
Simplification and Real-time Smooth Transitions of Articulated Meshes

Jocelyn Houle Pierre Poulin

Départment d’informatique et de recherche opérationnelle
Universit́e de Montŕeal

Abstract
Simplification techniques have mainly been applied on

static models. However in movie and game industries,
many models are designed to be animated. We ex-
tend the progressive mesh technique to handle skeletally-
articulated meshes in order to obtain a continuous level-
of-detail (CLOD) representation that retains its ability to
be animated. Our technique is not limited to any sim-
plification metric, nor is it limited to generating models
composed of a subset of the original vertices. It thus pre-
serves the full simplification potential.

To further improve performance, we can use this
CLOD representation and extract a discrete set of
skeletally-articulated models. Each model can be inde-
pendently optimized, such as by using triangle strips. We
can also use morphing between the different models in
order to create smoother transitions. The result is a more
accurate representation of animated articulated models,
suitable for real-time applications.

Key words: Mesh simplification, skeletal animation, skin-
ning, LOD, real-time rendering.

1 Introduction

Polygon throughput is ever-increasing. However, even
though graphics hardware accelerators have greatly im-
proved in the past few years, pushing the limit does not
remove it altogether: we will always need to handle too
big a scene.

Often, parts of the scene feature more details than nec-
essary. In fact, a model, depending on its rendering char-
acteristics, whether it be screen size, illumination, visibil-
ity, or movement, does not always need to be manipulated
at full complexity.

One solution is to manually build multiple versions of
the same model, and then select the appropriate LOD to
display. This technique was common in early flight sim-
ulators where memory and speed where essential, and is
now extensively used in games for roughly the same rea-
sons. Coming up with a set of LODs is a time-consuming
process, requiring lots of meticulous work by an artist.
Since the LODs are different, switching between them in-
troduces popping which unfortunately helps noticing the

transition. Considerable time and effort must be spent by
the artist in order to further address such issue.

Several common automatic techniques (adaptive sub-
division of parametric surfaces, subdivision surfaces,
etc.) successfully reduce a model’s complexity while try-
ing to preserve most of its appearance. Automatic tech-
niques greatly help reduce the modeling effort needed to
generate simplified models. One such family of tech-
niques, mesh simplification, is applied to polygonal mod-
els.

Edge collapse simplification operates by repeatedly
merging pairs of adjacent vertices. The progressive mesh
technique by Hoppe [7, 8] constitutes a common founda-
tion for such techniques. According to a metric, a cost
of collapse is associated to every edge in a mesh. We
can then iteratively remove the lowest-cost edge and up-
date the mesh accordingly. By keeping the inverse infor-
mation, a vertex split (orvsplit), we can effectively re-
verse the simplification process. We end up with a multi-
resolution representation, composed of a base model and
an associated ordered list ofvsplits, which can be coars-
ened or refined at will.

Many more simplification techniques exist, and the
reader is directed towards more exhaustive surveys [2, 16,
1, 3].

2 Previous Work

This section addresses only work related to articulated
mesh simplification.

In a skeletally-articulated mesh, when a bone moves,
its associated vertices follow its transformation. These
meshes are a common way of modeling moving charac-
ters in current animation software. Real-time applications
also tend to use articulated models in order to save mem-
ory and exploit new features such as frame interpolation
and inverse kinematics. To date, we are aware of only two
simplification techniques that handle articulated meshes.

Schmalstieg and Fuhrmann [17] decompose the model
into regions corresponding to the model’s bones. Ver-
tices shared (weighted) by a common set of bones form
additional regions. Edges are collapsed only between
vertices that lie within the same region. Therefore, this
technique effectively simplifies as many submodels as



there are regions; adjacent regions affect one another only
when boundary faces collapse.

The second technique, from Huebner [9], is closely
related to Hoppe’s progressive mesh representation [7].
The model’s vertices are placed in order of creation dur-
ing the refinement process (i.e., when applying thevs-
plits). Since edges are constrained to collapse only on
either endpoint, the complete vertex array of the detailed
mesh can be used for all the generated LODs: lower res-
olution models simply use an early portion of that array.
This approach allows the vertices to be resident in video
memory, and leaves only the face management to the
CPU. Special considerations for texture seams, attribute
conservation, and pose choice have also been described.
The resulting technique offers a multi-resolution repre-
sentation manageable in real-time with current graphics
APIs. It has has been successfully used in a commercial
3D game [10].

Both simplification techniques use only a subset of the
original vertices (this is sometimes referred to half-edge
collapse simplification [11]). An advantage of such an
approach is that all the vertices stay valid in the sim-
plified mesh, whereas arbitrarily moving a vertex might
cause unintended results due to the skeletal transforms.
Unfortunately, such an approach also forbids any vertex
position optimization during the simplification process.
This potentially reduces the quality of the generated sim-
plified mesh. Also, these techniques cannot benefit from
face encodings such as triangle strips because polygons
can be removed anywhere in the final representation.

Our technique offers the same major benefit as these
techniques (notably, being able to animate the simplified
mesh), but can also help with rendering performance and
LOD transition quality.

3 Overview

Starting with a skeletal mesh, our method effectively con-
structs a multi-resolution representation. This articulated
progressive mesh can be coarsened or refined at will, for
any pose of the articulated model. In fact, it can be used
with any animation sequence applicable to the base mesh.
Although our implementation yielded interactive results
(a few frames a second), this representation proved insuf-
ficient for real-time applications where multiple models
would be used simultaneously.

