
Generating Visualization-based Analysis Scenarios from Maintenance
Task Descriptions

Salima Hassaine, Karim Dhambri, Houari Sahraoui, Pierre Poulin
{hassaisa|dhambrik|sahraouh|poulin}@iro.umontreal.ca

Abstract

Software visualization is an efficient and flexible tool
to inspect and analyze software data at various levels
of detail. However, software analysts typically do not
have a sufficient background in visualization and cog-
nitive science to select efficient representations and pa-
rameters without the help of visualization experts. To
overcome this problem, we propose an approach to gen-
erate software analysis tasks that use visualization. To
this end, we use taxonomies of low-level analytic tasks,
high-level interactive tasks, and perceptual rules to de-
sign an assistant that proposes analysis scenarios.

1 Introduction

Software visualization offers powerful tools to fos-
ter a better understanding of software quality. It ex-
ploits the natural pattern recognition ability of the hu-
man brain and the knowledge of the expert to analyze
data. It also shows new perspectives and raises new
interrogations that might not easily be met otherwise.
A number of visualization systems exist for complex
software analysis [5, 7, 8, 3]. However, each of these
systems requires that the user explicitly specifies the
visualization parameters. Building effective visualiza-
tion requires understanding some perception rules from
cognitive sciences. Unfortunately, software specialists
typically do not have the necessary background in visu-
alization, and therefore they often seek assistance from
visualization experts to help them display their data
and use efficiently the available tools.

This paper presents an approach which enables the
user to specify an analysis task in terms of software
code and metrics, and data analysis techniques, and
then transforms this specification into a strategy for in-
teractive visualization. This strategy assists the user in
carrying on his task using a specific visualization tool.
The approach also generates for each task a mapping
between metrics and graphical representations based

on perceptual rules.
The rest of the paper is structured as follows. Sec-

tion 2 presents an overview of the approach. Sec-
tions 3 and 4 describe the two models involved in our
approach. Section 5 shows the transformation mech-
anisms between the two models. Finally, Section 6
discusses some conclusions and identifies future work
directions.

2 Overview

We propose a task-driven approach for software vi-
sualization in a way that supports user-defined analysis
goals. This approach encompasses the entire process
from the analysis task description to the generation of
a sequence of interactive actions supported by a specific
software visualization tool.

Figure 1 illustrates our approach which consists of
the following main components. Analysis Task (AT)
Model: This model offers a language to rigorously de-
scribe in terms of user goals the scenario for an analy-
sis task, based on a known analytic task taxonomy [1].
This model is independent from visualization. Inter-
active Visual Task (IVT) Model: This model de-
scribes the interactive visual tasks that a software vi-
sualization application should support to be compat-
ible with our approach. Analysis Task to Inter-
active Visual Task Transformation: This mecha-
nism transforms an analysis task described using the
Analysis Task Model and a tool specification that in-
stantiates the Interactive Visual Task Model into an
interactive visual task scenario. It is based on a set of
perceptual rules. Transformation Session: A trans-
formation session is specific to a particular tool. It
instantiates the above mechanism, taking into account
the tool specification.

3 Analysis Task Model

This section describes the Analysis Task model. We
start by presenting the basic operators that can be per-

1

Figure 1. Overview of the transformation
process.

formed to explore the software code. Then we give
the analysis description model in terms of goal-oriented
modeling formalism.

In [1], Amar et al. propose a low-level and domain-
independent taxonomy of operators that a user might
perform on a data set. Building on this taxonomy,
we have derived a set of operators for the specific
purpose of code-based data inspection. More specifi-
cally, we characterized each operator by the parame-
ters required for its execution and the scope of its ap-
plication. An operator is then described as a tuple
< operation, parameters > where operation is an ac-
tion to perform on the data using the specified parame-
ters. Parameters include code entity or set of entities
(x or X), attributes (a), conditions (c), text labels (l),
relationships (r), and properties (p) such as class name,
class code, class position with respect to the package
architecture, etc. Each operator has a scope: global or
local. A global operator is applied to a large set of code
entities (classes and interfaces), while a local operator
is applied on a reduced subset of entities. A sub-set of
these operators are shown in Table 1.

Up-to-now, we have defined a set of basic operators
that can be used in an analysis task. The next step
is to define a model that describes a complete analy-
sis task. To this end, we defined a goal-driven model
using the principles of [2]. According to this model,
an analysis task consists of a goal, i.e., the purpose of
the analysis, that can be refined into sub-goals. Each
sub-goal is described by a list of operators defined in
Table 1 and eventually control structures (conditionals
and iterators).

4 Interactive Visual Task Model

This model is based on the Task by Data Type Tax-
onomy proposed by Shneiderman [9]. This taxon-
omy presents seven high-level interactive tasks that an
information visualization application should support,

such as overview, zoom, filter, details-on-demand, etc.
These interactive tasks are task-domain information
actions that users might want to perform in a visual
environment.

