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Abstract

We present a new particle-based method for viscoelastic fluid simulation. We achieve realistic small-scale behavior
of substances such as paint or mud as they splash on moving objects. Incompressibility and particle anti-clustering
are enforced with a double density relaxation procedure which updates particle positions according to two oppos-
ing pressure terms. From this process surface tension effects emerge, enabling drop and filament formation. Elastic
and non-linear plastic effects are obtained by adding springs with varying rest length between particles. We also
extend the technique to handle interaction between fluid and dynamic objects. Various simulation scenarios are
presented including rain drops, fountains, clay manipulation, and floating objects. The method is robust and stable,
and can animate splashing behavior at interactive framerates.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling – Physically Based Modeling; I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism – Animation and Virtual Reality

1. Introduction

The field of computational fluid dynamics has introduced
many different algorithms to simulate the complex behav-
ior of fluids. Since liquids and gases play an important role
in everyday life, several fluid simulation methods have been
successfully used for computer graphics applications.

Two main categories of simulation methods exist: Eule-
rian grids and Lagrangian particles. Eulerian methods dis-
cretize the problem using a subdivision of the spatial do-
main and control fluid flow in each cell. Such techniques
have been able to achieve among the most realistic simu-
lations of liquid types ranging from simple flows to highly
viscous fluids, with plastic and elastic behaviors. They easily
enforce the incompressibility condition, but do not guarantee
mass conservation for small features.

Lagrangian methods discretize the fluid mass using par-
ticles. By directly tracking chunks of matter as they travel
through space, particle methods trivially guarantee mass
conservation and provide a conceptually simple and versa-
tile simulation framework.

† email: clavetsi | beaudoin | poulin@iro.umontreal.ca

Figure 1: Fountain simulation illustrating sheet, filament,
and drop formation.

Particles also alleviate the dependence on a specific ref-
erence frame. In an Eulerian approach, the distance a fluid
feature can travel during a simulation step is limited by
the grid resolution. Therefore, for very rapid and detailed
flows, tracking changes as they occur at a fixed point in
space appears less natural than tracking changes which occur
along a particle trajectory. We revisit particle-based simula-
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tion and propose extensions and modifications that increase
their flexibility and robustness. Our formulation is simple
and intuitive, and it can be implemented within days.

An important disadvantage of particle simulations is the
difficulty to represent a smooth surface with particles. Ro-
bustly handling surface tension effects for small features is
also recognized as a difficult task. Surface tension forces ex-
ist at the surface of the fluid, and depend on its curvature.
The problem comes from the fact that particle simulations
avoid modeling the surface explicitly, and thus robustly com-
puting its curvature can be cumbersome.

We propose a novel procedure for incompressibility and
particle anti-clustering. We call this procedure double den-
sity relaxation. Loosely speaking, double density relaxation
computes two different particle densities: one quantifying
the number of neighbors, and another quantifying the num-
ber of close neighbors. The force between two particles de-
pends on these two context-dependent measures, instead of
depending only on the distance between them. Liquids an-
imated with this method display a smooth particle surface,
and surface tension effects such as those shown in Figure 1
emerge naturally. No curvature has to be evaluated, and the
procedure is robust even in presence of small surface details.

Numerical instabilities are often an issue with any
physically-based simulations, requiring the use of pro-
hibitively small timesteps. We use a conceptually intuitive
prediction-relaxation scheme that remains stable even for
large timesteps and fast splashing effects.

We also present a simple method to simulate viscoelas-
tic substances by insertion and removal of springs between
pairs of particles. Various material behaviors can be obtained
with simple spring rest length update rules. The intuitive pa-
rameters governing such a scheme, combined with our fast
simulation, allow an artist to interactively experiment with
the fluid properties to obtain the desired results.

Finally, we describe a simple way to integrate the fluid
solver with a rigid-body simulator, enabling two-way cou-
pling between liquids and objects. We also propose a simple
solution to the stickiness of liquids on objects.

