
Multiresolution Point-set Surfaces

François Duranleau∗ Philippe Beaudoin Pierre Poulin

LIGUM, Dép. d’informatique et de recherche opérationnelle
Université de Montréal

ABSTRACT

Multiresolution representations of 3D surfaces make it possible to
concentrate the efforts of a modification at the appropriate level
of detail. This paper introduces a multiresolution representation
for point-set surfaces. At each level, the point set is smoothed
and downsampled, and the geometric details are encoded along the
smoothed surface normal. The resulting structure is only slightly
larger than the original point set and allows to reconstruct it pre-
cisely. We demonstrate how it can be used for surface deformation
and for frequency band scaling.

Keywords: Multiresolution surface representations, point-
sampled geometry, shape modeling, deformation.

Index Terms: I.3.5 [Computer Graphics]: Computational Geom-
etry and Object Modeling—Curve, surface, solid, and object repre-
sentations

1 INTRODUCTION

Representing 3D surfaces as point sets has gained popularity in
many applications. This popularity can be explained by the sim-
plicity, flexibility, and efficiency of such a representation. In fact,
numerous techniques have already been proposed to adapt point-set
surfaces for efficient rendering, modeling, and animation [20, 13].

A well-studied alternative approach to 3D surface representa-
tions lies in mesh-based structures, for which multiresolution tech-
niques have already been proposed. Compared to static fine-grained
meshes, these multiresolution representations offer the key benefit
to select level of detail for editing the shape, allowing for detail-
preserving surface deformations, and speeding up detail-preserving
global manipulations.

Although we expect that similar benefits could be gained by us-
ing a multiresolution representation of point sets, it is difficult to
lift results from mesh-related research and apply them to point-set
surfaces. This is mainly because multiresolution meshes rely heav-
ily on the connectivity information available within the structure.
However, the fact that this information is not needed is one of the
desirable characteristics of point sets. Multiresolution point sets
must therefore be built solely upon positions and take into account
that point positions can change relative to one another during a ma-
nipulation process.

This paper proposes a multiresolution representation of point-set
surfaces that does not require the introduction of a global connec-
tivity information. We focus on reconstructing the original point
set, not a resampled version of it. Our representation works well
even for point sets that contain fine shapes, such as thin fingers on
an otherwise large character or small bumps on a surface. Finally,
as opposed to previous work in the field [38, 48], the coarsest levels
are downsampled point sets such that the size of the final structure
is slightly larger than the original point set (roughly 133% the orig-
inal size). To demonstrate the benefits of such a representation, we

∗e-mail: { duranlef, beaudoin, poulin } @iro.umontreal.ca

⊖ ⊕

⊖ ⊕
smooth,

downsample

smooth

downsample

Level 1Level 1

Level LLevel L

Level L−1Level L−1

Level 0

Details L

. . .

Details 1

Analysis Synthesis

Figure 1: Multiresolution as a series of analysis-synthesis steps.

explore various manipulations that are made more efficient by the
proposed representation.

1.1 Overview

In its broadest sense, multiresolution surfaces can be seen as the
combination of an analysis and a synthesis process. The goal of a
single analysis step is to generate a coarser surface while extract-
ing and storing the lost details relative to this new surface. Multi-
ple analysis steps can be applied until a coarse enough approxima-
tion, the lowest level surface, is obtained. Starting from the lowest
level we can iteratively synthesize finer surfaces by reapplying the
details. A well-chosen representation for extracted details should
make it possible to modify a lower level and see this modification
propagate up towards the detailed surfaces.

The multiresolution point sets introduced in this paper follow

the overview schematized in Figure 1. Let Pl be the point set at the

resolution level l. To generate a coarser level, i.e., a point set Pl−1,
we first smooth the point set and then downsample it to reduce the
number of points. This downsampling does not introduce sampling
artifacts because high frequencies are previously removed by the
smoothing step.

Each point of Pl is then stored relative to the surface of Pl−1

first by projecting it on that surface. This projected point is refor-

mulated relative to the lower level point set Pl−1, similarly to the
method of Boubekeur et al. [10], so that a modification to this level
correctly propagates up. Finally, for each point of Pl , we store its
displacement over the coarser surface in normal direction plus the
information required for the reformulation of its projection.

From a given level l −1, synthesis of a point at level l proceeds
by first reconstructing the associated point on the coarse surface,
computing the normal and applying the displacement value along
this direction.

This paper is organized as follows. We begin in Section 2 by
reviewing previous work in the fields of mesh-based multiresolu-
tion surfaces and multiresolution point-based representations. We
then go through the details of the proposed surface analysis scheme
(Section 4), followed by the synthesis scheme (Section 5). Results
are then presented and discussed in Section 6. Finally, we conclude
the paper and suggest directions for future research.

2 PREVIOUS WORK

2.1 Mesh-based Multiresolution Surfaces

Multiresolution techniques have been largely used in the domain
of subdivision surfaces due to the intrinsic hierarchical property of
the subdivision procedure [11, 30, 49]. Two types of multiresolu-
tion techniques are commonly used to encode the difference from
one level to another. One type subsamples the detail vertices and
only records a detail per odd vertex, which is similar to the wavelet
transform. The other type encodes the detail vectors over all the
vertices. Depending on the goal of the multiresolution representa-
tion construction, i.e., a coarser approximation or a smoother ap-
proximation of the original geometry, two different techniques are
presented by Kobbelt et al. [21] for constructing the multiresolution
hierarchy from arbitrary triangle meshes. Hubeli and Gross [19]
have generalized these ideas to non-manifold meshes.

Other techniques are based on displacement over a smooth sub-
division surface [24] or on a sequence of displacements in normal
directions of successive levels [18].