Inspired by this taxonomy, we propose a model to
describe the interactive tasks (call them interactors)
that a visualization tool should support. These in-
teractors are used to perform an analysis task (as de-
scribed in Section 3) in a visual environment. Fig-
ure 2 illustrates our proposed Interactive Task (IVT)
Model. According to this model, a visual environment
is represented as a scene. A scene contains a collection
of graphical representations used for displaying code
entities. The scene also includes a mapping module
that describes how the properties of these entities are
mapped onto the visual features of their representa-
tion. We also define two types of interactors: local
and global. Local interactors are applied on specific
graphical representations, while the global interactors
are used on the whole scene. The visual features of
the graphical representations may change according to
the interactor applied on them. Therefore, a history
module is important to keep track of the interesting
actions and the different states of the scene to support
an “undo” functionality.

Figure 2. Interactive Visual Task Model.

The various interactors in the model are: (1)
Overview to gain an overview of the entire collection
of code entities, (2) Zoom to zoom in on entities of
interest, (3) Filter to put emphasis on a sub-collection
having certain properties, and filter out uninteresting
entities, (4) Details-on-demand to select a particu-
lar entity and get details when needed, (5) Selection
to select un subset of entities of the collection, and (6)
Navigation to move around within the collection.

To be usable with our approach, a visualization tool
must instantiate the IVT model. As an illustration, we
used the software visualization tool VERSO [4].

VERSO uses 2 1
2D representations for software vi-

sualization, i.e., 3D entities placed on a 2D space as
shown in Figure 3. The visual metaphor of VERSO
is constituted of two graphical elements: layout man-
agers and graphical representations. The layout man-

2

Operator Scope Description

Locate〈X, c1, ..., cn〉 global Find code entities in X that satisfies conditions c1, ..., cn.

Select〈X, c1, ..., cn〉 global Find and memorize the subset of X that satisfies conditions c1, ..., cn.

Retrieve Value〈x, a〉 local Find the value of attribute a for the entity x.

Find Extremum〈X, a〉 global Find entities in X having an extremely high value for attribute a.

Characterize Distribution〈X, a〉 global Characterize the value distribution of attribute a over X.

Cluster〈X, a1, ..., an〉 global Find clusters of similar values for attributes a1,, an in X.

Inspect〈x, p1, ..., pn〉 local Obtain detailed information about properties p1, ..., pn for an entity x.

Decide〈c, op〉 N/A The user decides to perform operator op conditionally to c.

Table 1. Analysis operators.

ager arranges all the elements of a software system on a
plane, according to their architectural properties. Soft-
ware entities are graphically represented as 3D objects.
The source code metrics are mapped to the visual fea-
tures of the representation of the software entity. Each
representation (a 3D box) has five visual features: the
color that varies from blue to red, the height that
varies from small to high, the twist,3D box orientation,
that varies from straight to highly twisted (an angle of
90 degree), the analog clock texture, for which the
metric value is mapped to the orientation of the clock
pointer, between angles 0 and 330 degrees, and the
square texture, for which the metric value is mapped
to the number of squares (this texture is more effective
for discrete data having low values).

VERSO offers the features defined in the IVT model.
The user can apply Zoom-In and Zoom-Out on the

Figure 3. Overview of software system
EMMA in VERSO.

scene using the mouse wheel. VERSO offers two types
of filters. The statistic filter deals with the distrib-
ution of the metric values using the box plots. The
relationship filter, when applied on a particular code
entity, related code entities retain their original colors,
while for all other unrelated code entities, the satura-
tion of their color is reduced. It possible to obtain,
for a particular entity, details on demand. These
include metric values or characteristics of the source
code. Finally, it is possible to select already visited

code entities or those that we may want to come back
to by changing the color of the top of their 3D box
representation.

5 AT to IVT Transformation

For a given transformation session, the user provides
an analysis task description as input. The transfor-
mation mechanism first analyzes the input to extract
the attribute properties needed to correctly apply our
guidelines. Depending on the scope of the operators
and their measurement scale, the corresponding at-
tributes will then be mapped onto appropriate visual
features. Finally, a tool-specific scenario is generated
using the operators from the task description, taking
into account the attribute mapping and the various in-
teractors necessary to achieve the task.

