Multiresolution Point-set Surfaces

François Duranleau Philippe Beaudoin Pierre Poulin

Dép. d'informatique et de recherche opérationnelle

Université de Montréal

GI 2008

Introduction

Outline

1 Introduction

3 Synthesis

4 Results

5 Conclusion & Future Work

Point-set Surfaces and Surface Editing

- Point-set surfaces are becoming popular for shape modeling
- Surface editing in the presence of fine geometric details can be problematic
- Multiresolution representations for meshes are well known
- Interest for multiresolution representation for point-set surfaces

Introduction

Decomposition

Introduction

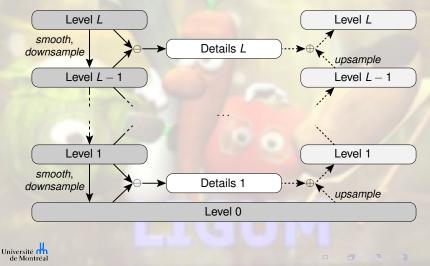
Surface Editing

Overview

6

Analysis

Synthesis



Previous Work

Multiresolution meshes

[Eck+ 95] [Lounsbery+ 97] [Zorin+ 97] [Kobbelt+ 98] [Guskov+ 99] [Lee+ 00] [Guskov+ 00] [Hubeli-Gross 01] ...

 "Multiresolution" for points: mostly hierarchical structures geared for rendering
 [Pfister+ 00] [Rusinkiewicz+ 00] [Botsch+ 02]
 [Pajarola 03] [Park+ 04] [Pajarola+ 05] [Wu+ 05] ...

Introduction

Previous Work

Progressive point-set surfaces
 [Fleishman+ 03] [Singh-Narayanna 06]

- Triangle fans
 [Linsen-Prautzsch 03]
- Multiscale point-set surfaces
 [Pauly+ 06] [Zhang+ 05]

Previous Work

- Progressive point-set surfaces
 [Fleishman+ 03] [Singh-Narayanna 06]
- Triangle fans
 [Linsen-Prautzsch 03]
- Multiscale point-set surfaces
 [Pauly+ 06] [Zhang+ 05] + [Boubekeur+ 07]

