
Interactive Rendering of Meso-structure Surface Details
using Semi-transparent 3D Textures

Jean-François Dufort Luc Leblanc Pierre Poulin

LIGUM, Dép. I.R.O., Université de Montréal

Figure 1: Triangulated sphere mapped with (from left to right) semi-transparent fur; semi-transparent clouds
casting shadows on the Earth displaced with color texture; ellipsoids trapped in red semi-transparent ma-
terial with volumetric shadows; uniform absorption in green medium; opaque chain model; rocks with
masking and silhouettes. All shadows are cast in the volume and computed dynamically.

Abstract

Several techniques have been introduced to display
meso-structure surface details to enhance the ap-
pearance of complex surfaces. One strategy is to
avoid altogether costly semi-transparency in inter-
active contexts. However when dealing with hier-
archical surface representations (important to filter-
ing) and complex light transfers, semi-transparency
must be treated. We propose a method that com-
bines in a novel way multiple techniques from
hardware rendering and volume visualization in or-
der to render on current graphics hardware semi-
transparent meso-structure surface details stored in
a 3D texture. The texture is mapped to an outer shell
defined by tetrahedra extruded from the surface tri-
angular mesh. The tetrahedra are first sorted on the
CPU to be rendered in correct order. The attenu-
ated color for each ray traversing each tetrahedron is
efficiently computed with a hardware voxel traver-
sal algorithm. The resulting structure is general
enough to simulate at interactive rates from semi-
transparent surface details to opaque displacement
maps, including several surface shading effects (vi-
sual masking, self-shadowing, absorption of light).

1 Introduction

The field of real-time rendering has greatly im-
proved over the recent years, thanks to the phenom-
enal progress of graphics hardware technology. Ef-
ficient high-quality techniques are now being inte-
grated on the GPU to produce photo-realistic im-
ages in real time or at interactive frame rates.

Surface appearance is essential to photo-realism,
and the meso-structure surface details, that lay be-
tween the geometry itself and the micro-structure
details (BRDF), play an important role in this ap-
pearance. This level of detail creates an interme-
diate representation that reduces aliasing and the
number of triangles sent to the GPU. Typical meso-
structure representations include 2D textures, dis-
placement maps, and 3D textures. While being cru-
cial to realism, 2D textures suffer from their in-
herent lack of depth. The silhouettes and over-
all appearance are greatly improved with the use
of displacement maps, which increases the num-
ber of small triangles rendered. Unfortunately, the
surface details must then be well represented by a
height field. This is not the case for surfaces cov-
ered for instance by fur, fabrics, or trees (over hills).
Even in the case of opaque surface details, correct
filtering of this volumetric data for texture minifi-
cation introduces semi-transparency where opaque

VMV 2005 Erlangen, Germany, November 16–18, 2005



and empty voxels are merged. Semi-transparent 3D
textures, borrowed from volume rendering, allevi-
ate many of these problems. As the surface de-
tails are treated in 3D, they can more easily simu-
late visual effects such as semi-transparency, self-
shadowing, complex light interactions, etc. The
ability to render semi-transparent textures is there-
fore necessary for quality images. This flexibility
comes however at the expense of an increased ren-
dering time.

We present an implementation of semi-
transparent 3D texture rendering on GPU. It is
simple, general, extensible, and can also handle
the special case of opaque displacement map-
ping, although less efficiently than other current
techniques. Because it relies on almost no pre-
computations, our method allows the animation
of the underlying surface, the deformation of
the outer shell containing the 3D texture, the
modification of the surface parameterization,
and the animation of the 3D texture. A number
of surface shading effects are demonstrated to
illustrate this generality. Our contributions include
a combination of several hardware rendering and
volume rendering techniques to render both semi-
transparent and opaque volumetric textures. We
provide a general framework that allows for mesh
deformation and animated 3D textures. Finally,
we illustrate rendering effects our technique can
produce (e.g., anti-aliasing, shadowing, masking),
and discuss some of our experiments with current
hardware that lead to some counter-intuitive
realizations.

