
Patch-based Synthesis of Geometry Textures with Point-set Surfaces

François Duranleau Pierre Poulin

Dép. d’informatique et de recherche opérationnelle
Université de Montréal

Abstract
As high-quality geometrical models become neces-
sary for realistic applications, the creation of so-
phisticated surface details quickly becomes a cru-
cial bottleneck to modeling. Geometry texture syn-
thesis can alleviate this problem. We propose to
combine geometry texture synthesis with point-set
surfaces. Point-set surfaces form a powerful and
flexible representation to encode intricate surface
details. Our algorithm incrementally builds up a fi-
nal geometry texture by fitting patches from an ini-
tial geometry texture, according to a distance field-
based metric applied to a point neighborhood. An
automatic point pairing scheme is used to warp the
most similar patch with a thin-plate spline interpo-
lation to make it concordant with its neighborhood.
The point-set representation frees us from coping
with explicit connectivity, while offering trivial ma-
nipulation for cutting, merging, and fitting portions
of a surface. An appropriate blending corrects for
any remaining small texture gaps. Experimental re-
sults are provided to illustrate the generality and the
efficiency of our approach.

1 Introduction
Textures in computer graphics appear mostly in the
form of details, whether as color or geometry alter-
ations, on the surface of an object. These details
are traditionally represented as 2D images (not nec-
essarily color) mapped on a surface, and often as-
sociated with patterns such as cloth, wood, bricks,
etc. Unfortunately covering an entire surface with a
smaller texture using regular tiling results in objec-
tionable visual patterns.

Texture synthesis attempts instead to generate
from an original texture a new texture of arbitrary
size with similar visual properties. Much work has
been devoted to color textures, as indicated by ex-
tensive surveys [18, 13]. The most suitable textures

for such generation processes respond to Markov
random fields (MRFs) criteria, meaning they ex-
hibit locality and stationarity properties. This class
of textures represents a wide range of texture types.

This paper proposes to extend the texture gener-
ation process to geometry textures in order to pro-
duce adapted surface details, a very tedious task to
perform manually.

Other researchers have addressed this problem.
One simple solution applies standard color texture
synthesis to height maps [28, 30], bounded height
being substituted for color. However, this limits
the geometric complexity of the surface details. It
is also possible to apply texture synthesis to vol-
umetric data (voxels with distance and/or density
information) [15, 5]. This can represent arbitrary
geometry, but may be costly in memory and slow
to process. Geometry images [16, 19] also form
a straightforward application of texture synthesis.
Although they can represent more complex geome-
try than height maps, they cannot represent discon-
nected components.

Extending texture synthesis to surfacic repre-
sentations has only recently been investigated.
These approaches can potentially represent arbi-
trary topology and usually have a much smaller
memory footprint than volumetric data. Zelinka and
Garland [31] use graph-cut techniques on meshes
to synthesize textures on one object from textures
on another object. Closely related to our approach,
Zhou et al. [32] also use meshes.

A point-set surface offers an interesting alterna-
tive representation to meshes. It proved a valu-
able tool for geometry processing and modeling
(see [12] for a survey), as it requires no structures
to explicitly maintain topology, and it allows direct
processing of scanned data without explicit surface
reconstruction.

We thus propose to exploit point-set surfaces and
patch-based sampling schemes [17, 8, 14, 7, 29] in
a general geometry texture synthesis approach. In



order to focus on the many elements affecting the
synthesis process, we will limit our experiments to
generation over a plane.

The rest of the paper proceeds as follows. Re-
lated work is presented in Section 2, our geometry
texture representation is defined in Section 3, and
our synthesis algorithm is first described in Sec-
tion 4, and then detailed in Section 5. Our results
are analyzed in Section 6, and a conclusion com-
pletes the discussion in Section 7.

