
Extracting Sequence Diagrams from Execution Traces
using Interactive Visualization

Hassen Grati, Houari Sahraoui, Pierre Poulin
DIRO, Université de Montréal

Montréal, Canada
{gratihas, sahraouh, poulin}@iro.umontreal.ca

Abstract—We present a semi-automated approach for the
reverse engineering of UML sequence diagrams. Our approach
starts with a set of execution traces that are automatically
aligned in order to determine the common behavior. Sequence
diagrams are then extracted with an interactive visualization,
which allows navigating into execution traces and performing
extraction operations. We provide a concrete illustration of our
approach with a case study, and show in particular that the
resulting diagrams are more meaningful and more compact
than those extracted by automated approaches.

Keywords-reverse engeneering; sequence diagrams; visual-
ization;

I. INTRODUCTION

The reverse engineering of analysis and design models
helps improving many activities of software development
and maintenance. Examples of these activities include com-
prehension, migration, maintenance at the model level, etc.
In this context, many contributions have been proposed to
reverse engineer the static structure of object-oriented (OO)
systems [2]. With the exception of a few issues, such as
relationship recovery, these contributions are mature enough
to be integrated in commercial tools such as Rational1,
Together2, and NetBeans3.

This reality contrasts with the difficulty of extracting the
behavior models of OO systems, such as sequence diagrams.
Indeed, modern programs extensively use dynamic language
features (polymorphism, dynamic class loading, dynamic
class generation, and reflection) that make it difficult, and
often impossible, to capture the behavior by static analysis
[14]. To circumvent this limitation, many research teams
have adopted an alternative approach based on dynamic
analysis [3], [4], [5], [6]. In these approaches, execution
traces are used to find the elements of message sequence
diagrams.

Although these approaches have improved significantly
the quality of the extracted behavior models, two problems
remain. First, the extracted models are defined in terms of
implementation and do not provide an abstract view. In other

1http://www-01.ibm.com/software/rational/
2http://www.borland.com/us/products/together/
3http://netbeans.org/

words, the extraction process cannot distinguish between ab-
stract information such as communication messages between
business objects and implementation details. The second
problem of existing approaches is that in many cases, the
extracted diagrams correspond to single executions, which
limits their generalizability.

In this paper, we present an approach that circumvents the
limitations inherent to automation. Instead of fully automat-
ing the reverse-engineering process of sequence diagrams,
we propose a semi-automated process with the partici-
pation of an analyst through an interactive visualization
environment. Our environment performs automated actions
for which the state-of-the-art knowledge is mature enough.
It also recommends actions that the analyst could accept or
reject where approximations are used. Finally, the analyst
may perform manual actions at any moment of the process
using the contextual knowledge.

To evaluate our approach, we performed a study on the
case described by Briand et al. [2]. In particular, we com-
pared the sequence diagrams obtained using our approach
with those derived automatically. Our results show that with
limited time, an analyst extracts sequence diagrams that
contain the abstract information without the unnecessary
implementation details.

The remainder of this paper is structured as follows. The
overview of our approach is described in Section II. Its
two main steps are then detailed in Sections III (extraction
and alignment of execution traces) and IV (extraction of
sequence diagrams by interactive visualization). The results
of a case study are reported and discussed in Section V.
Related work is outlined in Section VI. Conclusions and
future research directions are given in Section VII.

II. APPROACH OVERVIEW

To better describe our approach, we start this section by
giving an example that we will use throughout the paper.

A. Running Example

Our running example is a scenario of using a drawing
tool4. This Java application contains 16 classes and allows

4http://www.javafr.com/codes/JavaDessin 36623.aspx

the creation of drawings and paintings using a graphical
interface. The selected scenario allows drawing geometric
shapes. Three executions of this scenario are performed to
draw respectively a rectangle, a circle, and a segment. In
each case the user provides information such as fill color,
border color, size, etc.

B. Overview

Reverse engineering of behavioral models could be done
for several reasons such as code analysis, comprehension,
and documentation. Our work is motivated by the re- doc-
umentation of an existing application. It extracts sequence
diagrams for execution scenarios. Concretely, our approach,
based on dynamic analysis, follows three steps as shown
in Figure 1. First, it generates a set of execution traces
corresponding to a specific execution scenario. The traces
are obtained by instrumenting and executing the code. We
use several execution traces to better capture the variations
inside the same scenario.

Afterwards, we align these traces by identifying common
execution fragments and situations that are specific to each
execution. The alignment algorithm allows also identifying
behavior that could be abstracted from similar but not
identical execution fragments. Our algorithm is based on the
sequence-alignment method of Smith and Waterman [9].