Multiresolution techniques contain a wide class of applications,
e.g., polyhedral compression, continuous level-of-detail control,
compression of a function defined on surfaces, multiresolution edit-
ing of surfaces and surface optimization [30], as well as signal pro-
cessing [17].

2.2 Point-based Multiresolution Representations

The notion of multiresolution in point-based geometry has often
been used to actually describe hierarchical structures, mostly for
rendering purposes, e.g., [39, 41, 8, 32, 34, 33, 44]. In our case, we
use the term multiresolution in the same sense as in multiresolution
meshes to describe surfaces that can be edited at different levels of
scale.

Among these hierarchical structures, the bounding sphere hier-
archy of QSplat [41] (and all follow-up work) comes a little closer
to our notion, as it encodes points in a sphere relative to its center,
but it is not locally independent of rotation or scale and so does not
allow for manipulation at a coarse level.

Progressive point-set surfaces [12, 42] are closer in spirit to our
notion of multiresolution, but they still lack the possibility to edit
the surface at lower resolution levels, mostly due to either a depen-
dence on implicit k-neighborhoods during synthesis [12], or detail
encoding that is not independent of rotation and scaling [42].

The fan-based representation of Linsen and Prautzsch [27],
which is also a progressive technique, allows for a multiresolution
representation in our sense. They propose to store, for each point,
a one-ring neighborhood with a minimal relative angle criterion.
When reducing the point set, they basically replace a point with the
difference between itself and its neighborhood’s centroid. Synthe-
sis simply reverses the operation.

Multiscale point-set surface representations [38, 48] also corre-
spond to our notion of multiresolution surfaces. These techniques
represent a surface by a series of smoother and smoother point sets,
although each level contains as many points as the original set.
This mimics the mesh-smoothing-based decomposition of Kobbelt
et al. [21]. Our technique extends this representation by allowing
the number of points to also be reduced.

3 PRELIMINARIES

In this section, we present some concepts and notations that will be
used throughout the paper.

Moving-least-squares (MLS) surfaces have been introduced
by Levin [25, 26] and popularized in computer graphics by
Alexa et al. [6]. Since then, many variants have been pro-
posed [5, 7, 22, 40, 3, 2, 46, 16, 28, 29, 4]. Our multiresolution
representation does not depend on a particular variant, as long as
an orthogonal (or quasi-orthogonal) projection operator to bring a

point on the surface exists. In our implementation, we use the vari-
ant of Alexa and Adamson [5], which we briefly describe in this
section.

Given a finite point set P ⊂ R
3 and a point x ∈ R

3, we note as
NP(x) ⊂ P the set of the k nearest neighbors of x in P. Let pi ∈ P
denote the ith point of P. Then, following Alexa and Adamson [5],
a normal estimation at x over P, noted as a vector valued function
nP(x), can be computed as the direction of smallest weighted co-
variance of P in x, i.e., the eigenvector of smallest eigenvalue of

∑i
(x−pi)(x−pi)

Tφ(‖x−pi‖) (1)

where φ is a positive monotonous decreasing function (typically a
Gaussian). Alternately, if for each pi ∈ P a normal ni is provided,
we can define nP(x) as the weighted average of all normals, that is

nP(x) =
∑i φ(‖x−pi‖)ni

‖∑i φ(‖x−pi‖)ni‖
. (2)

If the given normals are reliable, this is more robust than using co-
variance analysis as it is less sensitive to point distribution.

The point set P defines an implicit surface SP as follows:

SP =
{

x ∈ R
3

∣

∣

∣
nP(x)T

(

x−aP(x)
)

= 0
}

where

aP(x) =
∑i φ(‖x−pi‖)pi

∑i φ(‖x−pi‖)
(3)

is the weighted centroid around x.
We use adaptive weighting as described by Pauly et al. [37], that

is, φ(d) = e−d2/h2
x , where hx is one third the distance between x and

the farthest point in NP(x). Thus the summation index i in Equa-
tions (1)-(3) is taken among the indices of each point of NP(x).

An import aspect of MLS surfaces is the existence of a projec-
tion operator ΨP(x) that takes a point x close to SP and projects
it onto SP. It can be implemented as an iterative process that re-
peatedly projects x onto the plane passing by aP(x) perpendicular
to nP(x). An “almost” orthogonal variant always projects x of the
first iteration.

4 ANALYSIS

Analysis, or decomposition, consists of decomposing a point set Pl

at a resolution level l into a smoother, coarser point set and corre-
sponding geometric details. It can be formulated as follows:

Pl−1 = Λ
(

Φ
(

Pl
)

)

(4)

Dl = Pl ⊖Pl−1 (5)

where Φ is a smoothing operator, Λ is a downsampling operator,
and ⊖ extracts the higher frequency detail values. Details essen-

tially comprise displacement values of each point of Pl over SPl−1

plus some partial topological information to locate their projection

on SPl−1 . Note that in our representation, |Pl |= |Dl |. The full anal-
ysis for L levels repeats this decomposition for l = L,L− 1, . . . ,1,
where PL is the most detailed point set.

4.1 Generating the Coarser Level

The smoother, downsampled coarser point set Pl−1 is computed in
two stages: a smoothing operator Φ first reduces the high frequen-

cies in the point set Pl , then a downsampling operator Λ computes
a reduced point set representative of the smoother point set.