2 Related Work

Modeling by example is not a concept exclusive to
textures. Sloan et al. [24] presented a system to gen-
erate new shapes from a set of shapes with some
interpolation scheme. Funkhouser et al. [9] devel-
oped a system to build piecemeal objects from dif-
ferent parts of a shape database. They retrieve dif-
ferent parts based on their similarity with a target
shape. That similarity is evaluated by comparing
distance fields, an idea we also exploit. Pauly et
al. [22] also use search in a shape database to repair
3D scans. All these systems are essentially consid-
ered as macro-synthesis, as they build up geometry
by parts, such as handles, arms, feet, etc. (except
for [22]).

More closely related to our approach, Sharf et
al. [23] and Park et al. [20] use principles of tex-
ture synthesis to repair 3D scans, including surface
details. However, they aim at repairing models by
filling holes, and not generating geometry textures.
They also advocate the use of point-based represen-
tations.

3 Texture Representation

To synthesize geometry textures of arbitrary topol-
ogy, we need more than height fields. The idea of
our representation is akin to generalized displace-
ment maps [26], and is quite similar in concept to
the textures of Zhou et al. [32].

We define our input geometry texture Tin with
the following elements:

• an axis-aligned bounding box BTin
defining

the dimensions of the geometry texture.
• arbitrary manifold uniformly sampled point-

set surfaces residing within BTin
. This geom-

etry must be defined beyond the limits of the

bounding box in order to avoid ill-defined bor-
der conditions. We use the surface definition
of Adamson and Alexa [2].

• an axis-aligned reference plane defining the
orientation of the texture. The height of a tex-
ture is defined by the dimension of the bound-
ing box perpendicular to this plane.

Figures 4, 5, 7, and 8 show examples of input ge-
ometry textures.

Our synthesis method is patch-based. A patch
P ⊂ Tin is defined as the geometry inside an axis-
aligned box of height equal to the texture’s height.
As for standard patch-based texture synthesis meth-
ods, the patch size should be chosen according to
the size and distribution of features in Tin. It should
be large enough to encompass at least a texture ele-
ment (e.g., a bump in Figure 4) plus some neighbor-
hood. If the patch is too small, the elements’ shape
and distribution may not be well preserved. If too
large, there may be less variation in the output tex-
ture.

4 Synthesis Algorithm

The general process of our synthesis algorithm is
similar to [8, 17]. It starts with a seed patch and then
proceeds incrementally in scan-line order. Since the
synthesis is performed along the texture’s reference
plane, the generation process is basically 2D. Thus,
when we speak of a region, we actually refer to the
volume defined by an area in the reference plane
extruded to the full height of the texture.

At a given iteration k, we gather a point-set Nk

(the neighborhood) around the region where a new
patch will be placed. We then gather a set of patches
matching Nk and randomly select one. The selected
patch Pk is then translated to its destination posi-
tion, transformed to better match Nk, and merged
with Tout. For reasons explained later (Section 5.1),
the patch has to be augmented with an extra region
Ek extending out of Pk in the general synthesis
direction. Figure 1 illustrates the terminology de-
scribing different regions.
Our synthesis algorithm thus proceeds as follows:

1. Randomly or manually select a seed patch P0

from Tin and paste it at the lower left corner
of Tout together with E0. Set iteration counter
k = 1.



Pk

Ek

Tout

Pk

Ek

O
Pk

k

Tout

O
Pk

kO
Nk

k

Pk

Ek

ToutTout

O
Nk

k

wE

Pk

wE

O
Pk

k

O
Nk

k

Nk
Ektr

(a) (b) (c)

Figure 1: Synthesis process: (a) Start with an initial patch and proceed in scanline order. (b) A new patch
starts a new scanline. (c) The general case. The dashed square over Tout represents the gathering region.

2. Find the set of candidate patches

Ψk = {P ⊂ Tin | d(ONk

k ,OP
k ) < dmax}

where

dmax = (1 + ε) min
P⊂Tin

d(ONk

k ,OP
k ).