2. Previous Work

2.1. Eulerian Simulation

Grid-based methods have been quite popular for computer
graphics applications. Foster and Metaxas [FM96, FM97]
were the first to propose solving the full 3D Navier-Stokes
equations on a regular grid in order to re-create the visual
properties of a dynamic fluid. Stam [Sta99] produced dy-
namic gases using a semi-Lagrangian integration scheme
that achieves unconditional stability at the expense of ar-
tificial viscosity and rotational damping. Foster and Fed-
kiw [FF01] extended the technique to liquids, tracking the
surface using both a level-set method and particles inside

the liquid. Enright et al. [EMF02] added particles outside
the fluid volume to improve surface tracking. They also pro-
posed an extrapolation technique to assign velocities to air
cells just outside the liquid surface, resulting in a smoother
surface motion on a coarse grid.

A number of researchers have developed methods for
modeling highly viscous or viscoelastic fluids. Carlson et
al. [CMHT02] developed an Eulerian solver for very high
viscosity liquids and were able to simulate melting objects.
Fluids simulated by Goktekin et al. [GBO04] exhibit not
only viscous but also elastic and plastic behaviors by inte-
grating and advecting strain-rate throughout the fluid.

2.2. Lagrangian Simulation

Smoothed particle hydrodynamics (SPH) is an alternative
approach, first developed by Lucy [Luc77] and by Gingold
and Monaghan [GM77], to tackle astrophysical problems. In
SPH, space is non-uniformly sampled using particles. These
particles maintain various field properties, such as mass den-
sity or velocity, and are tracked during the simulation. The
field quantities can be evaluated anywhere in space using ra-
dially symmetric smoothing kernels.

Reeves [Ree83] introduced particle systems to computer
graphics. They quickly became a popular tool for portraying
various effects such as fire or waterfalls. Miller and Pearce
[MP89] borrowed ideas from molecular dynamics to add ba-
sic particle interactions, resulting in limited simulations of
liquids and melting solids. Terzopoulos et al. [TPF89] mod-
eled melting thermoelastic materials using particles that ap-
ply various forces to their neighbors. In a solid material,
the particles are connected with springs, which weaken and
eventually disappear as the material melts. This model does
not handle plasticity.

Desbrun and Gascuel [DG96] applied SPH concepts to
computer graphics in order to simulate highly deformable
bodies. Recently, Müller et al. [MCG03] implemented in-
teractive liquid simulation and rendering using SPH. They
simulate surface tension using ideas from Morris [Mor00],
implicitly defining an interface with the particles and apply-
ing a force proportional to curvature, computed as the diver-
gence of the normal field. For surface features represented
by a small number of particles, such curvature evaluation
can cause numerical problems.

Premože et al. [PTB∗03] also obtained realistic looking
fluids using a Lagrangian method. They solve the Navier-
Stokes equations using the Moving-Particle Semi-Implicit
(MPS) method [KO96], which ensures a greater level of in-
compressibility than standard SPH.

Müller et al. [MKN∗04] proposed a particle-based
method for animating volumetric objects with material prop-
erties ranging from stiff elastic to highly plastic. Their tech-
nique is derived from continuum mechanics and therefore
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allows for direct specification of well-defined physical prop-
erties. Although they do not try to simulate a flowing liquid,
they obtain very realistic results for the material types sup-
ported.

Steele et al. [SCED04] presented a particle-based method
for simulating viscous liquids. They define the adhesion
properties of different types of particles using general
distance-dependent forces between particles. Their iterative
relaxation scheme to conserve volume is similar to ours, but
the linear density kernel and the hard anti-penetration con-
straints limit their method to highly viscous fluids.

3. Simulation Step

Our fluid is represented by particles evolving through space
and time. A typical particle simulation goes through the fol-
lowing steps. First, various forces are computed and accu-
mulated for each particle. These forces then modify the ve-
locities, which are finally used to update particle positions.
Such an explicit scheme tends to be unstable unless very
small timesteps are used.

Figure 2: Prediction-relaxation scheme.