As Pauly et al. [38] and Zhang et al. [48], we construct a mul-
tiresolution MLS surface. Thus, a natural choice for Φ is the MLS
projection operator ΨPl . However, in their case, the number of
points is constant for all levels. So, in order to reduce computa-
tion times, they fix the size of k-neighborhoods for all levels and

x
N (x)

xN (x)

(a) (b)

Figure 2: Typical 6-neighborhoods around a point x, that are prob-
lematic for computing n(x) or for downsampling. Points with normals
are represented as short segments.

they downsample Pl by an increasing factor, which enlarges the
smoothing kernel. In our case, the number of points decreases, thus
basically, no downsampling is required. However, to obtain a sig-
nificant smoothing between levels, we would still have to choose

a large value for k. Consequently, we also downsample Pl prior
to smoothing, but by a constant factor for all levels. This leads to a
trivial choice for Λ, that is, the same downsampling operator, which
ensures that the downsampling rate is coherent with the smoothing
operation. It is better to downsample the smoothed point set in-
stead of taking the downsampled point set used for smoothing as it
reduces sampling artifacts [38].

It is important to note that the core of our method (detail extrac-
tion in Section 4.2) does not depend on a particular smoothing or
downsampling technique, and we could use a variety of such tech-
niques for smoothing, e.g., [36, 23, 48, 38, 45, 31] or downsam-
pling, e.g., [37, 12, 27, 9, 42, 47, 43]. However, since we rely on
MLS projection and estimation of normal directions during detail
extraction, some care must be taken when downsampling. Figure 2
illustrates the problem: for any given k-neighborhood around a
point x, the neighbors should fall on a local patch of surface around
x. This means that, with no explicit topology, point sets cannot be
uniformly downsampled without risking collapses. For instance, in
Figure 2(a), two opposing pieces of a surface could collapse into a
line.

In our current implementation, the downsampling operator Λ
uses a hierarchical clustering method [37], which has the advan-
tage of offering an intuitive control on the downsampling rate by
specifying a target cluster size. However, some modifications were
necessary to take into account the condition on k-neighborhoods.
Pauly et al. [37] suggest an adaptive clustering technique based on
the notion of surface variation, which is based on covariance anal-
ysis on clusters’ content. This is useful only if the clusters have a
significant size. In our case, we typically downsample by a factor
of 4 or 5, which can be roughly obtained by setting similar clus-
ter sizes. At this scale, covariance analysis is unreliable. Also, the
k-neighborhood condition should be fulfilled in the resulting point
set, so analysing the content of clusters does not really help.

We thus implemented an additional refinement step. Clustering
is first run as usual. Let C be the set of computed clusters, c̄i be the
centroid of the ith cluster, noted Ci, and n̆i its normal, computed as
the normalized average of all normals associated to each point in Ci.

Let also C̄ = {c̄i}
|C|−1
i=0 , i.e., the set of all cluster centroids. Then for

each c̄i, we check if NC̄(c̄i) satisfies the condition given in the next
paragraph. If the condition is not satisfied, we tag Ci to be split,
unless |Ci| = 1. After all clusters are checked, we split all tagged
clusters, following the hierarchical clustering partitioning [37]. We
repeat this process until no clusters need to be split, and the final C̄
corresponds to the resulting point set.

To test the condition, we verify that NC̄(c̄i) satisfies the follow-
ing:

min
c̄ j∈NC̄(c̄i)

n̆ j
Tn̆i > τ or

λ0

λ1
< ν

where τ is the tolerance on normal deviation in a k-neighborhood,

p
l−1
t0

p
l

i

p
l−1
t1

δ̃

δ

r

q

Figure 3: Detail extraction. A point pl
i ∈ Pl is pro-

jected on SPl−1 (short segments represent points in
Pl−1), giving point q and resulting in the geometric
detail value δ . Then q is reformulated on a base
triangle (illustrated here as the segment (pl−1

t1
−pl−1

t0
)) as r+ δ̃n(r).

λ0 < λ1 are the two smallest eigenvalues of the weighted covari-
ance matrix of Equation (1), and ν is essentially a threshold on the
neighborhood’s “sharpness”. This is akin to the surface variation of
Pauly et al. [37], but tends to better catch sampling problems in thin
creases.

4.2 Detail Extraction

Once the coarser level is generated (Section 4.1), we have both

point sets Pl and Pl−1. The corresponding details are noted as

Dl = Pl ⊖Pl−1, which roughly represents the frequency band of
geometric details [48, 38].

Our main problem is to coherently compute and store Dl with the
points produced by the upsampling operator during synthesis (Sec-
tion 5), that is, there must be a one-to-one matching correspondence

between them, whether or not Pl−1 has been deformed. This is not
a problem with meshes because the topological information is ex-
plicit. Point sets have an implicit, or geometry-dependent, topology.

Thus, if Pl−1 is modified, neighborhoods change, and any upsam-
pling operation based on implicit neighborhoods [6, 12, 14, 15, 31]

has no guarantee to reproduce a point set Pl such that |Pl | = |Dl |,

with a clear correspondence between detail elements in Dl and

points in Pl . Therefore, we have to store some form of topologi-
cal information together with the details.

Similarly to Linsen and Prautzsch [27], we could handle this

problem by explicitly storing the full k-neighborhood in Pl−1 of

a given point in Pl , and the corresponding detail value would be the
difference vector between the point and the neighborhood’s cen-
troid. This requires k indices and three scalars for each element of

Dl . However, as we will see, we can do better based on an intrinsic
reformulation similar to that of Boubekeur et al. [10].

Detail extraction basically consists of two steps. First, geomet-
ric detail information is computed by taking the difference between
SPl and SPl−1 . This difference can be expressed as displacement

of each point of Pl over SPl−1 , which is computed using ΨPl−1 . Let

Q be the point set resulting in the projection of all points of Pl on
SPl−1 . The second step consists in reformulating each point of Q

intrinsically in Pl−1 to be able not only to reconstruct Q during syn-
thesis, but also a deformed version in accordance to a deformation
of Pl−1.

More specifically, for each point pl
i ∈ Pl , we compute its corre-

sponding detail information dl
i using the following steps:

1. Compute the projection q of pl
i on SPl−1 . The geometric de-

tail value δ is the signed distance (according to the surface’s
orientation) between them.