The paper is organized as follows. In Section 2,
we briefly review the related work. Then, we ex-
plain our technique (Sections 3 and 4), present
specific aspects of our implementation (Section 5)
(e.g., antialiasing, voxel traversal), demonstrate its
generality and discuss some results of our technique
(Section 6), and conclude (Section 7).

2 Previous Work

The techniques applied at the meso-structure level
of surface detail representation can be divided in
three categories: 2D textures, displacement maps,
and 3D textures.

2.1 2D Textures

2D color and bump textures are essentially the
most common techniques used to represent meso-

structure surface details. Unfortunately they give a
sense of wallpaper, as no view-dependent masking
and shadowing effects can be observed (Figure 2 a).
Some techniques have been introduced to improve
these masking effects. Parallax mapping [25] and
relief mapping [19] (Figure 2 b) are such examples.
Bidirectional texture functions (BTFs) [4] capture
2D textures from different view and light directions.
Rendering requires only to interpolate between tex-
tures according to current view and light directions.
While providing effective solutions in real time, all
these techniques still suffer from flat silhouettes and
lighting effects limited to the surface.

Figure 2: (a) Bump mapping and (b) relief mapping
do not result in correct silhouettes as opposed to
(c) displacement mapping. Our technique provides
masking, correct silhouettes, and self-shadowing
for geometry (d) that cannot be represented by
height fields. (Color plate A) Semi-transparency
adds correct blending of color and volumetric shad-
ows.

2.2 Displacement Maps

In displacement mapping [3, 6], the geometry in
each texel is moved. This results in correct view-
dependent effects such as masking between surface
details, details occlusion on other objects and sil-
houettes (Figure 2 c), but for a finely tessellated tex-
ture, can produce a large quantity of tiny triangles.
A set of precomputed view-dependent displacement
maps [22] can also reduce the number of geometry
sent to the GPU, but requires a dense set of view
directions. Other approaches consist of ray tracing
inside the displacement map in a fragment program
[9, 19], or image warping textures augmented with
a z-component [16].

666



2.3 3D Textures

Ray tracing a complete 3D texture, inspired by
volume rendering techniques, has been very pop-
ular to simulate surface details at various resolu-
tions [10, 17]. It was however applied mostly for
offline high-quality rendering. Meyer and Neyret
[15] tile the 3D geometry with prisms and ren-
der each prism as a set of parallel textured trian-
gles (slices). Instead of generating the slices on a
per-prism basis, Lensch et al. [13] generate planes
through the entire object in back-to-front order to
handle semi-transparency. However, they can re-
quire a very large number of slicing planes in or-
der to intersect all the details contained in the volu-
metric texture. Generalized displacement mapping
[23] breaks away from these slicing strategies. In
a pre-processing step, a 5D visibility structure is
built by ray tracing the geometry from many points
within the 3D texture space. While the visibil-
ity structure is compressed to about 2-4 MB for
typical (64 × 64 × 32) 3D textures, it remains
valid only for static 3D textures of opaque surfaces.
More recently, a concurrent technique [7], similar
to the one we present here, has been developed for
opaque displacement maps. This technique is lim-
ited to displacement maps on locally planar sur-
faces. Since no integration is performed on the ray,
semi-transparency is impossible. Also, a similar
software based method was developed concurrently
[20]. Although the two techniques are similar, the
mapping between shell space and texture space is
different. Also, their software implementation al-
lows the authors to perform ray integration in ob-
ject space. While providing superior image quality,
their rendering times are two orders of magnitude
higher.

2.4 Volume Rendering

Volume rendering algorithms (such as [26, 24, 12])
also inspired us. Projected tetrahedra [21] algo-
rithms proceed by subdividing volumetric data into
a grid of tetrahedra. Then, each tetrahedron is sent
to the pipeline as a group of triangles depending on
its projective profile. Colors are interpolated from
each vertex using a pre-integrated color lookup ta-
ble dependent on the opacity of the material within
the volumetric data and the depth of each tetrahe-
dron.

3 Meso-structure Surface Details

In this section, we describe the structure support for
our meso-structure surface details. A 3D texture
tiled over a triangular mesh offers a very flexible
format to represent surface details.