O∗
k is the overlapping region of interest at iter-

ation k in Nk or any patch (see Figure 1), d is
a comparison metric between two overlapping
regions, and ε is the relative error tolerance on
d (details in Section 5.1).

3. Randomly select a patch Pk from Ψk. Set
Fk = tr(Pk ∪ Ek), where the function tr

translates the union to its destination position,
and let Bk be the bounding box of Fk.

4. Warp Fk to make it concordant with Nk, and
let F ′

k be the result (details in Section 5.2).
5. Blend the geometries of Nk and F ′

k into F ′′
k

(details in Section 5.3).
6. Remove all points of Tout contained inside Bk,

and copy all samples from F ′′
k inside Bk into

Tout. Set k = k + 1.
7. Repeat steps 2 to 6 until Tout is filled.
8. Remove a region wE wide along the bound-

aries of Tout.
During the synthesis, we need to dynamically

add and remove samples from Tout, as well as lo-
cate neighbors. In order to achieve good perfor-
mance for these operations, Tout is encoded as a
hashed regular grid of buckets of points.

5 Processing a Patch
Several steps in the above algorithm involve search-
ing and pasting a new patch during the synthesis

process. In this section, we provide details for three
basic steps: searching, warping, and blending.

5.1 Finding a Similar Patch
Step 2 of our algorithm creates the set Ψk of best
candidate patches, according to a patch similarity
metric d. As a large number of patches need to be
evaluated, d needs to be fast to compute.

Zhou et al. [32] compute a similarity cost based
on vertices’ projection distances and normal differ-
ences. However, such a cost function is expensive
to evaluate, particularly with point-sets.

Another commonly used similarity metric defini-
tion is the Euclidean distance, which is fast to eval-
uate, but would require to map our point-sets to an
Euclidean space. Park et al. [20] and Zelinka and
Garland [31] require local parameterization to eval-
uate feature vectors, which limits the local topol-
ogy (no disconnected components). Sharf et al. [23]
locally fit implicit functions to point-sets and take
a few samples of signed distance and gradients of
those functions. In our case, we need a denser sam-
pling to allow more complex geometry inside our
patches. We therefore opted to use signed distance
fields [15, 9] together with a gradient field. The
fields are computed only inside the overlapping re-
gions O∗

k. Let D(S) be the distance field of a given
point-set S, extended with the corresponding gradi-
ent field. By interpreting those fields as single high-
dimensional vectors, our distance metric d is thus
defined as:

d(ONk

k ,OP
k ) = ‖D(ONk

k ) −D(OP
k )‖2

where ‖ · ‖ is the Euclidean norm, and P ⊂ Tin.



���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

Figure 2: Error in distance computation: the long
arrow indicates the computed distance inside the
box, but the short arrow indicates the correct dis-
tance.

D(S) is computed by projecting points of a reg-
ular grid on the surface(s) of S using the quasi-
orthogonal projection operator of Adamson and
Alexa [2]. To determine the distance sign, the op-
erator should always yield consistent normals, and
therefore we require explicit normals for our point-
sets. The user-defined grid resolution should be
large enough to roughly capture the geometric de-
tails, yet because the field is used only for compar-
ison and not for reconstruction, this resolution does
not need to be very dense.

Only D(ONk

k ) has to be computed on the fly. For
all P ⊂ Tin, D(OP

k ) is extracted from D(Tin).
The resolution of D(Tin) discretizes the set of all
possible patches.