2. Find a set of three points {pl−1
t0

,pl−1
t1

,pl−1
t2

} ⊂ Pl−1 forming
a triangle T that encloses q.

(a) (b)

p
l−1
t1

p
l−1
t2

p
l−1
t0

θ

2π−θ

2
> π

p
l−1
t1

p
l−1
t0

p
l−1
t2

(c) (d)

Figure 4: Base triangle selection around q (hollow dot in the center,
or left in (d)). (a) Initial candidates without one point considered too
close. (b) Conversion into a BSP-neighborhood. (c) Selection of
{pl−1

t0
,pl−1

t1
,pl−1

t2
}. (d) Boundary case.

3. Find a point r on T ’s supporting plane using a special non-
orthogonal projection and compute its barycentric coordinates
(β0,β1,β2) in T .

4. Set

dl
i = (t0, t1, t2,β1,β2,δ). (6)

There is no need to store all three barycentric coordinates be-
cause β0 = 1 − β1 − β2 (the choice of which two we keep
is completely arbitrary). Optionally, a seventh value can be

added to the tuple dl
i : δ̃ , the signed distance between q and r.

Also, instead of storing δ , we can store δ/∆T , where ∆T is
the area of T . Reasons and explanations for these options are
provided in Section 5.

Finally, Dl =
{

dl
i

}|Pl |−1

i=0
. Figure 3 illustrates the detail information

we extract. Steps 1, 2, and 3 are further explained in the follow-
ing sections. Note that for all operators and functions described
in Section 3 and used afterwards, the point set on which they are

computed is always Pl−1. Thus, we omit the point set in subscript,

which is implicitly understood to be Pl−1.

4.2.1 Geometric Detail Value

The fundamental information of geometric detail is the displace-

ment of points of Pl over SPl−1 . For a point pl
i ∈ Pl , the geometric

detail value δ is computed as follows:

δ = n(q)T
(

pl
i −q

)

where q = Ψ(pl
i). Ideally, for δ to really represent a displace-

ment value, Ψ should compute an orthogonal projection. Alexa
and Adamson [5] did present such a projection operator. However,
in practice, we can rely on their “almost” orthogonal variant briefly
described in Section 3. It is faster and, according to our experience,
the loss of precision is not significant enough.

4.2.2 Base Triangle Selection

After the computation of δ , we have in hand point q. The next

step is to reformulate q intrinsically in Pl−1. Boubekeur et al. [10]
proposed a method that expresses a point in terms of barycentric
coordinates in a triangle formed by three neighbors. The point and

the triangle are projected on a locally fitted plane prior to compute
the barycentric coordinates. We use a similar idea, however several
modifications were required to fit our needs.

The basic idea is to find a set of three points {pl−1
t0

,pl−1
t1

,pl−1
t2

}⊂

Pl−1 that forms a triangle T that encloses q, and then to reformu-
late q in terms of barycentric coordinates (β0,β1,β2) in T of its
projection on T ’s supporting plane, i.e.

q = δ̃nT +
2

∑
j=0

β jp
l−1
t j

(7)

where nT is T ’s normal and δ̃ is the displacement of q over T .
We say that T encloses q if all barycentric coordinates are positive.

Note in dl
i , we actually store the indices t0, t1, t2 of T ’s vertices.

Then the next problem is to actually find T ’s three vertices.
As reported by Boubekeur et al. [10], for improved robustness,
T should be as small and equilateral as possible. For reasons ex-
plained later, we also require that nT should not be very different
than the normal of points in an area of SPl−1 close to q. All these
constraints together make the problem ill-defined; we must rely on
some heuristics.

For selecting our triangle, we first compute a reference plane H

passing through q perpendicular to n(q). Next, to help keep nT

close to its constraints, we filter out of N (q) all points for which
their projection on H is closer than (1 + ε)r from q, where r is
the distance of the farthest point in N (q) from q (Figure 4(a)).
The relative tolerance ε can be quite large (we use a value of 0.1).
Next, to enforce a smaller size for T , the result is converted into a
BSP-neighborhood [35] (Figure 4(b)), and then sorted by increas-
ing angle around q [27], where the closest point is set to angle 0.
Angles are computed from projections on H .

We finally have to select three points among the remaining can-

didates for which all their relative angle is as close to 3π
2 as possible.

However, to avoid an exhaustive search, we arbitrarily fix the clos-
est neighbor as the first vertex. We then scan the set of candidates
in increasing order of angle around the center and select the point

with the relative angle to the first vertex closest to 3π
2 as the second

vertex. To select the last vertex, we continue to scan and choose the
point with a relative angle closest to 2π−θ

2 , where θ is the relative
angle between the second and first vertices. Figure 4(c) shows an
example of the selection procedure’s final step. For all examples
in Figure 4, to simplify the illustration, all points are understood as
being locally coplanar.

For point sets with boundaries, if q lies close to a boundary, the
BSP-neighborhood could be degenerated, that is, it may have less
than three neighbors or could lead to sliver triangles. Most impor-
tantly, a majority of points on boundaries will fall outside of T by
a significant distance. For greater robustness, we have to resort to
a different selection algorithm in these cases, which are detected if
the BSP-neighborhood has less than three neighbors or if the max-
imum relative angle is greater than π .

The general idea of the selection for boundaries is to find a tri-
angle such that only one barycentric coordinate is negative, and the
other two are relatively small. We also want to keep the triangle
with a good aspect ratio to minimize the impact of stretching. What
we do is simply to set the first two vertices of T as the two neigh-
bors in N (q) for which their relative angle is maximal (usually
greater than π), and set the third as the neighbor in N (q) that
has the maximum orthogonal projection distance on the segment

(pl−1
t1

−pl−1
t0

). Figure 4(d) shows an example of our triangle selec-
tion for a boundary case.

