Visual Detection of Design Anomalies

Karim Dhambri

Houari Sahraoui *

Pierre Poulin

Dept. I.R.O., Université de Montréal
{ dhambrik | sahraouh | poulin } @iro.umontreal.ca

Abstract

Design anomalies, introduced during software evolution,
are frequent causes of low maintainability and low flexibil-
ity to future changes. Because of the required knowledge,
an important subset of design anomalies is difficult to de-
tect automatically, and therefore, the code of anomaly can-
didates must be inspected manually to validate them. How-
ever, this task is time- and resource-consuming. We propose
a visualization-based approach to detect design anomalies
for cases where the detection effort already includes the val-
idation of candidates. We introduce a general detection
strategy that we apply to three types of design anomaly.
These strategies are illustrated on concrete examples. Fi-
nally we evaluate our approach through a case study. It
shows that performance variability against manual detec-
tion is reduced and that our semi-automatic detection has
good recall for some anomaly types.

Keywords: Software quality, Software metrics, Visualiza-
tion.

1. Introduction

Design anomalies introduced in the development and
maintenance processes can compromise the maintainabil-
ity and evolvability of software. As stated by Fenton and
Pfleeger [5], design anomalies are unlikely to cause failures
directly, but may do it indirectly. Detecting and correct-
ing these anomalies is a concrete contribution to software
quality improvement. However, detecting anomalies is far
from trivial [10]. Manual detection is time- and resource-
consuming, while automatic detection yields too many false
positives, due to the nature of the involved knowledge [12].
Furthermore, there are additional difficulties inherent to
anomaly detection, such as context-dependence, size of the
search space, ambiguous definitions, and the well-known
problem of metric threshold value definition.

In this paper, we propose a semi-automatic approach to
detect design anomalies using software visualization. We
model design anomalies as scenarios where classes play pri-

mary and secondary roles. This model helps reducing the
search space for visual detection. Our approach is com-
plementary to automatic detection as defined in [10, 12].
Indeed, we specifically target anomalies that are difficult
to detect automatically. We use detection strategies that
combine automated actions with user-oriented actions. The
judgement of the analyst is used when automatic decisions
are difficult to make. Such decisions are related to the ap-
plication context, low-level architecture choices, variability
in anomaly occurrences, and metric threshold values.

2. Anomaly Detection Issues

Although they are not defects, i.e., violations of the func-
tional specification, design anomalies can have a tremen-
dous negative impact on many quality characteristics dur-
ing software evolution [1]. Detecting design anomalies in
source code is subject to inherent difficulties that need to be
considered when developing a detection approach. In this
section, we first present some examples of design anoma-
lies, and then discuss related detection issues.

2.1. Examples of Anomalies

Our use of the term “design anomaly” encompasses like-
wise violations of design heuristics defined in [13, 11],
antipatterns described in [1], code smells documented in
[6], and any other situation in a design which goes against
known quality heuristics. To illustrate our approach, we
briefly introduce three examples of design anomalies.

A Blob antipattern is found in designs where one large
class monopolizes the behavior and other classes primar-
ily encapsulate data. It is characterized by a complex
and non-cohesive controller class associated to simple data
classes [1].

A Functional Decomposition antipattern occurs when a
class is designed with the intent of performing a single
function. The class therefore has one large method that is
responsible for all of the implementation of the function.
Most of the class attributes are private, and used mainly in-
side the class. Such classes often have names that denote a

function (e.g., CalculateInterest or DisplayTable) [1].

A Divergent Change code smell occurs when one class
is commonly changed in different ways for different rea-
sons [6].

2.2. Detection Issues

Although there is a consensus that it is necessary to
detect design anomalies, our experience with industrial
projects showed that there are many open issues that need
to be addressed. In the following, we discuss some of the
open questions related to anomaly detection.

How to decide if an anomaly candidate is an actual
anomaly? Unlike software bugs, there is no consensus
on how to decide if a particular design violates a quality
heuristic. There is a difference between detecting symp-
toms and asserting that the detected situation is an actual
anomaly. Human intervention is mandatory to understand
the detected situation and to decide if a correction is needed.
Are long lists of anomaly candidates really useful? De-
tecting dozens of anomaly candidates is not always helpful.
In addition to the presence of false positives that may create
a rejection reaction from development teams, the process
of using the detected lists, understanding the anomaly can-
didates, selecting the true positives, and correcting them is
long, expensive, and not always profitable.