Several mappings are possible between attributes
and visual features, each having a cost (efficiency). Se-
lecting the most appropriate mapping among all alter-
natives for a given situation usually requires consider-
able knowledge of visual perception principles, and of
the data itself. In this context we address the mapping
selection as a valued-constraint satisfaction problem.
Formally speaking, we define a 3-tuple 〈X,D, C〉 where
X = {X1, X2, ..., Xn} is a finite set of variables (met-
rics to be visualize), D is the domain of the variables
in X, defined as the available graphical features, and
C is a finite set of soft constraints. A soft constraint
f(variable, scope, visualfeature) ∈ C is a function that
evaluates the effectiveness of a visual feature for a given
metric considering the scope of the operator to apply to
this metric (see Table 1). To define the values of f , we
use the mapping costs proposed in [6]. In this work a
cost is associated to each combination attribute scale-
feature. For example, a quantitative attribute mapped
to the length costs 1 units, whereas, an ordinal at-
tribute costs 7 for the same feature. We extended this
cost function by integrating the scope of the operation.
For example, when a texture is associated to an ordinal
attribute, the cost is 4 for an operation that requires a

3

Operator Interactor Generated VERSO Description

Locate〈X, c1, ..., cn〉 Overview Among X, locate classes whose c1, ..., cn

Select〈X, c1, ..., cn〉 Overview Among X, select classes whose c1, ..., cn

Retrieve Value〈x, a〉 Zoom Apply the Zoom-In if necessary
Details-on-demand Display list of properties for class x

Read the value for metric a
Find Extremum〈X, a〉 Overview Apply the Zoom-Out if necessary

Filter Apply the statistical filter on a for X
Selection Using the Iterator, Select the classes as long as the metric a is judged high enough

Apply the Statistical Filter on a for X
Remove the Statistical Filter

Characterize Distribution〈X, a〉 Overview Apply the Zoom-Out if necessary
Apply the Statistical Filter on a for X

Cluster〈X, a1, ..., an〉 Overview Apply the Zoom-Out if necessary
Filter Find clusters in X sharing similar values for attributes a1, ..., an

Selection Select classes in every cluster
Correlate〈X, a1, ..., an〉 Overview Apply the Zoom-Out if necessary

Find if a1, ..., an are correlated in X
Inspect〈x, p〉 Zoom Apply the Zoom-In if necessary

Details-on-demand Display source code of x
Inspect p

Decide〈c, op〉 N/A if c, generated description of operator op

Table 2. Operator-to-interactor mappings.

local scope. It is 8, when the scope is global.
After mapping the attributes, the next step is to

transform the operators of Table 1. Table 2 presents
the task mapping (operators to interactors) and the
corresponding scenario fragment in VERSO. The map-
ping is one-to-many because, an operator of the task is
transformed into a sequence of interactors in the IVT
model and by extension in VERSO.

6 Conclusion

In this paper, we proposed an approach to transform
an analysis task description into an interactive visual
task for a visualization tool. We defined a language
to let the analyst formally specify a maintenance task
in terms of software metrics and data analysis oper-
ators. We have tested our approach on a number of
anomaly detection tasks on large software programs.
Our experience showed that analysts do not need any
visualization-specific knowledge to perform the tasks.
Up-to-now, the considered tasks have involved a small
number of metrics (usually 4 or 5). In the near fu-
ture, we plan to use our approach to generate scenarios
for tasks that involve a larger number of code metrics
and characteristics. With this perspective, an exhaus-
tive evaluation of all possible mappings is too time-
consuming. To solve that problem, we are developing
a CSP solver based on a metaheuristic search.

Another future research direction is to refine our
mapping constraint base, taking into consideration the
distribution of the metrics data to be visualized. In-
deed, in addition to the discrete/continuous aspect and
the global/local one, the distribution brings valuable
information to chose the best graphical attribute for

a specific metric. Finally, we plan to experiment with
other visualization tools to generalize the applicability
of our approach.

References

[1] R. Amar, J. Eagan, and J. Stasko. Low-level compo-
nents of analytic activity in information visualization.
In INFOVIS, 2005.

[2] S. Card, T. Moran, and A. Newell. The psychology of
human-computer interaction. Lawrence Erlbaum Asso-
ciates, 1983.

[3] S. Ducasse and M. Lanza. The class blueprint: Visually
supporting the understanding of classes. IEEE Trans.
Softw. Eng., 2005.

[4] G. Langelier, H. Sahraoui, and P. Poulin. Visualization-
based analysis of quality for large-scale software sys-
tems. In ASE, 2005.

[5] G. Lommerse, F. Nossin, L. Voinea, and A. Telea. The
visual code navigator: An interactive toolset for source
code investigation. In Proc. IEEE Symp. Information
Visualization, 2005.

[6] J. Mackinlay. Automating the design of graphical
presentations of relational information. ACM Trans.
Graph., 1986.

[7] A. Marcus, L. Feng, and J. Maletic. 3d representations
for software visualization. In SOFTVIS, 2003.

[8] S. P. Reiss and M. Renieris. Chapter 11: The bloom
software visualization system. In Software Visualiza-
tion: From Theory to Practice. 2003.

[9] B. Shneiderman. The eyes have it: A task by data type
taxonomy for information visualizations. IEEE Symp.
on Visual Languages, 1996.

4