Some care needs to be taken to accurately com-
pute distances and gradients near a field’s borders.
Only considering the geometry within the field’s ex-
tents may result in false distance values, as illus-
trated in Figure 2. To circumvent this problem, we
allow projections to fall on the geometry outside
the field’s extents. Therefore geometry must extend
BTin

, as described in Section 3. This is also why we
paste an extra region Ek together with Pk. It pro-
vides a padding region around ONk

k , as illustrated
in Figure 1. We identify the width of those extra
regions as wE . It is set accordingly with the type
and density of features in Tin. In our examples, it
varied between 1

4
and 1

3
of a patch’s size. Larger

proportions tend to only slow down computations.
A metric over an Euclidean space also offers

the possibility to use search acceleration structures.
Two popular and efficient methods are approxi-
mate nearest neighbor search (ANN) [3] and tree-
structured vector quantization (TSVQ) [10], both of
which have been used successfully for texture syn-
thesis [17, 27, 11, 5]. However, the high dimen-
sionality of our search spaces makes ANN about
the same as an exhaustive search. We could make

use of TSVQ by trading quality for speed, however,
we have found that even by searching exhaustively,
the search step is not a bottleneck of our synthe-
sis method (see Table 1). We can help to make
the search faster by unpacking all D(P ), P ∈ Tin

as a precomputation step. This can be memory-
intensive, but for all our test cases, it rarely takes
more than 100-200 MB (with single precision float-
ing point scalars).

5.2 Warping
After step 3 of our synthesis algorithm, a chosen
patch Pk usually does not fit perfectly Nk. For
color texture synthesis, blending [17], finding an
optimal seam [8, 14], or both methods are applied.
Blending geometries proves much more difficult
than blending colors, however.

Sharf et al. [23] use a method akin to ICP [4, 6],
extended with a non-rigid quadratic warp. This
warp proved not powerful enough for our needs.
Wu and Yu [29] use feature correspondence to warp
the patch with a thin-plate spline interpolation. We
have opted for a similar approach. Using thin-plate
splines involves finding a set of matching pairs of
points from source and target surfaces. Wu and Yu
[29] automatically match points based on proximity
and tangents of features points. Dealing with geom-
etry is more complicated. Most notably, we have to
be careful that neighboring matching pairs do not
cross each other to avoid local surface flips.

Let S = {s1, ..., sm} be the source point-set and
Q = {q1, ..., qn} be the target point-set, n ≤ m.
Let WΦ be the warping function for a given pair-
ing Φ of points. We are looking for a pairing Φ̃
from S to Q that would minimize a shape similarity
metric between the surfaces defined respectively by
WΦ̃(S) and Q.

Finding such a pairing is difficult. We thus ap-
proximate it by minimizing a cost function for a
given pairing Φ as

C(Φ) =
∑

(s,q)∈Φ

[c(s, q) + g(s, q, Φ)] (1)

where c is a cost function evaluating the quality of
a given pair (s, q), s ∈ S, q ∈ Q, and g evaluates
the coherence of (s, q) and its neighbors in Φ.

In our case, we define c as a function of the dis-
tance between two points, the difference of normals,
and the difference in local surface variation [21],



which gives a rough estimate of the local shape. The
importance of each aspect of c may vary from one
geometry texture to another, so they are weighted
with user-defined values as follows:

c(s, q) = ωp‖ps − pq‖2 +
ωn

2
(1 − n

T
s nq)

+ ωv(vs − vq)
2 (2)

where p∗, n∗, and v∗ denote respectively the posi-
tion, normal, and surface variation of a point, and
wp, wn, and wv their respective weights. If any of
the three terms in Equation 2 is above its specific
user-defined threshold, then we set c(s, q) = ∞.
This eliminates bad pairings, such as two points
with opposite normals.

The function g evaluates the difference in length
and direction between a pair (s, q) and all its neigh-
bors. Each aspect is computed and weighted as fol-
lows:

g(s, q, Φ) = ωl

∣

∣‖ps − pq‖ − fl(q, Φ)
∣

∣ +

ωd

2

(

1 − fd(q, Φ)T
ps − pq

‖ps − pq‖

)

where summing for all (t, r) ∈ Φ

fl(q, Φ) =

∑

‖pt − pr‖θ(‖pq − pr‖)
∑

θ(‖pq − pr‖)

fd(q, Φ) =

∑

(pt − pr)θ(‖pq − pr‖)
∥

∥

∑

(pt − pr)θ(‖pq − pr‖)
∥

∥

and where θ is a monotonically decreasing function
(a Gaussian, in our implementation). Weighting is
computed from distances in Q rather than S, sim-
ply because n ≤ m, which makes it more conve-
nient to build pairings by matching elements of Q
to elements of S.