What are the boundaries? There is a general agreement
on extreme manifestations of design anomalies. For exam-
ple, consider a program where one class implements all the
behavior and a hundred other classes store data. There is no
doubt that we are in presence of a Blob. Unfortunately, in
real life systems, we can find many large classes, each one
using some data classes and some regular classes. Decid-
ing which ones are Blob candidates depends heavily on the
interpretation of each analyst.

Other open questions includes “How to define thresh-
olds when dealing with quantitative information?”, “How to
deal with situations when an apparent anomaly is motivated
by a particular context?”, and “How to recover application-
domain information needed for detection?”.

Considering these questions, our position is that for a
subset of design anomalies, the detection is more effective
and useful if it is seen as a code inspection task performed
by analysts supported by adequate tools. For this subset of
anomalies, we propose a visualization-based approach and
a tool that can be used by software maintainers to detect de-
sign anomalies. On the one hand, the participation of the an-
alyst during detection brings acceptable answers to the pre-
vious questions: handling variability, defining boundaries,
and making decisions when the context, the semantic, and
the threshold values are necessary. On the other hand, the
visualization environment allows the analysis of large sets
of data in a reasonable time and in an efficient manner.

3. Representation of Detection Information

Our anomaly detection approach is based on fea-
tures provided by our software visualization framework
VERSO [9]. VERSO generates effective 3D representa-
tions of large scale OO programs. Software elements are
represented by 3D graphical elements distributed on a 2D
plane according to the low-level architecture (i.e., package
hierarchy). The representations use quantitative (metrics)
and structural (relationships) data obtained by in-house re-
verse engineering tool PADL [7] and metric extraction tool
POM [8]. Our detection strategies use four types of infor-
mation: quantitative, relational, architectural, and semantic.
The remainder of this section discusses how we designed
our visualization framework to support manual analysis by
efficiently providing these types of information.
Quantitative Information. Many design anomalies are de-
fined/detected using quantitative information (e.g., “large
class” for Blob and “large method” for Functional Decom-
position). Quantitative information is captured using met-
rics extracted from the code. For a particular class, its met-
ric values are mapped to graphical attributes to be observed
by analysts. Classes are displayed as 3D boxes, and metrics
are associated with three attributes of the 3D box: height,
color, and twist (Figure 1 (left)).

After measuring and mapping metrics to graphical at-
tributes, an analyst can visually evaluate if a detection con-
dition applies to a particular class (e.g., if a class is large).
This evaluation can be done in two ways. First, as the ana-
lyst looks at all the boxes (i.e., classes of the analyzed pro-
gram), he can consider the global context to decide if a class
has a large metric value compared to the others. The alter-
native is to use a distribution filter with the box plot tech-
nique [5]. Such a filter colors classes depending on their
position in the distribution according to one metric. Classes
having an extremely high value (outliers) appear red. Fig-
ure 1 (right) shows the application of the distribution filter
on the coupling metric CBO on classes of the Xerces class
library (http://xerces.apache.org/).

!

Figure 1. (left) Class Representation. (right)
Distribution filter (CBO) on Xerces.

+ +
Lower tai Upper tail

Low-level Architecture Information. The definitions of
some anomalies include elements that refer to low-level
architecture information, i.e., program structure in mod-
ules/packages (e.g., a class that interacts mainly with classes
from a different package is considered as a Misplaced Class
anomaly in [10]). As we are interested in Java programs
with a tree-like package structure, we visually organize
classes using a discrete version of the Treemap layout al-
gorithm described in [9]. Figure 2 shows an example of
program visualization. When looking at a program repre-
sentation, we can determine to which package belongs a

class.
’ :m]a"ﬁﬂ i

Figure 2. Xalan (1194 classes) in VERSO.

Relational Information. As mentioned in Section 2.2, de-
sign anomalies can be seen as scenarios played by interre-
lated classes. Different types of relationships are often used
in these scenarios (e.g., the definition of the Blob considers
association and invocation relationships).