The third step of our approach consists of extracting the
sequence diagram using an interactive visualization environ-
ment. This environment allows navigating into the combined
trace and performing extracting operations.

III. GENERATING AND ALIGNING EXECUTION TRACES

A. Generating Traces from a Scenario

Because our goal is to document the existing use-case
scenarios, we make the assumption that the extraction of
sequence diagrams is done accordingly to already-existing
scenarios. For a particular scenario, we determine the set
of executions that help capturing the variations within the
scenario. For our running example, the scenario corresponds
to drawing a geometric shape using a drawing software.
We select three executions corresponding to three different
geometric shapes: rectangle, circle, and segment. These
shapes were chosen because they have different properties.

Before starting the execution, the code is instrumented to
capture information that is difficult to extract otherwise. To
this end, we inject notification statements for the start and the
end of each method, each loop block, and each conditional
block. These notification statements allow us to determine
where each method call is performed and how the calls are
organized. Consequently, the obtained trace is a sequence of
method calls, where each method call contains the following
information:
• Type and memory address of the message-sender ob-

ject.

Code
Source

Generation of
Execution Traces

Combination of
Execution TracesCombined Trace

Interactive
VisualizationInput

User Sequence
Diagram

T3

T1
T2

Use−case
Scenarios

Figure 1. Overview of our approach.

• Type and memory address of the message-receiver
object.

• Method name and a generated execution identifier of
the calling method. This identifier allows us to differ-
entiate between two executions of the same method.

• Method name and execution identifier of the called
method.

• Stack of conditional and loop blocks where the method
call is performed.

Figure 2 shows an example of execution traces corre-
sponding to the drawing of a circle. The first event corre-
sponds to the execution of the first method StartDraw by the
object PanelDraw having memory address 21668571. For
this call, there is no caller object or calling method. This
is indicated by the character “ ”. The method StartDraw
calls three methods: the constructors Figure (event 2) and
Circle (event 9), and the method insert (event 11). To
differentiate between two executions of the same method,
the execution of StartDraw is assigned the identifier [T1M1]
that is used in the three calls (events 2, 9, and 11).
Finally, methods Circle and draw in events 9 and 10
are called inside the execution of the conditional block
(State.getFiguretype()==MODE CERCLE).

B. Combining Traces

The next step of our approach combines execution traces.
Use-case scenarios generally define abstract execution pos-
sibilities of a particular system. The same scenario could
have different variations that produce different yet similar
execution traces. In our example, it is not realistic to have
a scenario for every type of geometric shape. To document
the program, one scenario of drawing a geometric shape
is enough. For this reason, it is interesting to execute the
scenario with different variations. Figure 3 shows as an ex-
ample the trace corresponding to the drawing of a rectangle.
In addition to the fact that a rectangle is instantiated instead
of a circle, the method getThickness is not called because
the thickness value was not present in the dialog box.

To help identify the common behavior and differences
between different executions of the same scenario, we align
the corresponding traces. When more than two traces are

1 , PanelDraw [21668571], , StartDraw [T1M1], ;
2 PanelDraw [21668571], Figure [3916193],

StartDraw [T1M1], Figure [T1M2],
3 Figure [3916193], State [23930626], Figure [T1M2],

getTransparency [T1M3],
4 Figure [3916193], State [23930626], Figure [T1M2],

getMode [T1M4],
5 Figure [3916193], State [23930626], Figure [T1M2],

getLineColor [T1M5],
6 Figure [3916193], State [23930626], Figure [T1M2],

getThickness [T1M6],
7 Figure [3916193], State [23930626], Figure [T1M2],

getFillingColor [T1M7],
8 Figure [3916193], State [23930626], Figure [T1M2],

getFigureType [T1M8],
9 PanelDraw [21668571], Circle [17282414],

StartDraw [T1M1], Circle [T1M9],
<%(State.getFiguretype()==MODE CERCLE)%>

10 Circle [17282414], Figure [3916193],
Circle [T1M9], draw [T1M10],
<%(State.getFiguretype()==MODE CERCLE)%>

11 PanelDraw [21668571], Figure [3916193],
StartDraw [T1M1], insert [T1M11],

Figure 2. Fragment of execution trace of drawing a circle. The event
number is provided to the left.