Finally, because the downsampling operator can introduce sam-
pling density discontinuities, false boundaries could be detected.
Therefore, before we apply the boundary case selection, we try
again the regular case using a neighborhood of all points falling

inside a sphere centered at q. The radius is the average radius of all

points’ k-neighborhood in Pl−1, which can be computed once after

Pl−1 is computed.

4.2.3 Non-orthogonal Projection on Triangle

If we simply reformulate q as in Equation (7), we can face two main
problems during synthesis. First, the direction of nT might not be

reliable after a deformation of Pl−1. Second, neighbors of pl
i in Pl

might have their projection on SPl−1 be reformulated on the same

triangle, thus any deformation of Pl−1 will result in a piecewise
linear deformation of the reconstruction. We could instead find a
point r on the triangle T ’s supporting plane, noted HT , such that
q = Ψ(r), but reversing the projection procedure is far from trivial.

Instead we compute a point r on HT such that the line passing
by q of direction n(r) intersects HT at r, i.e., we compute a point
r satisfying the following set of equations:

q−
(

n(r)T(q− r)
)

n(r) = r (8)

nT
T(r−pl−1

t0
) = 0. (9)

Note that we can replace pl−1
t0

by any point on HT in Equation (9).

We can combine them together by substituting r in Equation (9)
with the left hand side of Equation (8), and then isolate the expres-

sion n(r)T(q− r) in the resulting equation and substitute it back in
Equation (8), which gives the following equation:

q−
nT

T(q−pl−1
t0

)

nT
Tn(r)

n(r) = r. (10)

The left hand side corresponds to the intersection of the line passing
by q in direction n(r) with the plane HT . By choosing an appro-
priate initial guess for r, we can use Equation (10) as an iterative
procedure, i.e.

r(t+1) = q−
nT

T(q−pl−1
t0

)

nT
Tn(r(t))

n(r(t)). (11)

This procedure tends sometimes to overshoot the solution. We

can help it by damping the direction n(r(t)) to the direction bisect-

ing (q− r(t))/‖q− r(t)‖ and n(r(t)) (or −n(r(t)) if they are in op-

posite directions). Let n̄(r(t)) be that direction. We thus finally
have

r(t+1) = q−
nT

T(q−pl−1
t0

)

nT
Tn̄(r(t))

n̄(r(t)). (12)

This procedure will converge if r(0) is reasonably close to the solu-
tion, and if n(x) is continuous (weighted covariance analysis is con-
tinuous, as well as normal weighted average, assuming φ is also)
and stays reasonably close to nT , thus our initial constraint on the

selection of T . We initialize the iteration with r(0) as follows:

r(0) = q−
nT

T(q−pl−1
t0

)

nT
Tn(q)

n(q) (13)

which is the intersection of the line passing by q of direction n(q)
and the plane HT . Figure 5 illustrates an iteration of the procedure.

We stop the iterations when the error on Equation (8) is below a
given threshold, that is

‖q− r(t)‖2 −
(

n(r(t))T(q− r(t))
)2

< ε2 (14)

for an error tolerance ε > 0, or if a given maximum number of
iterations is reached. Very rarely the procedure has trouble with
convergence. We detect convergence problems in two ways:

p
l−1
t1

p
l−1
t0

r
(t)

r
(t+1)

n(r(t))

HT

q

− q−r
(t)

‖q−r(t)‖

−n(r(t))

−n̄(r(t))

Figure 5: Geometric interpretation of the non-
orthogonal iterative projection procedure of q on
HT . It seeks a point r on HT such n(r) is par-
allel to q− r. The triangle T is represented as the
segment (pl−1

t1
−pl−1

t0
), and short thicker segments are points of Pl−1.

1. at the end of an iteration, if the error (left hand-side of Inequa-
tion (14)) increases after an iteration;

2. the maximum number of iterations has been reached and the
error tolerance is still not satisfied.

In Case 1, we further damp n̄(r(t)) by taking again the bisecting di-

rection between itself and (q−r(t))/‖q−r(t)‖. We repeat this kind
of backtracking until the error is smaller than the previous iteration,
or when another maximum number of iterations is reached. In the
former case, we go on with the main iterative procedure. In the lat-

ter case, we do as Case 2. In Case 2, we jitter r(t) on HT , reset the
iteration counter to zero, and start anew. We allow this jittering for
a given maximum number of times.

Note that it is possible that r falls outside the boundaries of T .
However, in all our experiments, it occurred in no more than 2% of
all cases, and when it happens, the point is never far outside.

5 SYNTHESIS

Synthesis, or reconstruction, corresponds to the reverse operation

of analysis. Starting with a point set Pl−1, we want to synthesize

point set Pl induced by Pl−1 and the stored details Dl , i.e.

Pl = Λ−1(Pl−1)⊕Dl

where Λ−1 is an upsampling operator that reproduces Q, or a de-

formed Q according to any deformation of Pl−1. The full analysis
for L levels repeats this reconstruction for l = 1,2, . . . ,L.

Because the upsampling operator Λ−1 uses information in Dl ,
and because all synthesized points can be computed independently,
we describe the synthesis procedure in terms of processing each

dl
i ∈ Dl instead of globally upsampling and then applying displace-

ment. For dl
i ∈ Dl , we compute the corresponding point pl

i as fol-
lows:

1. Let (t0, t1, t2,β1,β2,δ) = dl
i (Equation (6)).

2. Compute r = (1−β1 −β2)p
l−1
t0

+β1pl−1
t1

+β2pl−1
t2

.