In our visualization framework, we use reverse-
engineered relationships (associations ‘in’, ‘out’, and
‘in/out’, aggregation, generalization, implementation, invo-
cation, etc.). Considering that we are dealing with large-
scale programs (thousands of interrelated classes), we rep-
resent these relationships using structure filters, i.e., queries.
When a filter is applied on a particular class, related classes
retain their original colors, while all other classes have the
their color saturation reduced, as shown on Figure 3.

Figure 3. A relationship filter applied to the
circled green class.

Semantic Information. Semantic information refers to
application domain knowledge that is not explicitly rep-
resented in the source code. Some anomalies are de-
fined/detected by taking into account such kind of knowl-

edge (e.g., the fact that a class plays a controller role com-
bined with the other conditions can significantly improve
the detection accuracy of Blob). During the detection using
our visualization framework, if we need to determine if a
class plays a certain role, the analyst can browse the code
by mouse clicking on the corresponding class.

4. Anomaly Detection

This section describes our (semi-automatic)
visualization-based approach to anomaly detection.
First, we explain our general detection principle, from
which we derive detection strategies for specific design
anomalies. Then, we present an example of detection
strategy for the Blob.

4.1. Detection Principle

Design anomalies targeted in this work take the form of
either a single class having a set of undesired properties,
or a micro-architecture involving a group of classes. In the
latter case, one class often plays a primary role, while the
others play supporting secondary roles. For example, in the
Blob anomaly, the controller class plays the primary role,
and the data classes play secondary roles. For all those de-
sign anomalies involving several classes, we found more
efficient to search for primary-role classes first, and then
focus on secondary-role classes. A reason for this is that
primary-role classes often have abnormal metric values, and
therefore are easier to detect in our visualization framework.
Also, seeing micro-architecture design anomalies as scenar-
ios played by primary and secondary roles greatly reduces
the search space for the human analyst.

Based on that observation, we designed a general detec-
tion principle, from which we derive detection strategies
for specific design anomalies. Our detection principle is
summarized in Algorithm 1. Its first step sets a mapping
between metric values and graphical attributes, using soft-
ware metrics that are relevant to characterize the different
roles of the anomaly. Then the analyst locates all candidate
classes for the primary role of the anomaly. This can be
done by looking at the program representation and search-
ing for classes having a certain graphical appearance (cor-
responding to the mapping). Distribution filters can also be
applied for this second step to visualize metric distributions
and locate classes having abnormal values. All candidate
classes for the primary role are marked by the detection
tool. If the primary role must be supported by secondary
roles (depending on the anomaly to detect), a subsequent
step consists, for each candidate, in the application of re-
lationship filters. The analyst considers then the graphical
appearance and/or location of the related classes to decide
if this satisfies the conditions of the considered anomaly. At

any moment and when semantic information is needed, the
analyst can inspect names and/or source code of the located
classes to ensure that they play the targeted roles.

Algorithm 1 Detection Principle
1: Set the mappings metric—graphical attribute
2: Consider the appearance of the classes in the whole program
and/or apply the distribution filter
3: Mark every class that satisfies the primary role requirements
4: for each marked class c do
5. Inspect the name and/or source code of ¢ (if needed)

6: if primary role must be supported by secondary roles then
7: Apply relationship filters on ¢
8: Consider the appearance and/or location of the classes
related to ¢
9: endif
10: if all the above steps are positive then
11: Save the occurrence
12: endif
13: end for

4.2. Example of Anomaly Detection

The general principle defined above can be applied to
detect a wide range of anomalies. In the current state of
our work, we detect six anomalies: Blob, Misplaced Class,
Functional Decomposition, Swiss Army Knife, Divergent
Change, and Shotgun Surgery [4]. Due to lack of space, we
present here only the detection of the Blob anomaly with
a concrete detection example. The definition of the Blob
anomaly can be mapped directly to its detection conditions.
This anomaly involves two types of roles: the God Class
that implements almost all the behavior and a set of Data
Classes that mainly store the data. The detection is done
in three steps: mapping, identification of God Class candi-
dates, and inspection of related classes (Data Class candi-
dates). Three metrics are used [2]. WMC , when abnor-
mally high, indicates a potential God Class, and when very
small, indicates potential Data Classes. LCOMS is gener-
ally high for the God Class (implementation of independent
functions). Finally DIT is supposed to be very low for both
roles (very few ancestors for God Class and Data Classes).
The Blob detection strategy is summarized in Algorithm 2.