1 , PanelDraw [64836544], , StartDraw [T2M1],
2 PanelDraw [64836544], Figure [9826352],

StartDraw [T2M1], Figure [T2M2],
3 Figure [9826352], State [19286486], Figure [T2M2],

getTransparency [T2M3],
4 Figure [9826352], State [19286486], Figure [T2M2],

getMode [T2M4],
5 Figure [9826352], State [19286486], Figure [T2M2],

getLineColor [T2M5],
6 Figure [9826352], State [19286486], Figure [T2M2],

getFillingColor [T2M6],
7 Figure [9826352], State [19286486], Figure [T2M2],

getFigureType [T2M7],
8 PanelDraw [64836544], Rectangle [1271231],

StartDraw [T2M1], Rectangle [T2M8],
<%(State.getFiguretype()==MODE RECTANGLE)%>

9 Rectangle [1271231], Figure [9826352],
Rectangle [T2M9], draw [T2M9],
<%(State.getFiguretype()==MODE RECTANGLE)%>

10 PanelDraw [64836544], Figure [9826352],
StartDraw [T2M1], insert [T2M10],

Figure 3. Fragment of execution trace of drawing a rectangle.

combined, the combination is done incrementally. In our
example, we align first the rectangle and circle traces, and
then the resulting trace with the segment trace.

As the execution traces represent trees where each node
is a method call, the alignment algorithm implements a re-
cursive process where the trees are compared level by level.
Two nodes are aligned if they have the same types of sender
and receiver objects, the same names for respectively calling
and called methods, and the same stack of conditionals
and loops. Moreover, two nodes can be compared if their
respective parents are already aligned.

The algorithm starts by comparing the root nodes of the
two traces. If the two nodes are aligned, then their child
nodes are compared. Afterwards, the algorithm is recursively

applied to each pair of aligned nodes.
In each trace, the child nodes represent the method calls

performed within the method of a parent node. As the
calls are ordered, they define a sequence. To compare the
sequences of child nodes in the two traces, we use the
Smith- Waterman sequence-alignment algorithm [9]. This
algorithm, based on dynamic programming, explores all
possible alignments between two strings, using substitution
matrices to generate an optimal alignment between two
sequences of characters. We adapted this algorithm to align
call sequences.

The Smith-Waterman algorithm is performed recursively
to store the score of the already-matched sub-sequences.
When aligning two sequences (a1, ..., an) and (b1, ..., bm),
we define a substitution matrix M having n + 1 lines and
m + 1 columns. Each position Mi,j corresponds to the
best score of alignment considering the previously aligned
elements of the sequences. The algorithm can introduce gaps
(represented in the following example by “ ”) to improve the
matching of sequences. Formally,

Mi,0 = M0,j = 0

Mi,j =

 Mi−1,j−1 + match(ai, bj)
Mi−1,j + gap(ai,)
Mi,j−1 + gap(, bj)

match(ai, bj) defines the score of matching two characters
ai and bj . When a gap is inserted before ai (resp. bj), it
incurs a penalty of gap(ai,) (resp. gap(, bj)).

Our alignment algorithm adaptation is straightforward. We
simply set the gap penalty to −1 and use our node (method-
call) alignment to measure the matching score. Thus, for two
nodes ai and bj , match(ai, bj) is set to 1 if ai and bj could
be aligned, and to 0 otherwise.

The alignment of traces T1 and T2 in Figure 2 and
Figure 3 respectively is presented in Figure 4. For the sake of
conciseness, we identify nodes by: “a” <trace number> “-”
<event number>. In the combined trace, nodes are labeled
by the numbers of the traces where they appear. For example,
node a1-3 [1,2] in T1+T2 indicates that the corresponding
method call occurs in T1 (a1-3) and T2 (a2-3). Because
memory addresses differ from one trace to another, we keep
by convention those of the first trace, which explains why
we reuse the node names of T1 in T1+T2.

To illustrate child-node sequence alignment, let us con-
sider methods a1-3 to a1-8 called by a1-2 in T1 and methods
a2-3 to a2-7 called by a2-2 in T2. These two sequences can
be compared because a1-2 and a2-2 are already aligned. Fig-
ure 5 shows the best alignment between the two sequences.
A unique gap is introduced in T2 to compensate for the
absence of the call of getThickness.

a1−1

a1−2

a1−3

a1−4

a1−5

a1−6

a1−7

a1−8

a1−9

a1−10

a1−11

a2−1

a2−2

a2−3

a2−4

a2−5

a2−6

a2−7

a2−8

a2−9

a2−10

a1−1

a1−2

a1−3

a1−4

a1−5

a1−6

a1−7

a1−9

a1−10

a2−8

a1−8

a2−9

a1−11

Trace T2Trace T1 Trace T1+T2

1,2

1,2

1,2

1,2

1,2

1

1,2

1,2

1

1

2

2

1,2

Figure 4. Example of combined traces.

a1−3 a1−4 a1−5 a1−6 a1−7 a1−8

a2−3

a2−4

a2−5

a2−6

a2−7

a1−3 a1−4 a1−5 a1−6 a1−7 a1−8

a1−3 a1−4 a1−5 a1−6 a1−7 a1−8

a2−3 a2−4 a2−5 −−− a2−6 a2−7

a2−3 a2−4 a2−5 a2−6 a2−7

0 0 0 0 0 00

0

0

0

0

0

0

0

−1−1−1−1

−1

0

−1

−1

−1 −1

1

1

2

0

1

3

2

1 1

2

2

0

2

3

1

4

2

−2

T1

T2

T1

T2

Figure 5. Child-node sequence alignment.