To build the support for the 3D texture, we ex-
trude the triangles of the surface mesh into prisms,
similarly to [23]. This results in a 3D layer on top
of our surface triangle mesh. Each surface ver-
tex is extruded along the direction of its normal.
Unlike [23], we furthermore subdivide each prism
into three tetrahedra to ensure that each volumetric
primitive is convex (Figure 3). Since our render-
ing technique requires no precomputations, we can
modify the thickness of this layer, the extrusion di-
rection, apply neighborhood operators to the extru-
sion, or animate the underlying triangle mesh. In
our work, we focused our attention to the rendering
of the texture and not on the modeling of this extru-
sion. We invite the reader to check the work of Peng
et al. [18] for an efficient method to model such a
layer on top of a surface avoiding self-intersection
between prisms.

Figure 3: Each surface triangle is extruded into
three tetrahedra. Tetrahedra are efficiently sorted
for any given viewpoint (Section 4.1).

Each extruded vertex has a texture coordinate
(u, v, w) in the 3D texture, a world position, a lo-
cal frame of reference (used for shading), and addi-
tional extrusion data. This data includes the plane
equation (Ao, Bo, Co, Do) of the supporting plane
for each triangle sharing this vertex. In this paper,
the superscripts o and t represent the object and tex-
ture spaces, respectively. This data also includes an
affine 3 × 4 matrix M

o→t that transforms a point
of tetrahedron in 3D object space to the 3D texture
space. All this additional data is used by the vertex

666



shader in the rendering phase of the algorithm.

4 Rendering

The rendering procedure is composed of three steps
(Figure 4):
(1) For semi-transparent 3D textures, the visible

tetrahedra are identified in back-to-front order
using an image-space cell sorting algorithm
(SXMPVO).

(2) For each tetrahedron, we compute the entry
and exit points of the viewing ray. We map
these two points from object space to 3D tex-
ture space.

(3) A numerical integration for light transport is
performed on this ray segment inside the 3D
texture as a weighted summation along the
voxel traversal.

4.1 Tetrahedra Sorting

Semi-transparent primitives must be sorted to be
rendered correctly by alpha blending. Depth peel-
ing [8] renders the tetrahedron faces in correct or-
der, but each depth layer requires a new complete
rendering pass, and the possibly high number of
polygons projecting in any given pixel makes this
solution impracticable. Because of the high depth
complexity (around 40 triangles in one pixel), it
took 20 seconds for our implementation of depth
peeling to render the vase model (Color plate D)
compared to 0.5 second with our CPU sorting strat-
egy (explained next).

Another approach considers sorting the primi-
tives before sending them to the graphics pipeline.
We implemented an image-space cell sorting algo-
rithm called SXMPVO [2]. Given a set of tetra-
hedra and a projection, SXMPVO returns a correct
visibility ordering if there are no cycles in the set.
Since by construction our tetrahedra do not inter-
sect, configurations that could introduce cycles are
rare in most well-formed meshes. Cycles are de-
tected during the sorting and could be treated with
a tetrahedra clipping strategy.

The SXMPVO algorithm proceeds in two steps.
First, it sorts each pair of adjacent tetrahedra shar-
ing one face (triangle). If by convention a triangle
normal points outward its tetrahedron, the tetrahe-
dron with the back-facing shared triangle (with re-
spect to the viewpoint) hides its adjacent tetrahe-
dron.

Figure 4: Overview of the rendering algorithm.
(a) For semi-transparent textures, the tetrahedra are
sorted by SXMPVO. A pixel covered by a tetrahe-
dron front-facing triangle determines an entry point
po

i . (b) The exit point po

o from this tetrahedron is
determined by intersecting the viewing ray with the
three other triangles. (c) The segment po

o - po

i is
transformed in 3D texture space, where we use ray
marching to accumulate its color contribution, then
blended in the pixel.

Then the unshared tetrahedron faces are all pro-
jected in a simplified A-buffer. For each A-buffer
pixel, the triangles are processed in back-to-front
order, and the tetrahedron corresponding to a tri-
angle is marked as behind the previous one. The
remaining set of unmarked tetrahedra is a starting
point for a depth-first traversal into the graph of “be-
hind” relationships giving a correct visibility order-
ing of the tetrahedra.