An example of a Blob occurrence is shown in Fig-
ure 4. On the left, we see the result of the distribution fil-
ter for metric WMC. The circled black class was selected
as a candidate controller class, because it has an extremely
high WMC value! and is twisted (high LCOMS value).
In Figure 4 (right), the association ‘out’ relationship fil-

"When applying the distribution filter, classes with abnormal values for
the considered metric are colored in red, independently from the mapping.
Among them, the class with the largest value and not yet considered is
colored in black to help the analyst navigating in the search space.

Algorithm 2 Blob Detection Strategy

1: Set the mappings metric—graphical attribute to:
DIT-color, WMC-height, LCOMS5-twist
: Apply the distribution filter on WMC
: Locate candidate classes with an extremely high WMC value
: for each candidate class ¢ do
Inspect LCOM and DIT of ¢
(must be a blue and fairly twisted box)
If necessary, inspect the name and code of ¢
7. Apply association ‘out’ filter on ¢
8: Inspect classes associated with ¢
(must be small (low WMC), straight (highly cohesive), and

voR N

a

blue (low DIT))
9: if all the above steps are positive then
10: Save the occurrence of Blob
11: endif
12: end for

ter is applied on the candidate class. Most of the asso-
ciated classes (i.e., those that are still colored) are blue,
small, and straight, meaning that they are Data Classes.
The inspection of the source code of the controller class
confirmed that it is actually a Blob occurrence. The Blob,
org.eclipse.swt.internal. win32.0S, was detected in RSSOwl,
an open-source RSS reader.

Figure 4. A Blob. (left) Box plot filter on WMC.
(right) Association filter on the circled class.

5 Case Study

To evaluate our approach, we conducted a case study. We
selected two software systems , PMD 1.8 (286 classes) and
Xerces 1.0.1 (296 classes), on which subjects accomplished
anomaly detection tasks using VERSO. For this study, we
were interested in three design anomalies: Blob, Functional
Decomposition, and Swiss Army Knife. We systematically
performed a manual inspection of both software systems to
build a list of all the occurrences of those anomalies in the
systems, in order to compute the recall.

The evaluation was conducted with 15 subjects, gradu-
ate students with background in programming and software
engineering. The subjects had to detect occurrences of the
three design anomalies. They were separated in the two
groups A and B. Subjects in group A used VERSO on PMD
and manual inspection on Xerces; subjects in group B used
manual inspection on PMD and VERSO on Xerces. The
detection with VERSO had to be performed in at most 30

minutes per software system to detect occurrences of the
three design anomaly types. There was no minimum time.

As mentioned in Section 2, analysts using VERSO detect
and validate anomaly occurrences simultaneously. Thus, all
identified anomalies are considered as true positives accord-
ing to the analyst interpretation. In this context, the preci-
sion is always 100%. For this reason, we excluded preci-
sion from the evaluation criteria. Instead we investigated the
variability of the number of occurrences detected between
the subjects, and the recall based on the list of anomaly oc-
currences we manually found for each system.

Our first finding was that the variability between sub-
jects, considering the number of occurrences detected, is
less with VERSO than for manual inspection, although the
averages were very close. Table 1 (left) shows the standard
deviation of the number of occurrences detected for manual
inspection and VERSO on both systems.

Standard Deviation Recall for VERSO

PMD Xerces PMD Xerces
(Man / VERSO) | (Man/ VERSO)
Blob 2.63/1.2 3.74/2.93 2/5 (40%) 5713 (38%)

FD 4.56/2.55 3.01/2.54
SAK 4.84/0.87 2/1.25

12/16 (75%) | 25/30 (83%)
0/1(0%) 1/2(50 %)

Table 1. (left) Standard deviation for the num-
ber of occurrences detected. (right) Recall.