IV. SEQUENCE DIAGRAM EXTRACTION USING
INTERACTIVE VISUALIZATION

In this section, we detail the process of sequence diagram
(SD) extraction. This process is a set of successive cycles
that contains automatic transformations and user interactions
to modify and complete these transformations. Each cycle
represents a step in the exploration of the combined trace.
Before explaining the visualization environment, the nav-
igation actions, and the possible interactions, we start by
giving the basic transformations from the combined trace to
the sequence diagram.

A. Trace-to-SD Basic Transformation

When exploring the combined trace, each method call is
transformed by default as follows:
• A method call is mapped to a message in the SD.
• The source of a message is the lifeline of the participant

corresponding to the object executing the method when
the call occurs.

• If the called object exists already as a participant in
the diagram, the message is related to its lifeline. Oth-
erwise, a new participant is created with the memory
address of the called object as ID and the message
connected to its lifeline.

• opt/alt/loop boxes are drawn progressively to encapsu-
late messages according to the conditional/loop stacks
associated with their corresponding method calls.

• Return messages are inserted in the graph according
to the tree structure of the combined trace. These
messages connect the receiver and called participants
of the associated methods.

B. Interaction Views

At each step of the SD extraction process, the ana-
lyst is able to visualize the already processed fragment
of the combined trace (herein called global view) and its
corresponding SD fragment (called diagram view). In the
following subsections, we detail these two views.

1) Global View: The size of execution traces makes
their visualization particularly difficult. We believe however
that the analyst makes better decisions when he can view
the traces at least partially. Consequently, we decided to
visualize the combined trace progressively as it is traversed.

Representing methods and method calls: Methods are
represented by cylinders laid out in a plane in a grid-
like structure. Each cell in the grid could host a cylinder.
Methods are colored in gray. The method in control of the
execution is colored in blue.

We represent a method call with an arc from the calling-
method cylinder to the invoked-method cylinder as shown
in Figure 6(a). The arc representation avoids crossing links,
as the height of the arc depends on the distance between
cylinders and the height of the other arcs.

The representation of a call indicates also the direction
of the call and the traces where it appears. The directions
are represented by long isosceles triangles whose base is
attached to the calling method and opposite tip vertex to
the invoked method. The triangle is drawn as strips colored
according to the traces (one color per trace). In Figure 6(a),
the coloration of the arc indicates that it is present in three
traces corresponding to the colors.

Although we represent the combined trace progressively,
the view could still become cluttered after traversing a
significant part of the trace. To help the analyst focus on
the most recent calls while keeping the global context, we
reduce the width of an arc as the age of the corresponding
call grows. We determine the age of a call by the number of
calls that separate it from the current call in the traversing
process. The width reduction is illustrated in Figure 6(c).

Method returns are represented by similar arcs whose
width is reduced with the age (Figure 6(b)). The only
difference is that we use a dashed triangle with a unique
color to help the analyst distinguish between calls and

(a) (b)

(c)

Figure 6. (a) Method-call representation, (b) method-return representation,
and (c) width reduction according to age.

Figure 7. First step of the layout algorithm.

returns. As a call and its corresponding return are between
the same methods (but in opposite directions), it is not
necessary to indicate the traces where the return happens.

Placement algorithm: As stated earlier, the global view
allows visualizing the combined trace progressively. This
trace is pruned during the traversing process. Indeed, the
analyst is able to remove messages and objects that are
useless for the abstract behavior desired in the sequence
diagram. The interactive pruning is detailed in Section IV-A.

The pruned trace is a tree. To place the nodes of this
tree, i.e., cylinders that correspond to method executions,
we first place the root node in the center of the grid. Then
the grid is divided into four portions using the diagonals
as shown in Figure 7. The children of the root node are
assigned each one of the four infinite triangular regions.
If after the pruning, the root node has more than four
children, the triangular regions are recursively divided into
narrower triangular regions. When each child is assigned to
a region, the sub-tree defined by each of the child nodes are
placed according to the positioning algorithm of Walker [10].
Walkers algorithm allows recursive positioning of tree nodes
using the classical tree structure in two steps. As we use a
grid in our case, we place the nodes of a level in a layer
of the region assigned to the sub-tree. If the layer does not
contain enough cells, we jump to the next layers until all the
nodes are placed. The size of our grid is not fixed a priori.
Layers can be added if we need more space.