4.2 Ray-tetrahedron Intersection

Each tetrahedron is rendered as a single primitive.
We need to compute the entry and exit points of the
viewing ray in the current tetrahedron, and to map

666



these points to 3D texture coordinates (Figure 4 b
and c). For efficiency reasons, only front-facing tri-
angles are sent to the graphics pipeline. A vertex
shader computes the ray on which we perform ray
marching in the fragment shader. Each vertex of
each front-facing triangle of the tetrahedra are sent
to the pipeline. The vertex attributes are its 3D tex-
ture coordinates and the plane equation of the “op-
posite” triangle in the tetrahedron. This opposite
triangle is the triangle of the tetrahedron formed
without the current vertex. The three planes for this
front-facing triangle are used to compute the exit
point for the viewing ray.

In the vertex shader, the entry point in the tetrahe-
dron of the viewing ray in object space corresponds
to the current vertex position in 3D space. In order
to find the exit point, we compute the intersection
of the viewing ray with the three other planes sup-
porting the three other faces of the current tetrahe-
dron. Since the current vertex is shared by two of
the three other triangles, two of the three intersec-
tions are the vertex position itself and do not need
to be computed.

The corresponding 3D texture coordinates are
found by multiplying the computed intersection
point by the matrix M

o→t previously defined (Sec-
tion 3). Thus, the rasterizer interpolates the entry
point po

i and the exit point po

o through the tetrahe-
dron, both points in object space. The correspond-
ing texture coordinates (u, v, w) for the two points
(pt

i and pt

o) are also interpolated by the rasterizer.
One must be careful when interpolating the inter-
section points because this value cannot be linearly
interpolated on the surface of the triangle so a per-
spective correction term (in addition to the one pro-
vided by the hardware) must be used for screen
interpolation. Although similar, this intersection
scheme is simpler than the one found in [23] be-
cause we use convex tetrahedra instead of prisms
with arbitrary shapes. Finally, the fragment shader
integrates the color contribution of each voxel along
the ray segment to compute its final color.

4.3 Light Transport Integration

The intersection calculation allows us to define the
ray (and its counterpart V o in object space)

V
t = p

t

i + λ(pt

o − p
t

i)

where λ ∈ [0, 1].

The final color returned by the fragment shader
is the result of the accumulation by alpha blending
of the color contribution of each voxel traversed by
V t in the 3D texture. The quality of the reconstruc-
tion is thus limited by the resolution of the volumet-
ric texture and the sampling algorithm along the ray
segment.

Depending on the sampling scheme, the distance
between samples may not be uniform and certainly
does not correspond to the sampling distance ap-
proximated by the alpha channel of the texture.
The fragment shader must correct the opacity of a
sample depending on the distance traveled by light
(∆t‖V o‖) in object space (Color plate D and G).
We use the following correction term for alpha:

αi = 1 − (1 − α
t

i)
∆t‖V

o‖

where αt

i is the opacity fetched from the 3D texture
at this sample location and αi is the corrected alpha
value.

Ray marching toward the light at sample points
along the segment is possible. Unfortunately, at this
stage, like [23], we do not have access to other tetra-
hedra toward the light source, and therefore neglect
all light scattering inside the medium. We could use
a hardware implementation of a deep shadow map
[11] instead of a regular shadow map, but it would
be too costly to recompute it in presence object de-
formations or dynamic lights.

Finally, the color returned by each visible tetra-
hedron is alpha blended in the current color buffer
with the factors (1 − αdst, 1).

5 Implementation

5.1 Voxel Traversal

As it will be executed for every tetrahedron viewed
through each pixel, the voxel traversal for the 3D
texture algorithm must be very efficient. We imple-
mented several methods and ran some performance
tests. First we tried a 3D DDA approach [1] because
it guarantees that no voxels are missed. However,
we found out that with high resolution 3D textures
(our technique is not limited by the resolution of the
textures), this algorithm results in a large number of
texture fetches and thus to very poor performances.
We tried adaptative sampling schemes that take into
consideration the length of the ray segment inside
the volumetric texture and the resolution of the tex-
ture, combined with an empty-space skipping [7]

666



approach. The former needs a variable number of
iterations in the main loop for the integration and
the latter uses a large number of dependent texture
lookups. Surprisingly, these enhancements to the
brutal algorithm offered lower performances.