Our method avoids explicit force integration by using a
prediction-relaxation approach. It is similar in concept to a
more involved implicit scheme, but it is fast and straightfor-
ward to implement. Particles are moved according to their
velocities and then their positions are relaxed, subject to po-
sitional constraints (Figure 2). At the end of the timestep,
velocities are recomputed by subtracting previous positions
from relaxed position. Because of this velocity recomputa-
tion, the relaxation displacements are equivalent to impulses
applied to the velocity at the beginning of the timestep.
These impulses being computed near the end position (on
a path between the predicted position and the end posi-
tion), the prediction-relaxation scheme bears some similari-
ties with an implicit scheme in which the force exists at the
unknown end configuration. Intuitively, using forces that ex-
ist further in time prevents instabilities by predicting diffi-
cult situations and reacting before they actually occur. Math-
ematical considerations regarding the prediction-relaxation
scheme can be found in the Appendix.

Our simulation step is detailed in Algorithm 1. First we
update particle velocities according to gravity and viscosity
(lines 1 to 5). Then we save the previous positions and move

Algorithm 1: Simulation step.
1. foreach particle i
2. // apply gravity
3. vi← vi +∆tg
4. // modify velocities with pairwise viscosity impulses
5. applyViscosity // (Section 5.3)
6. foreach particle i
7. // save previous position
8. xprev

i ← xi
9. // advance to predicted position
10. xi← xi +∆tvi
11. // add and remove springs, change rest lengths
12. adjustSprings // (Section 5.2)
13. // modify positions according to springs,
14. // double density relaxation, and collisions
15. applySpringDisplacements // (Section 5.1)
16. doubleDensityRelaxation // (Section 4)
17. resolveCollisions // (Section 6)
18. foreach particle i
19. // use previous position to compute next velocity
20. vi← (xi−xprev

i )/∆t

the particles according to their velocities. Lines 12 to 15
modify spring rest lengths and apply spring forces as parti-
cle displacements. Volume conservation, anti-clustering, and
surface tension are then enforced (line 16). Finally, collisions
between particles and static/dynamic bodies are resolved,
and particle velocities are recomputed.

4. Double Density Relaxation

Our double density relaxation is a simplified and extended
formulation of the SPH paradigm. The impulses exchanged
between particles depend on two different measures of their
neighbor density.

4.1. Density and Pressure

In an SPH framework, the global goal of minimizing com-
pressibility translates into a local constraint to maintain con-
stant density. The density at particle i is approximated by
summing weighted contributions from each neighbor j. We
choose the density at particle i to be

ρi = ∑
j∈N(i)

(1− ri j/h)2 (1)

where ri j = |ri j|, ri j = x j − xi, and N(i) denotes the set of
neighboring particles that are closer than the interaction ra-
dius h. This form of density is not a true physical property;
it is simply a number quantifying how the particle relates to
its neighbors. We tried various other density kernel shapes,
such as the unbounded (r/h)−2 or the bell shaped polyno-
mial (1− (r/h)2)3, but we obtained our best results with the
quadratic spike (1− r/h)2.
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We define a pseudo-pressure Pi proportional to the differ-
ence between the current density ρi and a rest density ρ0

Pi = k(ρi−ρ0) (2)

where k is a stiffness parameter. To keep the formulation as
simple as possible, we combined the normalizing constant,
that usually scales the density in the SPH literature, with the
parameters k and ρ0. We also consider that all the particles
have the same mass. This way, mass cancels out and does
not have to be included in the equations.

4.2. Incompressibility Relaxation

The incompressibility relaxation is implemented as a global
loop over each particle i. An iteration of this loop is com-
posed of two passes on each neighbor j of particle i. The
first pass estimates the local density at particle i by summing
the weighted contributions of its neighbors (Equation 1). If
this density is higher than the rest density ρ0, neighbors will
be pushed away. If it is lower, they will be pulled closer.
Pushing and pulling neighbors is done in the second pass on
the neighbors of particle i, in which each pair i j exchanges a
displacement.

