenes where only the
camera moves.

However, we expect much more coherence in the visibility
field than in the light field. Adjacent samples often have the
same values because they index the very same cells. Com-
pression techniques should thus be expected to offer a great
reduction in memory size.

7.2 Partial Occlusion

A problem with sampling the visibility function in the do-
main of lines in 3-space is that since it contains many dis-
continuities, it is difficult to capture all the necessary direc-
tions/positions. For example, if there are some small holes in
an object, through which another object is visible, if the holes
are sufficiently small, and happen not to have a single sample
ray cast through them, we will never render the surfaces be-
hind it. Also, since we use a limited number of cell ids per
sample, a ray that would hit the back object might not be con-
sidered important enough to be included in the sample.

7.3 Small Cells

Similarly to the partial occlusion problem, if some visible cells
contain only a few small polygons, they might be left unren-
dered because none of the sample rays of the visibility field
has hit them. This problem can potentially lead to holes in the
model. Supersampling and using multiple cell ids helps reduce
this effect, but does not completely solve the problem.

Moreover, when rendering from viewpoints far from the
visibility field parameterization planes, less query rays from
the camera hit the planes, and so only a subset of the cells may
be rendered, thus leaving gaps in the image. This last problem
is somewhat alleviated by the fact that the images produced
are smaller (and in a sense, could be considered as a form of
“buggy” level-of-detail approximation).

7.4 Positioning of Planes

The success of the technique also depends on how we place
the parameterization planes in space. Different plane positions
will cover different subsets of lines and might be more or less
efficient for visibility computation for certain viewpoints. This
has been further studied in other works [8] [9].

8 Conclusion and Future Work

We have presented a new method for pre-computing visibil-
ity for a scene from a set of locations in 3D. This method
has shown to improve rendering speed by selecting only po-
tentially visible surfaces to render (thus culling away large
amounts of the geometry). The method is based on using the
two-plane parameterization presented in the field of image-
based rendering for sampling the 4D visibility function in
space.

However, the technique exhibits some problems. First and
foremost, it cannot compute exact visibility, that is, some
cells may remain unrendered and cause holes to appear in the
model, or not show through behind small holes in the model.
It would be necessary to find a way to improve the method in
order to have an exact solution. Depending on the scene geom-
etry, the holes might be more or less important. Keeping into
account all the cells in each sample cone requires a complex
data structure, but it was easy to extend the structure to use up
to a finite number of cell ids per sample.

One aspect that could greatly improve the solution obtained
is the use of interframe coherence. For one frame, we could
keep the last few frames’ visible cells as marked.

Another improvement that could be brought to this tech-
nique is to pre-filter hierarchically the visibility field, similarly
to a mipmap, but in four dimensions. Doing this could help
avoid the problem of undersampling the field when the viewer
is far from it (section 7.3). Since the visibility field is a 4D
structure, mipmapping would cost only1=16 times the size of
the full field, which is negligible compared to the benefits it
would provide.

Also, we could try to improve the grid structure itself by
using an octree, whose cell sizes would be based on the dis-
tance of the objects from the slabs. We could scale the cell
sizes appropriately to minimize holes. However, access to the
octree nodes is more slightly costly than for a grid (if we want
to keep them in optimal space).

Compression of visibility fields has not been investigated.
Many adjacent samples index to the same cells. Therefore, we
can expect that a high compression ratio would be possible.

Finally, more analysis could be done to assess the useful-
ness of the method. It is hard to judge the efficiency of the
algorithm in filling in holes and silhouettes from a ratio/count
of cells, because this ratio highly depends on the amount of
occlusion in the scene and the viewpoint. Rather, we could
provide a metric based on image-space differences (pixel com-
parisons), to see how much the image rendered with our algo-
rithm differs from a rendering of all the geometry.

9 Acknowledgements

We would like to thank the Stanford graphics lab for putting
their light field package available on their web page, as well
as some cool models. Code snippets for rasterization and re-
sampling were taken fromlightpack. Some of the models
(cars) came from the Viewpoint Datalabs and Avalon archives.
Thanks to Lifeng Wang for providing models from the Yuan
Ming Yuan garden project (turtle scene).

Also, thanks to Alain Fournier for the discussions on com-
paring the results with visibility tracing. This research work
was supported by FCAR.

References

[1] BLINN , J. F.,AND NEWELL, M. E. Texture and reflec-
tion in computer generated images.Communications of
the ACM 19(1976), 542–546.

[2] CHEN, S. E. Quicktime VR - an image-based ap-
proach to virtual environment navigation. InSIGGRAPH
95 Conference Proceedings(Aug. 1995), ACM SIG-
GRAPH, Addison Wesley, pp. 29–38. held in Los Ange-
les, California.

[3] CHEN, S. E.,AND WILLIAMS , L. View interpolation
for image synthesis. InComputer Graphics (SIGGRAPH
’93 Proceedings)(Aug. 1993), vol. 27, pp. 279–288.

[4] DURAND, F., DRETTAKIS, G., AND PUECH, C. The
3D visibility complex: A new approach to the problems
of accurate visibility. InEurographics Rendering Work-
shop 1996(New York City, NY, June 1996), Eurograph-
ics, Springer Wien, pp. 245–256.