Figure 8. Snapshots of the evolution of the global view.

Figure 9. A portion of an SD view.

Figure 8 shows snapshots of the positioning during the
traversing of the combined trace.

2) Diagram View: As we traverse the combined trace, we
draw the sequence diagram according to the automated trans-
formations of Section IV-A and to the actions performed by
the analyst.

We use the standard notations of UML 2.0 [11] for draw-
ing the SD. To help the analyst make better decisions, we add
information about the traces from which the messages are
extracted. This is done by duplicating the message arrows as
many times as the number of traces. Each arrow is colored
according to its trace. The identifiers of the traces are also
added before the message label.

Figure 9 shows a portion of the SD corresponding to our
running example. The first participant is added to indicate
the actor that triggers the scenario of drawing a geometric
shape. The other three participants are the objects created
during the execution. The four displayed messages exist in
the three traces T1, T2, and T3.

C. Interactions

The extraction of the SD could be seen as a progressive
pruning of the combined trace. In the following subsections,
we present how the analyst navigates into the combined trace
and how he modifies the traces.

1) Navigation in the Combined Trace: In default mode,
the traversal of a trace is done according to the execution
events. As the trace corresponds to a tree, this is equivalent

Figure 10. Navigation bar.

Table I
NAVIGATION BAR COMMANDS.

Button Description
Play Initialize and launch the navigation and the creation of

the sequence diagram.
Next Show the next method call in the global view and add

the corresponding elements in the SD view.
Back “Undo” the last navigation step by removing in the two

views elements related to the corresponding call.
Proceed Switch to the automatic mode by transforming all the

remaining parts of the trace without giving control to the
analyst.

Save Save the obtained sequence diagram.

to a depth-first search. To allow the analyst navigation, we
implemented a navigation bar with a time slider (Figure 10).
The different navigation actions are detailed in Table I.

After each navigation action, the analyst regains control.
After looking at the global view and the elements added in
the SD for the last visited method call, he can modify the SD
and possibly the combined trace. Modifications correspond
to renaming objects and messages, deleting objects and
messages, and merging SD fragments.

2) Renaming Objects and Messages: The objects par-
ticipating in the sequence diagram are identified by their
memory addresses. When the sequence diagram is used
for documentation purpose, the name should help to better
understand the behavior. This is particularly true when more
than one object are created from the same class. In this
context, the analyst could rename objects with meaningful
names according to the use-case documentation. The analyst
could also inspect the code corresponding to the method
where the call occurs. Finally, to help the analyst find names,
our environment also proposes a list of names derived by
analysis of the corresponding code (variations of the class
name and names of variables where the object is stored after
its creation). For example, the participant initially created
with label “1035198: Circle” could be renamed “circle:
Circle”.

Similarly, message names could be renamed by the ana-
lyst. In our example of the drawing tool, there is a method
named m cc() that modifies the color in the class Circle,
The message corresponding to the call of m cc() could be
renamed to “modify object color()” for example to ease the
comprehension of the sequence diagram.

When renaming messages, name equivalences are stored
to ease future maintenance tasks.

3) Removing Objects and Messages: Execution traces
contain many implementation details that should not ap-

pear in a SD. Examples of these details are call-to-library
objects, graphical-interface objects and methods, temporary
and working objects and methods, etc. The presence of
these implementation details is one of the major limitations
pointed out by state-of-the-art work (see [3] for example).
Just by looking at class and message names and by inspect-
ing code, the analyst could decide that an object or a message
is not useful for the targeted abstract level.

By default when removing an object from the combined
trace, all the incoming and outgoing messages are removed.
Messages that result from these messages are also recur-
sively removed. In many cases, this is impractical because an
object to remove could be used as an intermediate object for
implementation reasons. Thus we do not want to lose the rest
of the interaction after removing it. To avoid these situations,
we introduced three object-removing operations: (1) default
recursive removal, (2) removal with message redirection (for
example, when removing object b, if message m1 from
object a to b triggers message m2 from b to object c, then
we can choose to add m1 from a to c or add m2 from a to
c), and (3) apply one of the two previous “removal” but to
all objects in the trace having the same type as the removed
object.