Then, we define the set Υ of all possible pairings

Υ =
{

{(sji
, qi) | i = 1..n and c(sji

, qi) < ∞}
∣

∣ {j1, ..., jn} is a n−permutation

of {1..m}
}

.

The pairing Φ̃ we are looking for is therefore

Φ̃ = arg min
Φ∈Υ

C(Φ). (3)

Solving Equation 3 is a difficult task. We ap-
proximate the solution with an iterated greedy al-

gorithm:
1. Set M = ∅, Φ = ∅.
2. For each q ∈ Q:

2.1. Find s ∈ S such that s /∈ M and c(s, q)
is minimal.

2.2. Set M = M ∪ {s}, Φ = Φ ∪ {(s, q)}.
3. Set M = ∅, Φ̃ = ∅.
4. For each (s, q) ∈ Φ:

4.1. Find s ∈ S such that s /∈ M and c(s, q)+
g(s, q, Φ) is minimal.

4.2. Set M = M ∪ {s}, Φ̃ = Φ̃ ∪ {(s, q)}.
5. Set Φ = Φ̃.
6. Repeat steps 3 to 5 a given number of times.

When the algorithm terminates, the last state of Φ̃
holds our pairing. Φ̃ is then used to solve the thin-
plate spline linear system [25] to obtain our warping
function WΦ̃.

WΦ̃ essentially transforms positions, not nor-
mals. We could simply recompute the normals after
the transformation using the projection operator [2],
but we found the following technique more robust,
albeit computationally more expensive. Assuming
Φ̃ has no crossings, let s ∈ S, s′ = WΦ̃(s), us and
vs be two tangent orthogonal vectors to ns, and J
be the Jacobian matrix of WΦ̃, then

ns′ =
Jus × Jvs

‖Jus × Jvs‖
.

Note that J can be analytically computed.
To fit these equations with the terminology of the

previous sections, we have Q ⊂ Nk and Fk ⊂ S.
Q cannot be the full neighborhood for two rea-
sons: (1) points in the outskirt of Nk are less re-
liable, notably for surface variation, and (2) consid-
ering all points would lead to huge and costly linear
systems to solve, and would also make it difficult
to avoid crossing pairs. We have found that sim-
ply running an adaptive clustering algorithm [21]
in a sub-region of Nk yields a reasonable set Q.
Also, because thin-plate spline interpolation has a
global effect, WΦ̃ may generate deformations that
are too strong in non-overlapping regions of Fk.
To counter this, we add to Φ̃ a few extra pairs of
points mapping to themselves in corner regions of
Fk. For the same reason, we actually have to ex-
tend Fk before warping, to ensure that the regions
inside Bk are fully covered by WΦ̃(Fk). Finally,
we have Fk ⊂ S because some points in the out-
skirt of Q may actually have a better match if we
extend Fk.



(a) (b)

0

1

0 1

(c) (d)

Figure 3: Blending. (a) Nk (light grey) superim-
posed with F ′

k (dark grey). The bump in the cen-
ter shows a remaining mismatch after warping. (b)
The result of blending F ′

k with Nk. (c) Parametric
value of the interpolation as a function of position
inside the region enclosing Nk. The dashed lines
match the boundaries of ONk

k . (d) Difference be-
tween blending with projection (top) and ray inter-
sections (bottom) over a valley.

5.3 Blending

Because the warping from the previous section is
not perfect, gaps may still remain (see Figure 3 (a)
and (b)). However as these gaps should be small, we
can remove them with a simple progressive linear
interpolation from F ′

k to Nk. The interpolation is
actually done between points (with their normal) of
F ′

k and their projection [2] on Nk. The parametric
value varies gradually as illustrated in Figure 3 (c).