The density relaxation displacement between two parti-
cles is proportional to the pseudo-pressure, weighted by the
linear kernel function:

Di j = ∆t2Pi(1− ri j/h)r̂i j (3)

where r̂i j is the unit vector from particle i to particle j. Since
force is integrated twice in time to get displacement, a factor
∆t2 is included in Equation 3 to preserve timestep duration
independence (see the Appendix). We apply this displace-
ment directly by modifying the predicted position of particle
j. An equal and opposite displacement is applied to parti-
cle i, enforcing the action-reaction principle and thus linear
momentum conservation. The displacement being directed
along r̂i j , angular momentum is conserved. The linear ramp
(1− r/h) scales the magnitude of the displacement depend-
ing on the distance between particles. Note that this pressure
kernel is proportional to the derivative of the associated den-
sity kernel. This particular relation provides a consistent al-
gorithm, as it is theoretically justified in the SPH literature
(for example in [MCG03]).

4.3. Near-Density and Near-Pressure

As described, this relaxation procedure does not prevent par-
ticle clustering. A particle can reach rest density by strongly
pulling a small number of neighbors. The fluid then sep-
arates into a collection of independent clusters, exhibiting
no coherency. In preliminary tests, we followed an approach
similar to Steele et al. [SCED04] and tried to prevent cluster-
ing by adding a simple distance-dependent repulsion force,
but it caused visible artifacts when simulating low viscosity
fluid.

We solve the clustering problem by adding instead a sec-
ond context-dependent pressure term. This new force does
not simply depend on the distance between particles, but de-
pends on a new density – the near-density – computed with
a different kernel function. We define near-density as

ρnear
i = ∑

j∈N(i)
(1− ri j/h)3 (4)

which uses a kernel with a sharper spike than our simple
density. Again, we tried various other spike shapes, but this
simple cubic gave good results in our tests.

In order to make the corresponding force exclusively re-
pulsive, we define near-pressure as

Pnear
i = knearρnear

i (5)

which is analogous to Equation 2, but with vanishing rest
density.

As for simple pressure, near-pressure produces a displace-
ment for each particle pair in the second pass of the relax-
ation. Augmented with this new term, Equation 3 becomes

Di j = ∆t2
(

Pi(1− ri j/h)+Pnear
i (1− ri j/h)2

)

r̂i j (6)

where the quadratic kernel defines how near-repulsion is ap-
plied to neighbors. Again, the near-pressure kernel is pro-
portional to the derivative of the near-density kernel.

Algorithm 2 summarizes our approximate volume conser-
vation and anti-clustering method. For each particle, density
and near-density are computed (Equations 1 and 4). Pressure
and near-pressure are then evaluated (Equations 2 and 5).
Finally, the second loop on neighbors applies the displace-
ments to the particles (Equation 6). Neighbor particles j are
immediately moved, but we sum the displacements of par-
ticle i and apply them only at the end of its relaxation step.
This prevents any bias that could result from a fixed neighbor
processing order. The order in which particles i are relaxed
is randomized but is not modified throughout the simulation.

The result of double density relaxation is a coherent fluid
representation in which particles tend to be at equal distance
from all immediate neighbors. However, directly enforcing a
constant immediate neighbor distance with a Lennard-Jones-
like force can lead to undesirable artifacts due to particles
aligning in a rigid pattern. Here, near-density minimization
smoothly restricts how the target density can be approached,
and no rigid patterns appear.
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Algorithm 2: Double density relaxation.
1. foreach particle i
2. ρ← 0
3. ρnear← 0
4. // compute density and near-density
5. foreach particle j ∈ neighbors( i )
6. q← ri j/h
7. if q < 1
8. ρ← ρ+(1−q)2

9. ρnear← ρnear +(1−q)3

10. // compute pressure and near-pressure
11. P← k(ρ−ρ0)
12. Pnear← knearρnear

13. dx← 0
14. foreach particle j ∈ neighbors( i )
15. q← ri j/h
16. if q < 1
17. // apply displacements
18. D← ∆t2(P(1−q)+Pnear(1−q)2)r̂i j
19. x j← x j +D/2
20. dx← dx−D/2
21. xi← xi +dx

4.4. Surface Tension

We observed that besides reducing particle clustering, our
method provides another important fluid behavior: surface
tension effects. As illustrated in Figure 3 and in the accom-
panying video [VID], particles group into structures such as
sheets, filaments, and drops.

Figure 3: Oscillating drop.