A message could be removed without deleting the sender
or the receiver object. A message could be removed similarly
to the three ways of removing objects: (1) default recursive
removal (all messages triggered by the removed message
are recursively deleted), (2) removal with redirection (for
example, if we have chain m1>m2>m3, we could delete
m2 and add the chain m1>m3), and (3) apply one of the
two previous “removal” but to all messages of the same
method in the trace.

4) Recommending Fragment Merges: During the combi-
nation of the execution traces (Section III), we also align
sub-trees with common method calls and whose objects
are not from the same type but having a common super-
class (constructors are also aligned). In the combined trace,
we did not merge the aligned sub-trees, but we inject
a recommendation action. This action is triggered when
all the aligned sub-trees are traversed and their elements
mapped to the SD. The analyst could look to the global
and SD views (and possibly the code) and accept/reject
the recommendation. In case of acceptance, the associated
message sequences are merged in the SD and the participant
objects are replaced by an object that has the type of the
common ancestor.

In our running example, parts of the three traces are
dedicated to the creation and drawing of respectively circles,
rectangles, and segments. Events 9 and 10 in Figure 2, and 8
and 9 in Figure 3, are the method calls corresponding to this
common behavior. In both cases (plus the case of segments),
the constructor is called followed by the method draw. The
portion of the SD that corresponds to these parts is given
in Figure 11(a). After the merge, the three objects c:Circle,

(a)

(b)

Figure 11. Merging SD fragments.

r:Rectangle, and seg:Segment are replaced by the object
g:GraphicRepresentation because Circle, Rectangle, and
Segment have GraphicRepresentation as common super-
class. The constructors are replaced by the constructor of
the new object. Finally, the message draw() with the three
colored arrows between the new object and f:Figure replaces
the three draw() messages (Figure 11(b)).

V. CASE STUDY

A. Setting

The objective of this case study is to illustrate how
interactive visualization complements automated reverse en-
gineering of sequence diagrams. To perform our study, we
selected an ATM simulation system5. This Java system,
contains 24 classes. A similar implementation in C++ of
the same system carried out by the same team was used
to validate the automated approach presented in [2]. In
addition to the fact that this system was previously used
for the same problem, the ATM simulation system has the
advantage that analysis and design documents are available.
These documents include use cases that are necessary to
determine the scenarios for which we reverse engineer the
sequence diagrams. They also include the sequence diagrams
corresponding to the different scenarios. This allows us to
compare with our results objectively.

We selected three use-case scenarios: Session, Deposit,
and Withdraw. For each scenario, we asked a subject to use

5www.math-cs.gordon.edu/local/courses/cs211/ATMExample/

our environment to extract the sequence diagram. During
the generation process, the subject had access only to the
source code and the Javadoc of the ATM simulation system.
Our subject is a Ph.D. student in software engineering with
a good experience in Java and UML.

To evaluate our approach, we compared three sequence
diagrams for each scenario. The first diagram is the design
diagram (DD) provided with the ATM system documen-
tation. This constitutes our reference for comparison. The
second diagram (ATD) is produced using an automated
transformation according to the transformation rules of [2].
The third diagram (IVD) is produced by our subject using
our interactive visualization environment. For each diagram,
we counted the number of messages and the number of
actors. For ATD and IVD, we counted the number of
messages (respectively participants) that exist in the design
diagram (DD).

In the remainder of this section, we first present the
quantitative results for the three scenarios. Then, we detail
the results of the scenario Session.

B. Quantitative Results
Table II summarizes the contents of design and generated

diagrams. ATD contains around three times the number of
messages of DD and between 2 and 6 additional participants.
The recall for both messages and participants is, however,
100%. This is because all the interactions that occur in the
execution are reported in the diagram.

IVD contains significantly fewer irrelevant messages (re-
duction between 30% and 60%). The recall is, however,
less than the automated approach. Indeed, two messages are
missing in the diagrams, corresponding to scenarios Session
and Withdraw. In both cases, the missing messages were
removed because our subject did not judge them important
for the documentation of the scenario. All the participants
of DD where found in IVD except for one in Withdraw and
in Session. In both cases, our subject removed the object
:Display corresponding to the participant :ConsumerCon-
sole in the design diagram. This was done because it was
considered as an interface object. Surprisingly, Display was
not removed in Deposit. An irrelevant participant was added
in Withdraw and in Deposit. It corresponds to object :Ses-
sion. In DD, this participant was not included because there
is already one participant representing transaction Withdraw
(respectively Deposit).

These results should be contrasted by performance con-
siderations. For all the scenarios, the process of extracting
each SD took less than 20 minutes including consultation of
code and Javadoc. This execution time is largely acceptable
for reverse-engineering tasks and could be easily justified by
the improvement in the precision of the generated diagrams.