In our final implementation, we used a fixed
number of samples for an image. The number
of samples is a compromise between quality and
speed, and can be selected at runtime. Even if we
oversample often (corners of tetrahedra need less
samples), this solution turned out to be the most ef-
ficient.

5.2 Antialiasing

Filtering meso-structure details has often been ne-
glected in related work. However, lack of filtering
results in very apparent under-sampling artifacts.
Correct filtering of such surface details is usually
very difficult to achieve because of the view depen-
dency of the masking function within the volumet-
ric texture. We ignore this view dependency and
perform a mipmap-based filtering similar to [5].

Starting with the lowest (most detailed) level of
the filtering pyramid, we combine layers of the vol-
umetric texture by using the opacity equation [14]
to filter along the z dimension (height) of the vol-
umetric texture (top-down). We also average the
color (weighted by the opacity) of the combined
layers to filter in the two other (horizontal) dimen-
sions as it is done in a regular mipmap. Despite the
lack of view-dependent filtering, we obtain satisfy-
ing results that remove much of the aliasing arti-
facts.

Merging opaque and empty voxels in this filter-
ing scheme introduces semi-transparency, which is
correctly handled by our algorithm, as illustrated in
Figure 5.

Figure 5: A cylinder from which emerges fur with
a crease. Notice how our partial filtering (right) re-
moves much of the aliasing artifacts (left).

5.3 Rendering Effects

In our implementation, each voxel in the 3D texture
has an associated normal stored in another 3D tex-
ture (3D normal map). The normals can be found by
the same sampling scheme used to construct the 3D
texture or using the gradient of the data. In the ren-
dering step, a local reference frame is interpolated
between every vertex of the tetrahedron to perform
a lighting calculation for every sample we take in
the fragment shader.

To produce shadows, we use a shadow map. The
world space position of the entry point of the ray
segment in the tetrahedron is known, and so is the
world space position of the exit point. In the ray
marching step, we use the interpolated world space
position as the point to query the shadow map. This
scheme simulates self-shadowing of meso-structure
and even volumetric shadows because each sample
in the ray marching algorithm is shaded in a semi-
transparent texture (Color plate E (right)). Also, the
interpolation of world space position of each sample
allows us to use z-buffering as a visibility algorithm
to produce visual masking.

Other effects can be achieved such as light emis-
sion and absorption since we perform ray march-
ing in volumetric texture space. The alpha channel
of the 3D textures allows us to use a 3D texture in
which light absorption is not uniform in resulting
in regions of various opacities on the surface (Color
plate D). The color channels can be used to select
special voxels where light is added in the integral,
resulting in a glow effect (Color plate G).

6 Results

All of our images were rendered at 512× 512 from
our implementation on an NVIDIA 6800 GT of
256 MB, installed on a processor Athlon64 3500+
running Linux.

Our approach has a number of advantages over
other previous techniques. First, we fully sup-
port semi-transparent textures (Color plate A, D
to G), which is necessary to properly filter vox-
els. This generality comes at the expense of a
depth sorting step. This bottleneck hinders our per-
formance, compared to other techniques limited to
only opaque volumetric textures. In their situation,
no attenuation calculations are required and pre-
computed visibility can be exploited. In our case,
we can use any volumetric texture, not limited to

666



height field based surface details. The results pro-
duce sharp silhouettes for any volumetric texture
(see Color plate). Finally, since we do not rely on
precomputations, both the geometrical model and
the texture can be animated (Color plate B and F).

Our memory requirements are divided between
the extruded mesh (the tetrahedra) and the volumet-
ric texture. As previously mentioned (Section 3),
every base mesh triangle is extruded into three tetra-
hedra. Thus, each vertex is duplicated and the
number of triangles is multiplied by 12 (shared
faces are counted twice). This part of the memory
cost is comparable with other extrusion based hard-
ware techniques such as generalized displacement
maps [23] (shared faces are also counted twice).
However, the memory cost for the volumetric data
is smaller since we use no precomputed visibility
functions. We can use textures with a resolution up
to 512×512×32 with no additional cost than stor-
ing the texture data (x × y × z × RGBα), plus its
equivalent 3D texture for the detail normals.