Surface tension is physically caused by attraction between
molecules. Inside the fluid, this attraction cancels out, but for
molecules near the surface, asymmetry in neighbor distribu-
tion results in a non-zero net force towards the fluid. Further-
more, this asymmetry changes depending on surface curva-
ture. In view of these physical considerations, surface ten-
sion is usually considered to be an external force oriented to-
wards the negative surface normal and with magnitude pro-
portional to the surface curvature.

We can visualize how the combined effect of pressure
and near-pressure can produce surface tension. Suppose that
density at a particle position is smaller than rest density.
Neighboring particles will be pulled by pressure with an
impulse proportional to the linear kernel, and then pushed
by near-pressure with an impulse proportional to the sharp-
spiked quadratic kernel. Neighbors that are further away

will tend to move more since they are not affected much
by near-pressure. The smooth repulsion of the nearest parti-
cles causes an indirect long-distance attraction. This context-
aware attraction leads to smooth and stable particle struc-
tures.

5. Viscoelasticity

Viscoelastic behavior is introduced in our model through
three sub-processes: elasticity, plasticity, and viscosity. Elas-
ticity is obtained by inserting springs between particles, plas-
ticity comes from the modification of the spring rest lengths,
and viscosity is introduced by exchanging radial impulses
determined by particle velocity differences.

5.1. Elasticity

To simulate elastic behavior, we add springs between pairs
of neighboring particles. Springs create displacements on the
two attached particles. The displacement magnitude is pro-
portional to L− r, where r is the distance between the parti-
cles and L is the spring rest length. It is also scaled with the
factor 1−L/h, which gradually reduces to zero the force ex-
erted by long springs. The process is detailed in Algorithm 3.

Algorithm 3: Spring displacements.
1. foreach spring i j
2. D← ∆t2kspring(1−Li j/h)(Li j− ri j)r̂i j
3. xi← xi−D/2
4. x j← x j +D/2

5.2. Plasticity

A perfectly elastic substance always remembers its fixed
rest shape, and fights external forces to recover it. On the
other hand, a perfectly plastic substance considers its current
shape as its rest shape. In general, plasticity can be thought
of as the rate at which a substance forgets its past.

This intuitive view of elasto-plasticity leads to our dy-
namic rest length spring scheme. At each timestep, springs
are added or removed, and their rest lengths change depend-
ing on their current lengths.

The rate of rest length change of a linearly plastic spring
is proportional to its deformation:

∆L = ∆t α (r−L) (7)

where α is the plasticity constant.

A linearly plastic material slowly flows until all forces
reach equilibrium. To model substances such as clay, which
change shape under the significant pressure given by one’s
fingers but resists small forces such as gravity, a non-linear
plasticity model is needed.
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Algorithm 4: Spring adjustment.
1. foreach neighbor pair i j, (i < j)
2. q← ri j/h
3. if q < 1
4. if there is no spring i j
5. add spring i j with rest length h
6. // tolerable deformation = yield ratio * rest length
7. d← γ Li j
8. if ri j > L+d // stretch
9. Li j← Li j +∆t α (ri j−L−d)
10. else if ri j < L−d // compress
11. Li j← Li j−∆t α (L−d− ri j)
12. foreach spring i j
13. if Li j > h
14. remove spring i j

Our plastic spring model is inspired by the von Mises con-
dition [Fun65], which states that plastic flow should occur
only if the deformation is large enough. Translated into the
spring system, this means that L should be changed only if
|r−L| is larger than some fraction of L (Figure 4). This frac-
tion is specified by the yield ratio, denoted γ, for which we
typically choose a value between 0 and 0.2 . The rest length
increment can then be written

∆L = ∆t α sign(r−L) max(0, |r−L|− γL) (8)

which becomes identical to Equation 7 when γ = 0.

Figure 4: Rest length change as a function of current length.

As the fluid moves, springs must be added and removed.
A spring is added between two particles if their distance be-
comes smaller than the radius of interaction h, and is later
removed if its rest length becomes larger than h. Pseudo-
code for our complete spring adjusting procedure is given in
Algorithm 4. Additional control on viscoelastic behavior can
be gained by using separate values of α and γ for compres-
sion and stretching. For example, a stickier material can be
simulated by setting γcompress to zero while letting γstretch

take some non-zero value.