C. Session Use-case Scenario
We detail scenario Session to illustrate the contribution

of interactive visualization. This use-case scenario is used

Table II
QUANTITATIVE RESULTS FOR DESIGN AND GENERATED DIAGRAMS.

Use-case scenarios Session Deposit Withdraw
Design Number of Messages 10 13 15
Diagram Number of Participants 5 6 6
Automated Number of All 39 39 41
Transfor- Messages Relevant 10 13 15
mation Number of All 11 8 8
Diagram Participants Relevant 5 6 6
Interactive Number of All 16 27 29
Visuali- Messages Relevant 8 13 13
zation Number of All 4 7 6
Diagram Participants Relevant 4 6 5

Figure 12. Sequence diagram for scenario Session in the documentation.

by all the scenarios corresponding to specific transactions
that could be performed using the ATM system. To produce
enough variations for this scenario, we executed the system
with three different transactions: Withdraw, Deposit, and
Transfer. This scenario is described as follows. First, the
user is prompted to insert the card and enter its PIN number.
The card and PIN number are then checked for validity. Once
validated, the user starts performing a specific transaction.

The design diagram DD of this scenario is provided
in Figure 12. The diagrams generated by interactive vi-
sualization IVD and automated transformation ATD are
respectively given in Figures 13 and 14. The first observation
we made is that many participant objects are added in ATD
because of the initialization phase that does not exist in DD
(top of ATD). Messages corresponding to this phase, such
as Bank() and CardReader(), were removed by our subject
in IVD, considering them as implementation details. This
causes the removal of the corresponding participants (e.g.
:Bank and :CardReader).

The second observation is that two participants considered
as interface objects were removed by our subject. In the case
of :Keyboard, this was a good decision (not present in DD).
However, in the case of :Display, the designer estimated that

Figure 13. Sequence diagram for scenario Session generated by interactive
visualization.

this participant (called :CustomerConsole) is important for
the documentation. In both cases, the deletion of participants
resulted in the removal of corresponding messages such
as requestCard() between :ATM and :Display, or readPin()
between :ATM and :Keyboard.

Another interesting observation is related to the merge
of execution fragments in IVD. Messages belonging to
the specific transactions (two per transaction) are replaced
by two messages. Specific participants are also replaced
by :Transaction that corresponds to an object of the ab-
stract class Transaction that is the common super-class
of transaction classes. In ATD of Figure 14, there is one
participant labeled with the four transactions. However, from
our understanding, there is a specific participant for each
execution and the merge between the four executions is not
done automatically.

VI. RELATED WORK

In this section, we present an overview of existing work
on reverse engineering of sequence diagrams. This work can
be classified into two major categories, corresponding to the
nature of the used information: static vs. dynamic.

For the first category, the sequence diagram is generated
by analyzing source code. In the approach presented by
Rountev et al. [1], sequence diagrams are derived from con-
trol flow graphs. In addition to the classical limits of static
analysis to capture the behavior, this method produces se-
quence diagrams that are limited to a single function/method.
In the same category, Tonella et al. [7] present a static

Figure 14. Sequence diagram for scenario Session generated by automated transformation [2].

approach for reverse engineering of sequence diagrams and
collaboration diagrams from C++. Here again, the analysis
suffers from the limitation of static analysis, such as the
difficulty to resolve polymorphic method calls.

To circumvent the above-mentioned limitations, many
research teams use dynamic analysis to extract sequence
diagrams by analyzing traces of executions. For example,
Briand et al. [2], [3] use a model-driven approach to trans-
form execution traces into sequence diagrams. In addition to
generating participants and messages, this approach consid-
ers also alternative, optional, and loop structures. Similarly,
Taniguchi et al. [4] propose an automated approach for

extracting sequence diagrams from execution traces. In ad-
dition to use transformation rules, they add a simplification
phase on the execution traces. Delamare et al. [5] propose
also a generation with a simplification phase. Unlike the
previous work where the simplification is done a priori on
the execution traces, in their work, it is done on the generated
sequence diagrams. Simplifications take into account object
states to identify alternatives and loops.

Approaches based on dynamic analysis lack from contex-
tual knowledge to discriminate between relevant information
and implementation details. The resulting diagrams are gen-
erally very large and do not help much the understanding

of the behavior. These diagrams could be interesting when
reverse engineering is applied for purposes other than doc-
umentation. This is the case of the work of Ng et al. [13],
where the extracted sequence diagrams are used to identify
behavioral design patterns. Our approach allows analysts to
use their contextual knowledge to filter unnecessary details.
Interactive visualization combined with recommendation ca-
pabilities reduces the complexity of dealing with execution
traces.