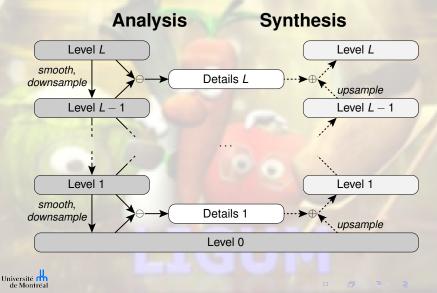
Outline

1 Introduction

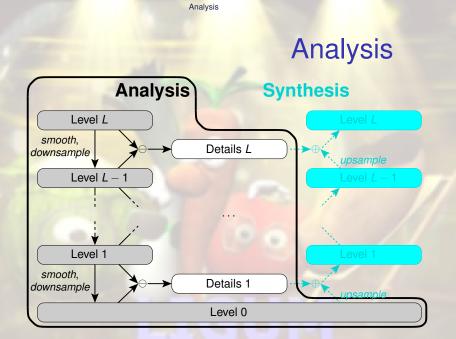


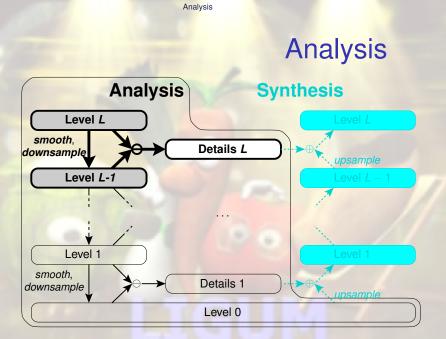
3 Synthesis

5 Conclusion & Future Work

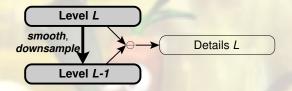


9

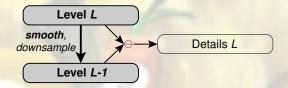




Université de Montréal

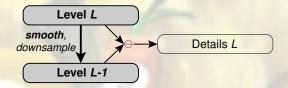


Coarser Level Generation

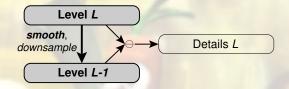


MLS surfaces ⇒ smoothing by MLS projection

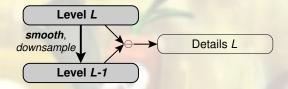
10



- MLS surfaces ⇒ smoothing by MLS projection
- Downsample point set before projection

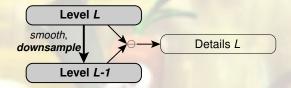


- MLS surfaces ⇒ smoothing by MLS projection
- Downsample point set before projection
- Similar to [Pauly+ 06], but constant downsampling factor

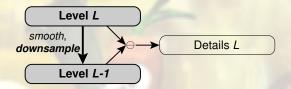


- MLS surfaces ⇒ smoothing by MLS projection
- Downsample point set before projection
- Similar to [Pauly+ 06], but constant downsampling factor

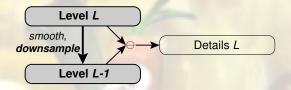
Coarser Level Generation



Downsampling: same as smoothing

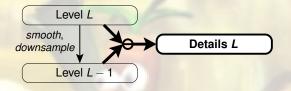


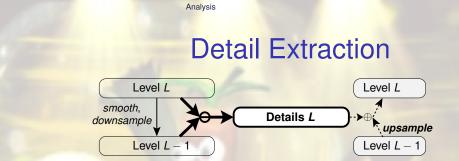
- Downsampling: same as smoothing
- However:



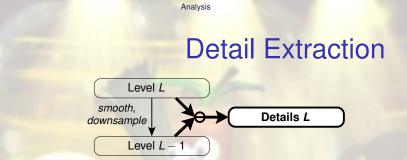
- Downsampling: same as smoothing
- However:
- Add extra refinement step using heuristics based on k-neighborhood analysis

Detail Extraction

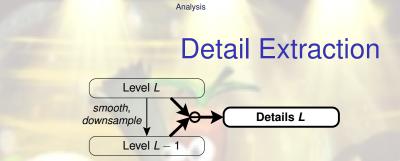




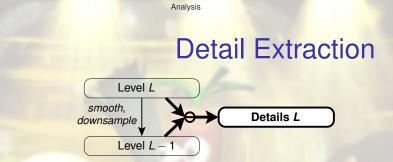
 Main difficulty: represent detail information coherently with upsampling procedure



- Main difficulty: represent detail information coherently with upsampling procedure
- Meshes profit from explicit connectivity information



- Main difficulty: represent detail information coherently with upsampling procedure
- Meshes profit from explicit connectivity information
- [Linsen-Prautzsch 03]: store full k-neighborhood



- Main difficulty: represent detail information coherently with upsampling procedure
- Meshes profit from explicit connectivity information
- [Linsen-Prautzsch 03]: store full k-neighborhood
- Intrinsic reformulation [Boubekeur+ 07]

Extraction Procedure

Level L - 1

12

Extraction Procedure

Point from level L

Extraction Procedure

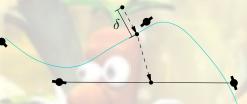
• Project on level L - 1 δ = geometric detail information