A small problem arises with the projection when
the gap occurs over a valley, as it is more likely to
fall on the sides than at the bottom, thus creating
a hole in the sampling of the final result. We can
improve this situation by using a limited form of
ray intersection [1]. We test the intersection of two
rays emanating from the point’s position in the two
directions parallel to the normal. We use the clos-
est intersection. If no intersection is found, we fall
back to regular projection. Figure 3 (d) illustrates
the effect of this method.

6 Results

Our approach inherits the benefits and also some
limitations from both patch-based texture synthesis
and point-set surfaces. This section presents some
of our results, and discusses their particularities.

The first example starts from a color texture used
extensively in texture synthesis, converted into a
height field. Figure 4 shows in the top left corner
the original height field, with its bounding box in
black wire frame, and two views of the synthesized
height field generated at four times the original size.

Figure 5 illustrates the flexibility of our synthe-
sis algorithm to different topology in presence of
holes in the shape as well as smaller surface details.
The patch-based approach gives good results even
for larger generated patterns, as illustrated in Fig-
ure 6.

Figure 7 has inter-weaved and disconnected
threads. The point-set behaves very well here,
and the resulting generated pattern retains well-
connected threads.

Figure 8 shows more disconnected 3D flowers.
The general pattern is well captured by the synthe-
sized flowers, and most individual flowers are ade-
quately reconstructed.

In the previous examples, we applied a relaxation
of the point-sets as a post-processing step to im-
prove local sampling density.

None of our examples exhibit very sharp fea-
tures. This limitation is due to the point-set rep-
resentation. Indeed, compared to mesh-based ap-
proaches [32], a strategy based on or similar to
moving-least squares (in our case: [2]) is not well
suited to deal with sharp features. The point-set sur-
faces also require a high sampling density to disam-
biguate close opposing surfaces. Nevertheless, us-
ing this representation can still cover a wide range
of geometry textures.

None of our original textures are tileable, which
can create difficulties with synthesis techniques.
The warping step helps to counter the problem. We
give in Table 1 some values used for the differ-
ent weights from Section 5.2. All examples have
wp = 1 and about the same base dimensions for
BTin

. Thus, we observe that the larger the fea-
tures relative to the sampling rate (height field), the
more important are the surface variation and normal
terms in Equation 2, while smaller features on sur-
faces require lower weights, but a stronger smooth-



Point-set size Weight values Synthesis time (seconds)
Tin Tout wn wv wl wd Search Warp Blend Other Total

Height field 33194 87101 3 30 9 7 6.7 11.2 10.8 2.0 30.7
Chain mail 71454 197282 1 10 8 6 8.5 7.3 18.4 3.8 38.0
Chain mail (large) 71454 2947085 1 10 8 6 147.5 201.3 316.2 45.8 710.8
Weave 43592 126139 2 15 6 5 5.7 7.7 12.0 2.6 28.0
Flowers 37473 68290 2 2 6 6 11.0 14.9 7.4 2.7 36.0

Table 1: User parameters and computation times. The number of input points corresponds to the total
number of points, including padding geometry (see Section 3). On average, about 40% of the points lie
inside BTin

.

ing with neighboring pairs (chain mail vs. weave).
Surface variation is less important in the presence
of small scale symmetry (flowers).

The computation times in Table 1 were obtained
on a 2.2 GHz AMD Athlon 64 processor. The gen-
erated textures have about four times the number of
original points, except for the large chain mail. Pre-
computations on D(Tin) and on the surface varia-
tion of Tin take less than 10 seconds.

One can observe that our synthesis algorithm
is much faster than volumetric approaches [15, 5]
(they report hours of processing time). Under sim-
ilar conditions (planar generation examples), Zhou
et al. [32] report times of about three minutes. In
our case, we seldom exceed one minute.