3. Compute q by intersecting SPl−1 with the line passing by r in
direction n(r).

4. Set pl
i = q+δn(q).

Finally, Pl =
{

pl
i

}|Dl |−1

i=0
, and normals for each synthesized points

pl
i are computed with nPl (pl

i), but using covariance analysis (Equa-
tion (1)). Weighted average of normals can not be used because
they are not known yet.

The intersection with SPl−1 in Step 3 is computed using the in-
tersection procedure of Adamson and Alexa [1]. However, by con-
struction of the base triangle T formed by points of indices t0, t1,

t2 in Pl−1, we know that r already lies close to SPl−1 , and we know

(a) Level 0 (b) Level 1 (c) Level 2 (d) Level 3 (e) Original (f) Scaling 2-2-1

Figure 6: Synthesized levels, original surface, and detail scaling for the “Armadillo” point set.

that n(r) is a direction that, from r, should intersect SPl−1 . There-
fore, there is no need to construct and use any additional spatial
data structure. The simplified procedure can be formulated with the
following iterative scheme:

q(t+1) = r−
n(q(t))T

(

q(t) −a(q(t))
)

n(q(t))Tn(r)
n(r) (15)

where q(0) = r. Given an error tolerance ε > 0, the iterations stop

when
∣

∣n(q(t))T
(

q(t) −a(q(t))
)
∣

∣ < ε .
We can get a faster synthesis if we accept to store an extra scalar

per detail tuple. After the non-orthogonal projection on T (Sec-

tion 4.2.3), we can also keep the value δ̃ = n(r)T(q−r), also shown
in Figure 3. Then, during synthesis, Step 3 is replaced by

3. Compute q = r+ δ̃n(r).

Note however that this trick is not exactly equivalent to the previ-

ous approach if Pl−1 has been deformed, especially if the curvature
changes. Nevertheless, the results are still satisfactory.

If we want geometric details to scale accordingly with local
stretching during synthesis, then, as Boubekeur et al. [10], instead

of storing δ as the sixth component of dl
i in Equation (6), we store

δ/∆T , where ∆T denotes the area of T . Then, during synthesis,
Step 4 is replaced by

4. Set pl
i = q+ δ

∆T
∆T ′n(q), where T ′ is the triangle of vertices

{pl−1
t0

,pl−1
t1

,pl−1
t2

} after a possible deformation of Pl−1.

Note that we cannot apply this scaling δ̃ because it is not computed
relative to SPl−1 , but from a triangle that roughly locally approxi-
mates the surface, and because the triangles selected for two neigh-

bors of Pl can be sufficiently different to have non coherent δ̃ values
while having coherent displacement values over SPl−1 .

6 RESULTS AND DISCUSSION

We have successfully used our multiresolution representation on a
number of different point-set surfaces. Figures 6, 7(a), and 9 show
various surfaces synthesized at various levels, and compares the
highest level with the original point set. Figure 8 shows similar
results, but using smaller points to make the effect of the down-
sampling process clearly visible. This figure clearly shows that, as
described in Section 4.1, more points are maintained in potentially
problematic regions such as near the chin and the area between the
arm and the body. Figure 9 shows that our representation maintains
the shape of boundaries even when a deformation is applied. All
the results shown here use the synthesis optimization described at
the end of Section 5.

These figures show that synthesized results are very close to the
original. In fact, the root mean square errors of the reconstructed
points are only 9.5× 10−5, 2.64× 10−4, 4.90× 10−4, and 1.75×
10−4 for the “Armadillo”, “Igea”, “Bumps”, and “Isis” point sets,
respectively. These values are given in normalized units adjusted

Armadillo Igea Bumps Isis

Level 0 6510 500 374 1600
Level 1 15218 1512 1140 4368
Level 2 48312 4551 3583 14953
Level 3 172974 14503 10395 53883
Level 4 — 43636 32028 196256
Level 5 — 134345 97284 —

Table 1: Number of points for each synthesized level.

Armadillo Igea Bumps Isis

Analysis
Synthesis

137.4 / —
9.5 / —

27.4 / 60.1
7.6 / 12.2

17.9 / 36.7
5.0 / 6.1

39.9 / 67.3
10.5 / 14.4

Table 2: Computation time (in seconds) for analysis and synthesis.
For each entry, the first number is the time for our technique, and the
second is for our implementation of Pauly et al. [38]’s technique. All
timings were obtained on an AMD Turion 64 X2 processor.

so that the largest size of the point set’s bounding box equals one.
Table 1 gives the number of points for each level.

The computation times required for the complete analysis, from
the original point-set surface to level 0, and complete synthesis,
from level 0 to the reconstructed surface, are given in Table 2 (num-
ber on the left for each pair). The larger analysis time for the “Ar-
madillo” point set is due to the presence of high curvature zones
and fine structures in the geometric model. This slows down con-
vergence of the iterative procedure described in Section 4.2.3.

We have compared the computation times with our implementa-
tion of Pauly et al. [38]’s technique for the same number of levels
and same downsampling factor (used for smoothing in their case).
Timings are also shown in Table 2 (number on the right for each
pair). Although for each point, our technique requires more com-
putations, because the number of points is reduced from level to
level, it is globally faster, though less significantly for synthesis.
No results for the “Armadillo” point set is shown for Pauly et al.’s
technique because their downsampling does not verify the neigh-
borhood condition (Section 4.1). We could implement it, although
their analysis timings would be even slower. Despite that, we still
timed the execution for the “Isis” point set with their technique.
One clear advantage of reducing the number of points is that pro-
cessing the lower levels is much faster, and editing can be done
interactively there. However, some patience is required to visualize
the upper levels. They can be gradually computed as processing
time permits.