5.3. Viscosity

Viscosity has the effect of smoothing the velocity field. It
is applied as radial pairwise impulses between neighboring

Figure 5: Various plastic behaviors.

particles. These impulses modify particle velocities at the
beginning of the timestep, before moving them to their pre-
dicted positions.

Algorithm 5: Viscosity impulses.
1. foreach neighbor pair i j, (i < j)
2. q← ri j/h
3. if q < 1
4. // inward radial velocity
5. u← (vi−v j) · r̂i j
6. if u > 0
7. // linear and quadratic impulses
8. I← ∆t(1−q)(σu+βu2)r̂i j
9. vi← vi− I/2
10. v j← v j + I/2

Algorithm 5 shows how viscosity changes particle veloci-
ties. We measure how fast particle j is moving towards parti-
cle i by projecting the velocity difference on r̂i j (line 5). For
non-viscous fluid, viscosity is only used to handle collisions,
and we therefore apply impulses only if particles are running
into each other.

The impulse dependence on distance is captured by the
linear kernel (1− ri j/h), and the factor (σu + βu2) controls
the viscosity’s linear and quadratic dependences on veloc-
ity. This formulation is inspired by usual SPH techniques
[DG96].

If a highly viscous behavior is desired, σ can be increased.
For less viscous fluids, only β should be set to a non-zero
value. The quadratic term prevents particle interpenetration
by removing high inward velocity, but avoids smoothing the
interesting features of the velocity field.

Viscosity impulses are applied sequentially to particle
pairs. The ordering of particle pairs can theoretically bias the
solution, but no visible artifacts were observed in our tests.

6. Interactions with Objects

We have integrated our fluid simulation into a rigid-body
system, enabling interesting simulation scenarios such as
floating objects and liquid sticking on surfaces. During the
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collision stage, the fluid is considered to be an assembly of
rigid spheres exchanging impulses with surrounding objects.

6.1. Collisions

For each object, a signed distance field is sampled and stored
in a grid structure. For each particle we obtain the interpo-
lated distance value d. A collision is identified when d is
smaller than the particle collision radius R. For the collid-
ing particle we obtain the object normal n̂ using the distance
field gradient.

Our rigid-body solver is impulse-based, as in [GBF03]. In
this kind of framework, object penetrations are resolved by
sequentially applying impulses between bodies. This method
for particle-body collisions leads to instabilities and makes
it impossible to simulate floating objects. We therefore pro-
pose the three step method illustrated in Figure 6.

Figure 6: Particle-body interactions.

In the first step, corresponding to lines 1 to 7 of Algo-
rithm 6, bodies are advanced and impulses due to penetrat-
ing particles are accumulated into force and torque buffers.
In the second step (lines 8 to 11), the velocity V and angu-
lar velocity ω of each body is updated using the accumu-
lated force and torque. The bodies are advanced again from
the initial configuration according to these new velocities,
but the positions of the colliding particles are not yet mod-
ified. The usual body-body collisions and contacts are then
resolved, and the bodies reach their final positions and ve-
locities. The third step (lines 12 to 15) updates the particle
positions to remove penetration velocities. In this final step,
the bodies are considered to have infinite inertia.

Impulses due to particle-body collisions are based on
a zero-restitution collision model with wet friction. This
model requires the current particle velocity vi, computed us-
ing the difference between the current and previous parti-
cle positions. We then compute the particle relative velocity
v̄ = vi − vp, where vp is the body velocity at the contact
point. This velocity is separated into normal and tangential
components:

v̄normal = (v̄ · n̂)n̂ (9)

v̄tangent = v̄− v̄normal. (10)

The impulse computed at lines 6 and 13 cancels the normal
velocity and removes a fraction of the tangential velocity:

I = v̄normal−µ v̄tangent (11)

Algorithm 6: Particle-body interactions.
1. foreach body
2. save original body position and orientation
3. advance body using V and ω
4. clear force and torque buffers
5. foreach particle inside the body
6. compute collision impulse I
7. add I contribution to force and torque buffers
8. foreach body
9. modify V with force and ω with torque
10. advance from original position using V and ω
11. resolve collisions and contacts between bodies
12. foreach particle inside a body
13. compute collision impulse I
14. apply I to the particle
15. extract the particle if still inside the body

where µ is a friction parameter enabling slip (µ = 0) or no-
slip (µ = 1) boundary conditions.