Many factors affect synthesis time. The most
influential is the number of points in Tin. Next
comes the number of matching pairs for warping.
The size of the thin-plate spline linear system to
solve is directly proportional to this number, as is
the evaluation of the warping function. The resolu-
tion of D(Tin) is another important factor, affecting
search, although in all our examples, we used rela-
tively low resolutions, between 51×51×12 (weave)
and 84 × 68 × 15 (flowers).

7 Conclusion and Future Work

We have presented a patch-based synthesis algo-
rithm that generates geometry textures using a
point-set representation. Pairing, evaluating simi-
larity, pasting, warping, and blending point-sets al-
low for efficient quality generation, while avoiding
the issue of connectivity. The flexibility of the ap-
proach is illustrated over a number of different 3D
geometric patterns. Mesh-quilting [32] also shares
a similar flexibility. However, our method offers an

alternative to handle scanned data without the need
of conversion to mesh. Simple structures of point-
sets also allow fast processing times.

The thin-plate spline interpolation requires qual-
ity pairing to yield good results. Finding such a
pairing can be sometimes sensitive to the various
weights. An in-depth investigation of pairing with
different types of geometry should help to produce
better results. A higher level surface characteriza-
tion should allow to provide such insight.

Even though generation has been shown only
over a planar surface, extensions to general 3D sur-
faces appear reasonably simple and promising, both
in memory and processing requirements. This will
be our next step. We will also investigate how this
method behaves for repairing 3D models. Finally,
we will apply our method to more sophisticated
geometry synthesis, for instance in generating ter-
rains, road maps, and entire environments.

References

[1] A. Adamson and M. Alexa. Approximat-
ing and intersecting surfaces from points. In
Eurographics Symp. on Geometry Processing,
2003, 230–239

[2] A. Adamson and M. Alexa. On normals and
projection operators for surfaces defined by
point sets. In Eurographics Symp. on Point-
Based Graphics, 2004, 149–156

[3] S. Arya, D.M. Mount, N.S. Netanyahu, R. Sil-
verman, and A.Y. Wu. An optimal algorithm
for approximate nearest neighbor searching
fixed dimensions. Journal of the ACM,
45(6):891–923, 1998

[4] P.J. Besl and N.D. McKay. A method for
registration of 3-D shapes. IEEE Trans. on



Pattern Analysis and Machine Intelligence,
14(2):239–256, 1992

[5] P. Bhat, S. Ingram, and G. Turk. Geometric
texture synthesis by example. In Eurographics
Symp. on Geometry Processing, 2004, 43–46

[6] Y. Chen and G. Medioni. Object modelling
by registration of multiple range images. Intl.
Journal of Computer Vision and Image Under-
standing, 10(3):145–155, 1992

[7] M.F. Cohen, J. Shade, S. Hiller, and O.
Deussen. Wang tiles for image and tex-
ture generation. ACM Trans. on Graphics,
22(3):287–294, 2003

[8] A.A. Efros and W.T. Freeman. Image quilt-
ing for texture synthesis and transfer. In ACM
SIGGRAPH 2001, 341–346

[9] T. Funkhouser, M. Kazhdan, P. Shilane, P.
Min, W. Kiefer, A. Tal, S. Rusinkiewicz, and
D. Dobkin. Modeling by example. ACM
Trans. on Graphics, 23(3):652–663, 2004

[10] A. Gersho and R.M. Gray. Vector Quantiza-
tion and Signal Compression. Kluwer Aca-
demic Publishers, 1991

[11] A. Hertzmann, C.E. Jacobs, N. Oliver, B. Cur-
less, and D.H. Salesin. Image analogies. In
ACM SIGGRAPH 2001, 327–340

[12] L. Kobbelt and M. Botsch. A survey of point-
based techniques in computer graphics. Com-
puters & Graphics, 28(6):801–814, 2004