Our second finding was related to the recall of the
anomalies detected using VERSO. In our case, the recall
is the proportion of all anomaly occurrences present in the
systems that were detected with VERSO, taking the results
of the score of the best subject. Table 1 (right) shows the
recall for the three anomalies with both systems. Consider-
ing the limited time and the size of the program, the recall
is very good for Functional Decomposition and average for
Blob. This could be explained by the fact that Functional
Decomposition is a single role anomaly and was probably
easier to detect than a micro-architecture of several classes
such as the Blob. The recall for the Swiss Army Knife is
difficult to interpret because very few Swiss Army Knife
occurrences were present in both systems.

6. Conclusion

Anomaly detection and correction is a concrete and ef-
fective way to improve the quality of software. This pa-
per proposes a semi-automatic detection approach that com-
bines automatic pre-processing and visual representation
and analysis of data. Our approach is complementary to
automatic approaches for anomalies whose detection re-
quires knowledge that cannot be easily extracted from the
code directly. The detection is seen as an inspection ac-
tivity supported by a visualization tool that displays large

programs (thousands of classes) and allows the analyst nav-
igating at different levels of the code. More specifically, we
detect occurrences of anomalies by viewing them as sets of
classes playing roles in predefined scenarios. Primary roles
are identified first, and starting from them, secondary roles
are located. This strategy allows to reduce the search space
which compensates for human intervention.

Although our case study showed interesting results, it
revealed that there is room for improvement. The perfor-
mance variability of subjects still needs improvement. To
reduce this variability, we are defining features to better
guide the analyst when exploring the search space. Com-
bining our approach with an automatic one is another direc-
tion we are investigating. Three ways of combination are
possible. First, we can use our tool to explore the results
of automatic detection and accept/reject the detected occur-
rences. We can also use the two approaches in parallel, de-
pending on the required knowledge to detect the anomalies.
Finally, we can use stylized focus [3] to attract the attention
of the analyst toward parts of the program where candidate
occurrences, detected automatically, are present.

References

[1] W. Brown, R. Malveau, H. McCormick, III, and T. Mow-
bray. AntiPatterns: Refactoring Software, Architectures, and

Pr((){ects in Crisis. John Wiley Press, 1998.
S. Chidamber and C. Kemerer. A metric suite for object ori-

ented design. IEEE Trans. Software Engineering, 20(6):293—

318, 1994.
[3] F. Cole, D. DeCarlo, A. Finkelstein, K. Kin, K. Morley, and

A. Santella. Directing gaze in 3D models with stylized focus.

In Eurographics Symp. on Rendering, pages 377-387, 2006.
[4] K. Dhambri. Détection visuelle d’anomalies de conception

dans les programmes orientés objets. Master’s thesis, Dept.

L.R.O., University of Montreal, Dec. 2007.
[5] N.Fenton and S. Pfleeger. Software Metrics: A Rigorous and

Practical Aprgmach, Revised. Course Technolo(ﬁf5 1998.
[6] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.

Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

[7] Y.-G. Gueheneuc and H. Albin-Amiot. Recovering binary
class relationships: Putting icing on the UML cake. In Proc.

OOPSLA, pages 301-314, 2004.
[8] Y.-G. Gueheneuc, H. Sahraoui, and F. Zaidi. Fingerprinting

design patterns. In Proc. WCRE, pages 172-181, 2004.
[9] G.Langelier, H. Sahraoui, and P. Poulin. Visualization-based

analysis of quality for large-scale software systems. In Proc.

ASE, pages 214-223, 2005.
[10] R. Marinescu. Detection strategies: Metrics-based rules for

detecting design flaws. In Proc. IEEE ICSM, pages 350-359,

2004.
[11] R. Martin. Agile Software Development, Principles, Pat-

terns, and Practices. Prentice Hall, 2002.
[12] N. Moha, Y.-G. Gueheneuc, and P. Leduc. Automatic gen-

eration of detection algorithms for design defects. In Proc.

ASE, pages 297-300, 2006.
[13] A. Riel. Object-Oriented Design Heuristics. Addison-

Wesley, 1996.

(2]