Extraction Procedure

Project on level L – 1 Find a *surrounding* triangle

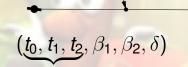
Extraction Procedure

Extraction Procedure

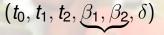


 $(t_0, t_1, t_2, \beta_1, \beta_2, \delta)$

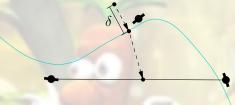
Extraction Procedure



Extraction Procedure

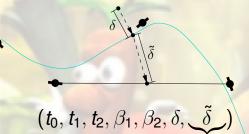


Extraction Procedure



 $(t_0, t_1, t_2, \beta_1, \beta_2, \delta)$

Extraction Procedure



Triangle selection

Triangle selection

Triangle selection

I2

 2π

 t_0^{\odot}

Triangle selection

 $\odot t_1$

t₀

 $>\pi$

Ó

 t_1

Triangle selection

*t*₂ ●

Reformulation

• Find a point **r** on the triangle such that $\mathbf{q} = \mathbf{r} + \tilde{\delta}\mathbf{n}(\mathbf{r})$ for some $\tilde{\delta}$ $(\mathbf{n}(\mathbf{r}) = \mathbf{n}\mathbf{o}\mathbf{r}$ mal estimation at **r**)

Reformulation

Find a point r on the triangle such that q = r + δn(r) for some δ
Iterative procedure (gory details in the paper)

Reformulation

- Find a point **r** on the triangle such that $\mathbf{q} = \mathbf{r} + \tilde{\delta}\mathbf{n}(\mathbf{r})$ for some $\tilde{\delta}$
- Iterative procedure
- β_1, β_2 computed from **r**

de Montréal

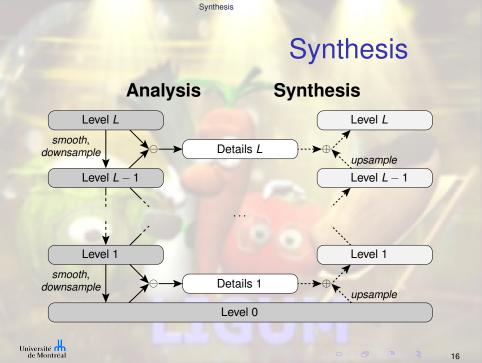
Synthesis

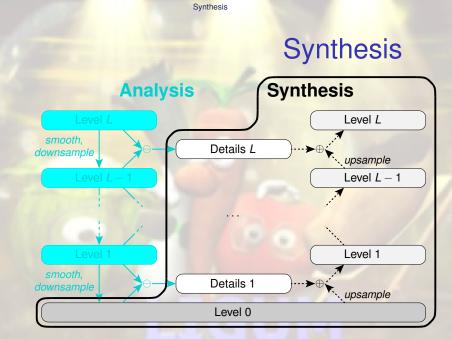
Outline

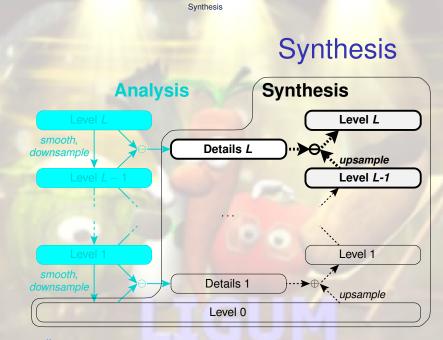
1) Introduction

3 Synthesis

5 Conclusion & Future Work







Université de Montréal

$(t_0, t_1, t_2, \beta_1, \beta_2, \delta)$

 $(\underline{t}_0, \underline{t}_1, \underline{t}_2, \beta_1, \beta_2, \delta)$

Compute base position

$(t_0, t_1, t_2, \beta_1, \beta_2, \delta)$

Compute base position Estimate normal direction at base position

$(t_0, t_1, t_2, \beta_1, \beta_2, \delta)$

- Compute base position
- 2 Estimate normal direction at base position
- Intersect ray with surface (simplification of [Adamson-Alexa 04])

Université de Montréal Synthesis

Synthesis Procedure

 $(t_0, t_1, t_2, \beta_1, \beta_2, \delta, \delta)$

 Compute base position
 Estimate normal direction at base position
 Intersect ray with surface (fast estimation with δ)

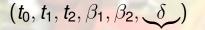
$(t_0, t_1, t_2, \beta_1, \beta_2, \delta)$