Table 1 summarizes our results.
In Color plate (E left), we show an application

of our technique on a highly triangulated model
(8640 triangles for the base mesh, 25920 tetrahe-
dra in total) using a texture of a tree (resolution:
128 × 128 × 32). We achieve 2 fps. In order to
handle curved objects, the base mesh must be tessel-
lated. In this particular case, the texture is opaque,
so no sorting is needed. To improve on the perfor-
mance, we tried to use a first pass to render the
base (opaque) layer without the fragment shader,
and then to use the early z-discard in a subsequent
pass to cull fragments that are hidden. We found
that the performance gains were negligible.

The same texture was applied to a simpler base
mesh, but this time, using a semi-transparent fog
within the texture to add atmosphere in the scene
(Color plate E (right)). The extruded mesh contains
96 tetrahedra. For each image, the tetrahedra are
sorted and taking 15 samples are taken along the
ray; 22% of the time is spent on the sorting and the
other 88% is spent on the rendering, thus achieving
16 fps. This example shows rendering effects of our
technique such as masking, absorption by the semi-
transparent medium, and shadowing within the fog.

Our technique adds the possibility to use
semi-transparent textures, but can reproduce
results similar to the ones provided by other
algorithms (Color plate C). Finally, the Color

plate B and F show frames of animations
(www.iro.umontreal.ca/labs/infographie/papers).
They illustrate that our algorithm handles both
animated textures and mesh deformations.

7 Conclusion and Future Work

We presented a technique to interactively render,
on current graphics hardware, meso-structure sur-
face details represented as semi-transparent 3D tex-
tures. Our technique makes no assumptions on
the nature of the 3D texture, and is therefore ap-
plicable to animations resulting from dynamic tex-
tures, surface deformation, and texture reparameter-
ization. Most previous techniques rely on visibility
pre-processing or are limited to constrained lighting
effects. Our method is general enough to support
several visual and lighting effects, as demonstrated
by our results.

While our method offers interactive perfor-
mances for several effects, it is still too costly to be
integrated in real-time systems. Expected future de-
velopments in graphics hardware, especially in 3D
texturing (caching and performance), parallelism at
the fragment stage, and faster depth sorting algo-
rithms will have a direct impact on the performance
of our method. Also, we believe that better visibil-
ity culling can increase the performance of our algo-
rithm. This would spare the rendering time required
to integrate invisible parts of tetrahedra reducing the
impact of voxel traversal.

The concept of 3D textures to replace finer ge-
ometrical details has been around for many years
[10, 17]. Beside reducing the geometry sent to the
GPU, it offers a great opportunity to (pre-)filter this
geometry. We hope the recent advances in render-
ing meso-structure surface details and image-based
modeling and rendering will revive these reflections
on hierarchical levels of detail, and stir graphics
hardware design toward more sophisticated and in-
tegrated rendering capacities.

Acknowledgments

We acknowledge continuous financial support from
NSERC. Alla Sheffer and Baining Guo graciously
provided sample geometrical models and textures.
Several reviewers contributed insightful comments
to this final version.

666



Scene Color plate # Triangles Texture Size # Samples FPS
Teapot (Beethoven) G 25704 128 × 128 × 32 10 4

Teapot (weave) C 25704 64 × 64 × 32 20 5
Vase (trees) E 103680 128 × 128 × 32 10 2

Vase (dragons) D 103680 128 × 128 × 32 10 2
Plane (trees) E 384 128 × 128 × 32 15 16
Tube (rocks) B 1440 512 × 512 × 32 10 30

Table 1: Summary of our results. The number of triangles is the total number sent to the pipeline: number
of triangles in base mesh × 3 tetrahedra per base triangle × 4 triangles per tetrahedron.

References
[1] J. Amanatides and A. Woo. A fast voxel traversal

algorithm for ray tracing. In Eurographics ’87, pages
3–10, 1987.

[2] R. Cook, N. Max, C.T. Silva, and P.L. Williams.
Image-space visibility ordering for cell projection
volume rendering of unstructured data. IEEE
Trans. on Visualization and Computer Graphics,
10(6):695–707, 2004.