Behavior visualization is another domain that is related to
our contribution. Many visualization metaphors have been
proposed to understand program behavior (see for example
[8] and [12]). The main difference with our work is the
interactivity. Indeed, we use visualization not only to display
the results of a process, but also to allow an analyst to
contribute to this process.

VII. CONCLUSION AND FUTURE WORK

Reverse engineering of sequence diagrams is an important
task for the understanding of the behavior of object-oriented
programs. This paper presented a semi-automated approach
based on dynamic analysis and interactive visualization. Our
approach follows three steps. First, execution traces are
generated starting from use-case scenarios. These execution
traces are then aligned to produce a combined trace. The
third step is dedicated to the extraction of a sequence
diagram. The extraction combines automated transformation
with analyst actions through the interactive visualization
environment. Our environment includes a recommendation
module that suggests abstraction possibilities for behavior
that is shared by different executions.

We evaluated our approach on a benchmark used in [2].
Our results showed that interactive visualization allows hav-
ing more concise diagrams with more abstract behavior. The
time dedicated to the interaction is acceptable considering
the nature of the reverse-engineering task and the limitations
of automated approaches.

Although, the first results are very promising, there is
room for improvement. From the visualization point of view,
the global view could significantly benefit from improved
perception of the execution events. The recommendation
module could also consider more subtle cases. In this
context, we plan to explore incremental learning with feed-
back from the analyst. Our future work includes also the
reverse engineering of other dynamic diagrams such as state
diagrams. We believe that interactive visualization could
help defining abstract states that are difficult to determine
automatically.

ACKNOWLEDGMENT

The authors thank FQRNT and MDEIE for financial sup-
port, the GEODES graduate students for their participation,
and the reviewers for their suggestions.

REFERENCES

[1] A. Rountev, O. Volgin, M. Reddoch, “Static Control Flow
Analysis for Reverse Engineering of UML Sequence Dia-
grams”, Workshop on Program Analysis for Software Tools
Engineering, 2005.

[2] L. Briand, Y. Labiche, Y. Miao, “Towards the Revese Engi-
neering of UML Sequence Diagrams”, WCRE 2003.

[3] L. Briand, Y. Labiche, Y. Miao, “Towards the Reverse
Engineering of UML Sequence Diagrams for Distributed,
Multithreaded Java Software”, IEEE Trans. on Software En-
gineering, 2006.

[4] K. Taniguchi, T. Ishio, T. Kamiya, S. Kusumoto, K. Inoue,
“Extracting Sequence Diagram from Execution Trace of Java
Program”, International Workshop on Principles of Software
Evolution (IWPSE2005), 2005, pp. 148-151.

[5] R. Delamare, B. Baudry, Y. Le Traon, “Reverse Engineering
of UML 2.0 Sequence Diagrams from Execution Traces”,
Workshop on Object-Oriented Reengineering, 2006.

[6] W. De Pauw, D. Kimelman, J. Vlissides. “Modeling Object-
oriented Program Execution”, European Conference on
Object- Oriented Programming, volume 821, pages 63-182,
1994.

[7] P. Tonella and A. Potrich. “Reverse Engineering of the
Interaction Diagrams from C++ Code”. Conf. Software Main-
tenance, pages 159-168, 2003.

[8] W. De Pauw, E. Jensen, N. Mitchell, G. Sevitsky, J. Vlis-
sides, J. Yang, “Visualizing the Execution of Java Programs”.
Software Visualization, LNCS 2269, pages 151-162, 2002.

[9] T.F. Smith and M.S. Waterman, “Identification of Common
Molecular Sub-sequences”, Journal of Molecular Biology 147
(1981), 195-197.

[10] J. Walker, “A Node Positioning Algorithm for General Trees”.
Software Practice and Experience, 20 (7) : 685-705, 1990.

[11] G. Booch, J. Rumbaugh, I. Jacobson, “The Unified Modeling
Language User Guide”, Addison Wesley, 1998.

[12] B. Cornelissen, A. Zaidman, A. van Deursen, “A Controlled
Experiment for Program Comprehension through Trace Visu-
alization”, IEEE Trans. on Software Engineering, 2010.

[13] J. Ka-Yee Ng, Y. Guéhéneuc, G. Antoniol, “Identification of
Behavioural and Creational Design Motifs through Dynamic
Analysis”. J. Softw. Maint. Evol., 2009.

[14] A. Zaidman and S. Demeyer, “Automatic Identification of Key
Classes in a Software System using Webmining Techniques”,
J. Softw. Maint. Evol., vol. 20, no. 6, pp. 387-417, 2008.