- Compute base position
- 2 Estimate normal direction at base position
- Intersect ray with surface

Estimate normal direction at intersection

Synthesis

Synthesis Procedure



2 Estimate normal direction at base position
3 Intersect ray with surface
4 Estimate normal direction at intersection
6 Displace by δ

de Montréa

17

Synthesis

Synthesis Procedure

$(t_0, t_1, t_2, \beta_1, \beta_2, \frac{\delta}{\Delta})$

- 2 Estimate normal direction at base position
- Intersect ray with surface

de Montréa

4 Estimate normal direction at intersection
 6 Displace by δ' = ^δ/_Δ Δ' [Boubekeur+ 07]

Outline

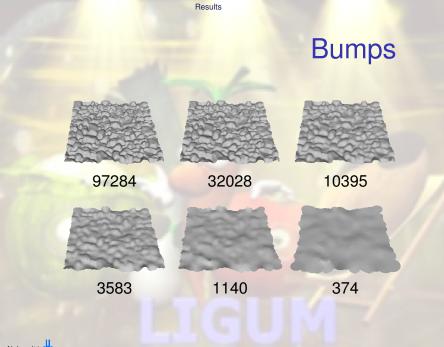
1 Introduction

2 Analysis

3 Synthesis

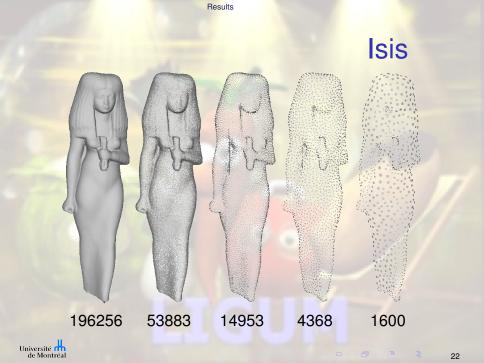
4 Results

5 Conclusion & Future Work



Université de Montréal

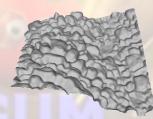
21



Statistics

	Analysis	Synthesis	RMS error
Igea	27.4 / 60.1	7.6 / 12.2	2.64×10^{-4}
Armadillo	137.4 /	9.5 /	9.5×10 ⁻⁵
Bumps	17.9 / 36.7	5.0 / 6.1	4.90×10^{-4}
Isis	39.9 / 67.3	10.5 / 14.4	1.75×10^{-4}

Deformation



Detail Emphasis

Outline

1 Introduction

2 Analysis

5 Conclusion & Future Work

Conclusion

- Point-set surfaces are flexible with simple data structures
- No connectivity information can be a pain
- Multiresolution point-set surfaces
 - Verify special conditions when downsampling
 - Detail information with partial topology information

Conclusion

- Point-set surfaces are flexible with simple data structures
- No connectivity information can be a pain
- Multiresolution point-set surfaces
 - Verify special conditions when downsampling
 - Detail information with partial topology information
- Faster processing for editing (coarser levels), but synthesis time prevents full interactivity.

Conclusion

- Point-set surfaces are flexible with simple data structures
- No connectivity information can be a pain
- Multiresolution point-set surfaces
 - Verify special conditions when downsampling
 - Detail information with partial topology information
- Faster processing for editing (coarser levels), but synthesis time prevents full interactivity. But...

Future Work

• ... there is hope:

- Adaptive multiresolution [Zorin+ 97]
- Highly parallelizable operations (multi-core CPUs, GPU)
- Room for improvement of heuristics' robustness
- Compression

Future Work

• ... there is hope:

- Adaptive multiresolution [Zorin+ 97]
- Highly parallelizable operations (multi-core CPUs, GPU)
- Room for improvement of heuristics' robustness
- Compression
- Wavelets?

Acknowledgements

Di Jiang

 This work was supported in parts by grants from NSERC, FQRNT, and MITACS.