[5] DURAND, F., DRETTAKIS, G., AND PUECH, C. The
visibility skeletion: A powerful and efficient multi-
purpose global visibility tool. InSIGGRAPH 97 Confer-
ence Proceedings(Aug. 1997), ACM SIGGRAPH, Ad-
dison Wesley, pp. 89–100. held in Los Angeles, Califor-
nia.

[6] GORTLER, S. J., GRZESZCZUK, R., SZELISKI , R.,
AND COHEN, M. F. The lumigraph. InSIGGRAPH
96 Conference Proceedings(Aug. 1996), ACM SIG-
GRAPH, Addison Wesley, pp. 43–54. held in New Or-
leans, Louisiana.

[7] GREENE, N. Environment mapping and other applica-
tions of world projections.IEEE Computer Graphics and
Applications 6, 11 (Nov. 1986).

[8] GU, X., GORTLER, S. J.,AND COHEN, M. F. Poly-
hedral geometry and the two-plane parameterization.
In Eurographics Rendering Workshop 1997(New York

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5

re
nd

er
ed

 c
el

ls

cells per sample

no subsampling

uv+st lerp
st lerp
uv lerp
no lerp

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5

re
nd

er
ed

 c
el

ls

cells per sample

subsampled 1 out of 4 pixels

uv+st lerp
st lerp
uv lerp
no lerp

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5

re
nd

er
ed

 c
el

ls

cells per sample

subsampled 1 out of 9 pixels

uv+st lerp
st lerp
uv lerp
no lerp

Figure 8: Nb. of rendered cells forturtle scene,uv = 16� 16, st = 16� 16, 231060 triangles,4680 cells

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5

tim
e

(s
ec

)

cells per sample

no subsampling

uv+st lerp
st lerp

uv lerp
no lerp

without algo

0

1

2

3

4

5

6

1 2 3 4 5

tim
e

(s
ec

)

cells per sample

subsampled 1 out of 4 pixels

uv+st lerp
st lerp

uv lerp
no lerp

without algo

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5

tim
e

(s
ec

)

cells per sample

subsampled 1 out of 9 pixels

uv+st lerp
st lerp

uv lerp
no lerp

without algo

Figure 9: Rendering time forturtle scene,uv = 16� 16, st = 16� 16, 231060 triangles, 4680 cells, time to render
all geometry: 3.3 secs.

City, NY, June 1997), Eurographics, Springer Wien,
pp. 1–12.

[9] L EVOY, M., AND HANRAHAN , P. Light field rendering.
In SIGGRAPH 96 Conference Proceedings(Aug. 1996),
ACM SIGGRAPH, Addison Wesley, pp. 31–42. held in
New Orleans, Louisiana.

[10] LEWIS, R. R., AND FOURNIER, A. Light-driven
global illumination with a wavelet representation of light
transport. InEurographics Rendering Workshop 1996
(New York City, NY, June 1996), Eurographics, Springer
Wien, pp. 11–20.

[11] MCMILLAN , L., AND BISHOP, G. Plenoptic model-
ing: An image-based rendering system. InSIGGRAPH
95 Conference Proceedings(Aug. 1995), ACM SIG-
GRAPH, Addison Wesley, pp. 39–46. held in Los Ange-
les, California.

[12] PULLI , K., COHEN, M., DUCHAMP, T., HOPPE, H.,
SHAPIRO, L., AND STUETZLE, W. View-based ren-
dering: Visualizing real objects from scanned range and
color data. InEurographics Rendering Workshop 1997
(New York City, NY, June 1997), Eurographics, Springer
Wien, pp. 23–34.

[13] SZELISKI , R., AND SHUM, H.-Y. Creating full view
panoramic image mosaics and environment maps. In
SIGGRAPH 97 Conference Proceedings(Aug. 1997),
ACM SIGGRAPH, Addison Wesley, pp. 251–258. held
in Los Angeles, California.

[14] ZHANG, H., MANOCHA, D., HUDSON, T., AND III,
K. E. H. Visibility culling using hierarchical occlusion
maps. InSIGGRAPH 97 Conference Proceedings(Aug.
1997), ACM SIGGRAPH, Addison Wesley, pp. 77–88.
held in Los Angeles, California.

Interp. Cells % cells Time % time
none 231.4 17.0% 142 ms/fr. 31.1%
uv 283.8 20.8% 181 ms/fr. 39.6%
st 251.6 18.4% 194 ms/fr. 42.4%

uv+st 341.4 25.0% 385 ms/fr. 84.2%

Interp. Cells % cells
none 91.2 38.8%
uv 104.9 44.6%
st 91.3 38.9%

uv+st 104.5 44.5%

Figure 10: Rendering statistics forcars scene,uv = 12 � 12,
st = 48 � 48, 60064 triangles, 1364 cells, 1 cell id per sample,
time to render all geometry: 457 ms/frame.

Figure 11: Rendering statistics forbunnyscene (no
occlusion),uv = 8 � 8, st = 32 � 32, 3444672
triangles, 235 cells, 1 cell id per sample

Figure 12: Normal mesh rendering Figure 13: Grid cells rendering: No interpolation

Figure 14: Grid cells rendering: UV+ST interpolation Figure 15: Grid cells rendering: using 5 cells per sample