[13] V. Kwatra. Example-based Rendering of Tex-
tural Phenomena. PhD thesis, Georgia Insti-
tute of Technology, 2005

[14] V. Kwatra, A. Schödl, I. Essa, G. Turk, and A.
Bobick. Graphcut textures: Image and video
synthesis using graph cuts. ACM Trans. on
Graphics, 22(3):277–286, 2003

[15] A. Lagae, O. Dumont, and P. Dutré. Geome-
try synthesis by example. In Shape Modeling
International, 2005, 176–185

[16] Y. Lai, S. Hu, D.X. Gu, and R.R. Martin. Ge-
ometric texture synthesis and transfer via ge-
ometry images. In ACM Symp. on Solid and
Physical Modeling, 2005, 15–26

[17] L. Liang, C. Liu, Y. Xu, B. Guo, and H.
Shum. Real-time texture synthesis by patch-
based sampling. ACM Trans. on Graphics,
20(3):127–150, 2001

[18] A. Nealen. Hybrid texture synthesis. Mas-
ter’s thesis, Technische Universität Darmstadt,
2003

[19] M.X. Nguyen, X. Yuan, and B. Chen. Geom-
etry completion and detail generation by tex-
ture synthesis. The Visual Computer, 21(8–
10):669–678, 2005

[20] S. Park, X. Guo, H. Shin, and H. Qin. Shape
and appearance repair for incomplete point
surfaces. In IEEE Int. Conf. on Computer Vi-
sion, 2005, 1260–1267

[21] M. Pauly, M. Gross, and L. Kobbelt. Efficient
simplification of point-sampled surfaces. In
IEEE Visualization, 2002, 163–170

[22] M. Pauly, N.J. Mitra, J. Giesen, M. Gross, and
L.J. Guibas. Example-based 3D scan com-
pletion. In Eurographics Symp. on Geometry
Processing, 2005, 23–32

[23] A. Sharf, M. Alexa, and D. Cohen-Or.
Context-based surface completion. ACM
Trans. on Graphics, 23(3):878–887, 2004

[24] P.J. Sloan, C.F. Rose, and M.F. Cohen. Shape
by example. In Symp. on Interactive 3D
Graphics, 2001, 135–143

[25] G. Wahba. Spline Models for Observational
Data, volume 59 of CBMS - NSF Regional
Conference Series in Applied Mathematics.
Society for Industrial and Applied Mathemat-
ics, 1990

[26] X. Wang, X. Tong, S. Lin, S. Hu, B. Guo, and
H. Shum. Generalized displacement maps. In
Eurographics Workshop on Rendering, 2004,
227–233

[27] L. Wei and M. Levoy. Fast texture synthesis
using tree-structured vector quantization. In
ACM SIGGRAPH 2000, 479–488

[28] L. Wei and M. Levoy. Texture synthesis over
arbitrary manifold surfaces. In ACM SIG-
GRAPH 2001, 355–360

[29] Q. Wu and Y. Yu. Feature matching and de-
formation for texture synthesis. ACM Trans.
on Graphics, 23(3):364–367, 2004

[30] L. Ying, A. Hertzmann, H. Biermann, and D.
Zorin. Texture and shape synthesis on sur-
faces. In Eurographics Workshop on Render-
ing, 2001, 301–312

[31] S. Zelinka and M. Garland. Surfacing by num-
bers. In Graphics Interface, 2006, 107–113

[32] K. Zhou, X. Huang, X. Wang, Y. Tong, M.
Desbrun, B. Guo, and H. Shum. Mesh quilting
for geometric texture synthesis. ACM Trans.
on Graphics, 25(3):690–697, 2006



Figure 4: Original and synthesized height field. Figure 7: Original and synthesized weaving pattern.

Figure 5: Original and synthesized chain mail with
small bumps.

Figure 8: Original and synthesized flowers.

Figure 6: Chain mail generated over a larger area.