We have mentioned in Section 4.2 that extracted details roughly
represent frequency bands of geometric detail. As do Pauly
et al. [38] and Zhang et al. [48], we can take advantage of that fact
by scaling these details at different levels to emphasize or smooth
out various characteristics of the surface. This creates an interest-
ing set of manipulation tools, as demonstrated in Figures 6(f) and
7(b), where the given scaling values correspond to the scaling factor
for each level, from coarsest to finest. For example, in Figure 6(f),
the two lowest levels of detail of the “Armadillo” are multiplied
by two, emphasizing low frequency components and inflating the

(a) Synthesized levels 0 – 5.

(b) Detail scaling: 0-0-0-1-1; 1-1-1-2-3; 2-2-1-1-1.

(c) Original, Deformed.

Figure 7: Results for the “Igea” point set.

model. As also pointed out by Pauly et al. and Zhang et al., this
scaling can also be used to obtain continuous detail resolution in
the same fashion.

7 CONCLUSION AND FUTURE WORK

Point-set surfaces offer a flexible representation to simplify many
tasks in geometric modeling, animation, and rendering. However
it is difficult to find an efficient and robust multiresolution repre-
sentation for these tasks. This is mainly due to the loss of explicit
connectivity between the points.

We have presented a multiresolution representation that, at each
level, smoothes the point set, downsamples the point set where
special conditions are respected, and encodes efficiently the detail
points so they can be reconstructed when needed. We have de-
scribed a number of criteria and optimizations that allow for greater
robustness. Finally, a number of transformations over different
point sets have demonstrated the quality of our representation.

Reduced point sets at coarser levels allow faster processing for
editing. However, our synthesis time still prevents a fully inter-
active use of our representation. We believe that better support for
interactive editing operations could be achieved using adaptive mul-
tiresolution, similar to the work of Zorin et al. [49], where analysis
and synthesis is done adaptively based on local flatness of the geom-

Level 0 Level 1 Level 2

Level 3 Level 4 Original

Figure 8: Synthesized levels and original surface for the “Isis” point
set, with visible points.

etry. Also, for our technique, each point is processed independently
at most stages, which makes most computations highly paralleliz-
able. This is also true though for other point-based multiresolution
representations, including multiscale representations [38, 48].

Finally, the selection of our base triangle is an important factor
in improving robustness. We have described several heuristics used
to select the triangle, but there is room for improvement, especially
for the boundary case.

ACKNOWLEDGEMENTS

The authors thank Di Jiang for her help and support. This work was
supported in parts by grants from NSERC, FQRNT, and MITACS.

REFERENCES

[1] A. Adamson and M. Alexa. Approximating bounded, non-orientable

surfaces from points. In Proc. IEEE Shape Modeling and Application,

pages 243–252, 2004.

[2] A. Adamson and M. Alexa. Anisotropic point set surfaces. In Proc.

AFRIGRAPH, pages 7–13, 2006.

[3] A. Adamson and M. Alexa. Point-sampled cell complexes. ACM

Trans. on Graphics, 25(3):671–680, 2006.

[4] M. Alexa and A. Adamson. Interpolatory point set surfaces — con-

vexity and hermite data. ACM Trans. on Graphics. To appear.

(a) Level 0 (b) Level 3 (c) Level 5 (d) Original (e) Deformed

Figure 9: Synthesized levels and original surface for the “Bumps” point set.

[5] M. Alexa and A. Adamson. On normals and projection operators for

surfaces defined by point sets. In Proc. Symp. on Point-based Graph-

ics, pages 149–156, 2004.

[6] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T.

Silva. Computing and rendering point set surfaces. IEEE Trans. on

Visualization and Computer Graphics, 9(1):3–15, 2003.

[7] N. Amenta and Y. J. Kil. Defining point-set surfaces. ACM Trans. on

Graphics, 23(3):264–270, 2004.

[8] M. Botsch, A. Wiratanaya, and L. Kobbelt. Efficient high quality ren-

dering of point-sampled geometry. In Eurographics Workshop on Ren-

dering, pages 53–64, 2002.

[9] T. Boubekeur, W. Heidrich, X. Granier, and C. Schlick. Volume-

surface trees. Proc. Eurographics, 25(3):399–406, 2006.

[10] T. Boubekeur, O. Sorkine, and C. Schlick. SIMOD: Making freeform

deformation size-insensitive. In Proc. Symp. on Point-based Graphics,

pages 47–56, 2007.

[11] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and

W. Stuetzle. Multiresolution analysis of arbitrary meshes. In Proc.

ACM SIGGRAPH, pages 173–182, 1995.

[12] S. Fleishman, D. Cohen-Or, M. Alexa, and C. T. Silva. Progressive

point set surfaces. ACM Trans. on Graphics, 22(4):997–1011, 2003.

[13] M. Gross and H. Pfister, editors. Point-based Graphics. The Morgan

Kaufmann Series in Computer Graphics. Morgan Kaufmann, 2007.

[14] G. Guennebaud, L. Barthe, and M. Paulin. Dynamic surfel set refine-

ment for high quality rendering. Computers & Graphics, 28(6):827–

838, 2004.

[15] G. Guennebaud, L. Barthe, and M. Paulin. Interpolatory refinement

for real-time processing of point-based geometry. Proc. Eurograph-

ics), 24(3):657–667, 2005.

[16] G. Guennebaud and M. Gross. Algebraic point set surfaces. ACM

Trans. on Graphics, 26(3):23, 2007.

[17] I. Guskov, W. Sweldens, and P. Schröder. Multiresolution signal pro-

cessing for meshes. In Proc. ACM SIGGRAPH, pages 325–334, 1999.

[18] I. Guskov, K. Vidimce, W. Sweldens, and P. Schröder. Normal meshes.

In Proc. ACM SIGGRAPH, pages 95–102, 2000.