In some difficult situations, such as when a particle is al-
ready inside an object at the beginning of the timestep, re-
moving the penetration velocity is not sufficient. We solve
this issue by using the distance field to extract the offending
particles at the end of the collision stage (line 15).

As it is common with any distance field-based collision
detection, collisions can be missed if the object is too thin
with respect to the velocity of the particles.

6.2. Stickiness

As they are now described, particles will detach and fall from
objects. We implemented a simple method to make them
stick, even underneath a horizontal surface.

Figure 7: Particles sliding underneath a sphere, before
forming a drop.

The idea is to modify the impulse computed at Equa-
tion 11 by adding an attraction term for particles that are
close to an object. Let di be the distance between the ob-
ject and the particle collision surface. An attraction impulse
occurs when di is smaller than a fixed distance dstick. To
avoid artifacts such as particles jumping to the surface, dstick
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should stay small enough with respect to the particle inter-
action range h. We use the following formulation:

Istick =−∆t kstickdi

(

1−
di

dstick

)

n̂ (12)

which is maximal at distance dstick/2. Lines 5 and 12 of
Algorithm 7 must now consider all particles in the attraction
range.

7. Implementation and Results

7.1. Neighbor Search

Finding all particles that are within the interaction radius of
a particle is a frequent task in any particle-based method.
Since the interaction radius h is constant and identical for
each particle, it makes sense to use a simple regular spa-
tial hashing grid with cube size h. Each cube stores a list
of enclosed particles, which is updated each time a parti-
cle moves from one cube to another. All neighbors reside
in the particle’s cube and its 26 neighboring cubes. Further-
more, we avoid using a fixed cube lattice by only instanti-
ating cubes that contain particles. The cubes are stored in a
hash table, indexed with their 3D index. The animation sce-
nario can thus take place in a virtually infinite domain, and
no information on the future location of the fluid is needed at
the beginning of the simulation. This spatial hashing method
is similar to Teschner et al. [THM∗03].

7.2. Rendering

For fast previsualization, particles are simply rendered as
polygonized spheres. High quality rendering uses a surface
mesh extracted with the marching cube algorithm [LC87].

The marching cube extracts an isosurface of a scalar func-
tion defined by the particles. We use the function

φ(x) =

(

∑
j
(1− r/h)2

)
1
2

(13)

where r = |x−x j|. The square root ensures that the function
behaves like a distance function, i.e., has an almost constant
slope around the extracted isosurface. This is important for
moving isosurfaces because the location of the surface in a
cube is linearly interpolated. If the function had a changing
slope around the isovalue, temporal artifacts would appear as
particles move. Simply using a sum of cones could achieve
this goal, but the result would not be smooth enough.

As in the case of neighbor search, the cube grid used for
isosurface extraction is sparse and dynamic. The cube size
hsurface is independent from the particle interaction radius h,
and is typically smaller if a smooth surface mesh is desired.
A spatial hash table is used to store the non-zero grid points
as particles add their contributions to the implicit function.

7.3. Results

The results, shown in the accompanying video sequences
[VID] and in Figures 8 to 12, took an average of 2 sec-
onds per frame to simulate, with typically 20000 particles. A
10 fps interactive session can simulate 1000 particles, which
is enough to create relatively complex splashing effects.

These timings include surface extraction with the march-
ing cube algorithm and OpenGL display. Surface extraction
usually takes from 10% to 60% of the computation time.
High quality renderings were generated offline with the ray-
tracer Pixie [PIX].

Figure 8: Viscous rain on a character.

Figure 9: Pouring liquid in a tank containing a heavy object.

Figure 10: A floating object.
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Figure 11: Pouring liquid on the Stanford Bunny.

Computing many timesteps per frame can greatly improve
volume conservation and overall simulation quality. We used
up to 10 timesteps per frame for very fast moving liquid or
when volume conservation was critical, but most of the time,
only one timestep per frame was computed.