[3] R.L. Cook. Shade trees. In SIGGRAPH 1984, pages
223–231, 1984.

[4] K.J. Dana, B.v. Ginneken, S.K. Nayar, and J.J.
Koenderink. Reflectance and texture of real-world
surfaces. ACM Trans. on Graphics, 18(1):1–34,
1999.

[5] P. Decaudin and F. Neyret. Rendering forest scenes
in real-time. In Rendering Techniques 2004, pages
93–102, 2004.

[6] M. Doggett and J. Hirche. Adaptive view dependent
tessellation of displacement maps. In SIGGRAPH
2000, pages 59–66, 2000.

[7] W. Donelly. GPU Gems 2, chapter 8. Addison Wes-
ley, 2005.

[8] C. Everitt. Interactive order-independant trans-
parency. NVIDIA Corp., White Paper, 1999.

[9] J. Hirche, A. Ehlert, and S. Guthe. Hardware accel-
erated per-pixel displacement mapping. In Graphics
Interface 2004, pages 153–160, 2004.

[10] J.T. Kajiya and T.L. Kay. Rendering fur with three
dimensional textures. In SIGGRAPH 1989, pages
271–280, 1989.

[11] T.-Y. Kim and U. Neumann. Opacity shadow maps.
In Eurographics Workshop on Rendering, pages
177–182, 2001.

[12] M. Kraus, W. Qiao, and D.S. Ebert. Projecting tetra-
hedra without rendering artifacts. In IEEE Visualiza-
tion 2004, pages 27–34, 2004.

[13] H.P.A. Lensch, K. Daubert, and H.-P. Seidel. Inter-
active semi-transparent volumetric textures. In Vi-
sion, Modeling, and Visualization, pages 505–512,
2002.

[14] M. Levoy. Efficient ray tracing of volume data. In
SIGGRAPH 1990, pages 245–261, 1990.

[15] A. Meyer and F. Neyret. Interactive volumetric tex-
tures. In Eurographics Rendering Workshop 1998,
pages 157–168, 1998.

[16] M.M. Oliveira Neto, G. Bishop, and D. McAllister.
Relief texture mapping. In SIGGRAPH 2000, pages
359–368, 2000.

[17] F. Neyret. Modeling, animating, and rendering com-
plex scenes using volumetric textures. IEEE Trans.
on Visualization and Computer Graphics, 4(1):55–
70, 1998.

[18] J. Peng, D. Kristjansson, and D. Zorin. Interactive
modeling of topologically complex geometric detail.
In SIGGRAPH 2004, pages 635–643, 2004.

[19] F. Policarpo, M.M. Oliveira Neto, and J. Comba.
Real-time relief mapping on arbitrary polygonal sur-
faces. In I3D 2005, pages 155–162, 2005.

[20] S. D. Porumbescu, B. Budge, L. Feng, and K. I. Joy.
Shell maps. In SIGGRAPH 2005, pages 626–633,
2005.

[21] P. Shirley and A. Tuchman. A polygonal approxima-
tion to direct scalar volume rendering. In Workshop
on Volume Visualization 1990, pages 63–70, 1990.

[22] L. Wang, X. Wang, X. Tong, S. Lin, S. Hu, B. Guo,
and H.-Y. Shum. View-dependent displacement
mapping. In SIGGRAPH 2003, pages 334–339,
2003.

[23] X. Wang, X. Tong, S. Lin, S. Hu, B. Guo, and H.-Y.
Shum. Generalized displacement maps. In Render-
ing Techniques 2004, 2004.

[24] M. Weiler, M. Kraus, and T. Ertl. Hardware-based
view-independent cell projection. In IEEE Volume
Visualization and Graphics, pages 13–22, 2002.

[25] T. Welsh. Parallax mapping with offset limiting: A
per-pixel approximation of uneven surfaces. Infis-
cape Corp., 2004.

[26] B. Wylie, K. Moreland, L. A. Fisk, and P. Crossno.
Tetrahedral projection using vertex shaders. In IEEE
Volume Visualization and Graphics 2002, pages 7–
12, 2002.

666



Various images rendered at interactive framerates with our technique.

666