[19] A. Hubeli and M. Gross. Multiresolution methods for nonmani-

fold models. IEEE Trans. on Visualization and Computer Graphics,

7(3):207–221, 2001.

[20] L. Kobbelt and M. Botsch. A survey of point-based techniques in

computer graphics. Computers & Graphics, 28(6):801–814, 2004.

[21] L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel. Interactive

multi-resolution modeling on arbitrary meshes. In Proc. ACM SIG-

GRAPH, pages 105–114, 1998.

[22] R. Kolluri. Provably good moving least squares. In Proc. Symp. on

Discrete Algorithms, pages 1008–1017, 2005.

[23] C. Lange and K. Polthier. Anisotropic smoothing of point sets. Com-

puter Aided Geometric Design, 22(7):680–692, 2005.

[24] A. Lee, H. Moreton, and H. Hoppe. Displaced subdivision surfaces.

In Proc. ACM SIGGRAPH, pages 85–94, 2000.

[25] D. Levin. The approximation power of moving least-squares. Mathe-

matics of Computation, 67(224):1517–1531, 1998.

[26] D. Levin. Geometric Modeling for Scientific Visualization, chap-

ter Mesh-Independent Surface Interpolation, pages 37–49. Springer-

Verlag, 2003.

[27] L. Linsen and H. Prautzsch. Fan clouds — an alternative to meshes.

In Theoretical Foundations of Computer Vision, pages 39–57, 2003.

[28] Y. Lipman, D. Cohen-Or, and D. Levin. Data-dependent MLS for

faithful surface approximation. In Proc. Symp. on Geometry Process-

ing, pages 59–67, 2007.

[29] Y. Lipman, D. Cohen-Or, D. Levin, and H. Tal-Ezer. Parameterization-

free projection for geometry reconstruction. ACM Trans. on Graphics,

26(3):22, 2007.

[30] M. Lounsbery, T. D. DeRose, and J. Warren. Multiresolution analysis

for surfaces of arbitrary topological type. ACM Trans. on Graphics,

16(1):34–73, 1997.

[31] C. Moenning, F. Mémoli, G. Sapiro, N. Dyn, and N. A. Dodgson.

Meshless geometric subdivision. Graphical Models, 69(3-4):160–

179, 2007.

[32] R. Pajarola. Efficient level-of-details for point based rendering. In

Proc. IASTED Computer Graphics and Imaging, 2003.

[33] R. Pajarola, M. Sainz, and R. Lario. XSplat: External memory mul-

tiresolution point visualization. In Proc. IASTED Visualization, Imag-

ing and Image Processing, pages 628–633, 2005.

[34] S.-B. Park, S.-U. Lee, and H. Choi. Multiscale surface representation

and rendering for point clouds. In Proc. Intl. Conf. in Image Process-

ing, volume 3, pages 1939–1942, 2004.

[35] M. Pauly. Point Primitives for Interactive Modeling and Processing

of 3D Geometry. PhD thesis, Eidgenössische Technische Hochschule

Zürich, 2003.

[36] M. Pauly and M. Gross. Spectral processing of point-sampled geom-

etry. In Proc. ACM SIGGRAPH, pages 379–386, 2001.

[37] M. Pauly, M. Gross, and L. Kobbelt. Efficient simplification of point-

sampled surfaces. In IEEE Visualization, pages 163–170, 2002.

[38] M. Pauly, L. Kobbelt, and M. Gross. Point-based multiscale surface

representation. ACM Trans. on Graphics, 25(2):177–193, 2006.

[39] H. Pfister, M. Zwicker, J. van Baar, and M. Gross. Surfels: Surface

elements as rendering primitives. In Proc. ACM SIGGRAPH, pages

335–342, 2000.

[40] P. Reuter, P. Joyot, J. Trunzler, T. Boubekeur, and C. Schlick. Surface

reconstruction with enriched reproducing kernel particle approxima-

tion. In Proc. Symp. on Point-based Graphics, pages 79–87, 2005.

[41] S. Rusinkiewicz and M. Levoy. QSplat: A multiresolution point ren-

dering system for large meshes. In Proc. ACM SIGGRAPH, pages

343–352, 2000.

[42] J. M. Singh and P. J. Narayanan. Progressive decomposition of point

clouds without local planes. In Indian Conf. on Computer Vision,

Graphics and Image Processing, volume 4338 of Lecture Notes in

Computer Science, pages 364–375, 2006.

[43] R. Wang, S. Zhang, and X. Ye. A novel simplification algorithm for

point-sampled surfaces. In Intl. Conf. on Multimedia and Ubiquitous

Engineering, pages 573–578, 2007.

[44] J. Wu, Z. Zhang, and L. Kobbelt. Progressive splatting. In Proc. Symp.

on Point-based Graphics, pages 25–32, 2005.

[45] C. Xiao, Y. Miao, S. Liu, and Q. Peng. A dynamic balanced flow for

filtering point-sampled geometry. The Visual Computer, 22(3):210–

219, 2006.

[46] Z. Yang and T.-W. Kim. Moving parabolic approximation of point

clouds. Computer Aided Design, 39(12):1091–1112, 2007.

[47] Z. Yu and H.-S. Wong. An efficient local clustering approach for sim-

plification of 3D point-based computer graphics models. In Intl. Conf.

on Media & Expo, pages 2065–2068, 2006.

[48] D.-H. Zhang, T. Yue, and Y.-H. Chen. Multi-scale surface representa-

tion of point-sampled geometry. In Intl. Symp. on Image and Signal

Processing and Analysis, pages 371–376, 2005.

[49] D. Zorin, P. Schröder, and W. Sweldens. Interactive multiresolution

mesh editing. In Proc. ACM SIGGRAPH, pages 259–268, 1997.