Despite the fact that many parameters control the sim-
ulation, tweaking fluid behavior is intuitive and easy. Our
typical parameter values for the most important parameters
are ∆t = 1 (where the time unit is 1/30 second), ρ0 = 10,
k = 0.004, knear = 0.01, kspring = 0.3, and α = 0.3. The in-
teraction range h can be specified independently to set the
fluid resolution.

8. Conclusion

We have presented a particle-based method to interactively
simulate the complex behavior of viscoelastic fluids.

The main contributions of our work are :

1. A simple and flexible method to simulate viscoelastic-
ity with varying rest length springs. Inserting, removing,
and modifying the rest length of springs between parti-
cles provide an intuitive control of viscoelasticity. Com-
plex non-linear plastic effects such as clay or gel manipu-
lation can be achieved by simple rest length update rules.

2. A new scheme for the robust simulation of surface ten-
sion in particle-based systems, without requiring compu-
tation of curvature over the liquid surface. In contrast to
typical particle systems, it can produce a smooth surface,
yet enables the formation of coherent features such as liq-
uid drops, filaments, and sheets.

3. A stable method for long timesteps. Numerical instabil-
ities that often plague physically-based simulations are
significantly reduced, and fast animations can be obtained
by computing a single timestep per frame.

The application of our method was geared mostly towards
interactive fluid jets, but we demonstrated its flexibility in
a number of different situations, such as plastic and elastic

deformable 3D models and rain drops. The integration of
our fluid solver into a rigid-body system has enabled floating
objects, and a simple solution to the stickiness of liquids on
objects has further extended the simulation possibilities.

Our method is specifically designed for fast simulation of
rapidly moving fluids, but is not as well adapted for sim-
ulation of low viscosity liquids such as water. We could
adapt the method to simulate water by using an explicit high
order accurate integration scheme, and simulating numer-
ous timesteps per frame. The increased computation times
would, however, contradict our initial goals of interactivity.

Several other avenues for future work can be identified.
Volume conservation could be improved by coupling our
method with a more sophisticated technique such as the
Moving-Particle Semi-Implicit method [KO96]. We would
also like to consider several types of particles to animate
the interaction between different substances. Simulating air
would significantly increase animation realism by enabling
bubble formation.

We believe that the simplicity, stability, speed, and versa-
tility of our method should prove very useful for many ap-
plications.
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Appendix – Prediction-Relaxation Scheme

The integration scheme we use can be written as

x∗ = xn +∆t vn− 1
2

x∗ ← x∗ +∆t2 F1(x∗)/m

x∗ ← x∗ +∆t2 F2(x∗)/m

x∗ ← x∗ +∆t2 F3(x∗)/m

...

xn+1 = x∗
vn+ 1

2
= (xn+1−xn)/∆t.

This sequential application of force components is analo-
gous to operator splitting often used in Eulerian simula-
tions [Sta99]. Each stage of force application uses the pre-
viously updated position, which can lead to greater stability.
For example, it is intuitively correct to compute collisions
using positions that have already been modified by other
constraints. Allowing a particular constraint to adjust to what
happened in previous stages often prevents overshoots and
erroneous constraint responses.

If only one force is used, the integration scheme can be
simplified to

vn+ 1
2

= vn− 1
2
+∆t F(xn +∆t vn− 1

2
)/m

xn+1 = xn +∆t vn+ 1
2

which is similar to the usual leap-frog scheme, but with the
force computed at the predicted position. Testing the canon-
ical example F =−k x leads to

vn+ 1
2

= vn− 1
2
+∆t (−k xn− k ∆t vn− 1

2
)/m

in which the actual force being computed is augmented with
the term −k ∆t vn− 1

2
, an artificial viscosity.
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Liquid jet on a dynamic character. Fast detailed splash.

A polygonal mold is filled with liquid, springs are added, and then the mold is removed. The resulting elastic bunny is
stepped on, but recovers its rest shape.

Then plasticity is increased and the foot leaves its print. Finally, springs are deleted and the bunny flows away.

Figure 12: Various illustrations of our particle-based fast fluid simulation.

c© The Eurographics Association 2005.