However, this automatic simplification technique can
construct any number of discrete articulated LODs.
These LODs are in a form suitable to optimize rendering,
such as by building strips, desirable in real-time applica-
tions.

The transition between two LODs usually exhibits no-
ticeable popping. A typical way of reducing this popping

is by alpha-blending the two LODs together. Unfortu-
nately, alpha-blending simply makes features gradually
appear or disappear, which can look awkward, especially
on the silhouette (see Figure 1, as well as accompanying
animated sequences, for examples). We invite the reader
to visit the web site associated with this paper from
http://www.iro.umontreal.ca/labs/infographie/papers to
visualize the various animations referenced throughout
this paper.

(a)α = 1.0 (b)α = 0.0

(c)α = 0.75 (d)α = 0.5 (e)α = 0.25

Figure 1: Example of transition using alpha-blending.
Figures (a) and (b) illustrate the two transition LODs.
Figures (c) to (e) show the actual alpha-blending results.

Our technique instead constructs correspondences be-
tween vertices and attributes, enabling mesh morphing
between the articulated LODs. Such mesh morphing, be-
ing more semantically accurate, considerably enhances
transitions.

4 Simplification

Our simplification technique proceeds as follows. The
detailed articulated base mesh is transformed into a static
mesh. We simplify this static detailed model, essentially
constructing a progressive mesh. Because simplification
is applied to a static mesh, we can use any edge collapse
simplification metric. Our implementation used a mem-
oryless quadric error metric [4, 5, 13, 14, 6] applicable
to non-manifold models. We finally reinterpret thevsplit
structures into the skeleton in order to construct an artic-
ulated progressive mesh.

The main idea of our technique is that rather than being
applied directly on the articulated model, the preprocess
stage of our simplification is applied to a static pose of the
model. We simply copy thevsplits into the articulated



progressive mesh and interpret them with respect to the
skeleton. The simplified articulated model coincides with
the static progressive mesh when its pose is the same as
the one used during the static model simplification.

4.1 Back-propagation
Since a vertex can move after an edge collapse, we must
propagate this translation from world-space (computed
during the simplification) back to bone-space (the correct
space in the skeletal mesh). In order to do this, we pre-
compute the inverse of every bone transformation that we
compose using the skeletal hierarchy. The vertex transla-
tion ∆P is then transformed into the proper bone-space
before being applied.

4.2 Weighted Vertices
Articulated meshes often use weighted vertices in order
to smooth bending at the joints. A weighted vertex with
multiple representations is expressed as:

P =
n∑
i=1

Piwi with
n∑
i=1

wi = 1 (1)

where n is the number of representations (usually,
n = 2), each described with a positionPi (in world-
space) and an associated weightwi. Other skinning tech-
niques exist, like the recent work by Lewiset al. [12],
but none are as widespread as the weighted vertices tech-
nique.

In order to obtain a correct weighted vertex position,
we must modify its weighted representations. Applying
the translation∆P to everyPi effectively translates the
weighted positionP to the correct final positionP′:

n∑
i=1

(Pi + ∆P)wi =
n∑
i=1

Piwi + ∆P
n∑
i=1

wi

= P + ∆P

= P′.

(2)

Figure 2 illustrates this property. We could have used
other schemes (namely, any transformation which leads
to a final interpolation intoP′), but this one was found
appropriate, being simple and intuitive.

As with vertices, other weighted attributes (notably,
normals) undergo similar modifications based on the
bones to which they are related.

We have not addressed how new weights are assigned
on the resulting vertex of an edge collapse: the inital val-
ues are merely carried throughout the simplification pro-
cess. This proved satisfactory in our context. A more
thorough approach would try to reassign more appropri-
ate weights to the displaced vertices. This would need to

P1

P2

P

P∆

(a) Translating the interpo-
lated vertex.

P2 ’
P ’

 ’P1

(b) Interpolating the trans-
lated weighted representa-
tions.

Figure 2: Consider P a vertex defined by two weighted
representations P1 and P2, each associated with a bone
(the association is illustrated with different shades). Fol-
lowing an edge collapse, assume the resulting vertex is
translated by ∆P in (a). We can observe in (b) that trans-
lating every weighted representation by the same vector
yields the correct interpolated position P + ∆P = P′.

consider the initial weight assignment function, or a close
approximation.1

4.3 Results
Our resulting method can be applied to any skeletally-
animated model, and offers a CLOD representation with
interactive performances. Figure 3 shows various LODs
taken from such a representation. The original model,
containing 4308 faces, took 623 ms to simplify on an
Athlon 600 MHz. As mentioned earlier, the metric used
is a memoryless constrained quadric error metric. We
also have accompanying animated sequences from the
web site that show various LODs generated by our tech-
nique.

Our simplification process only took into account a sin-
gle pose out of all the possible poses of the model. Since
the choice of this pose can affect the faces and vertex po-
sitions of the model, it must be appropriately selected. In
order to reduce the deviation on the other frames, we used
a pose in which the members are half-bent. Using mem-
bers in a straight position would have increased the defor-
mation deviation of weighted vertices when the member
is fully flexed. In essence, we are splitting this error, al-
beit very small, in half. This approach proved to be quite
sufficient in practice.

We could easily consider a weighted combination of

1Our approach can be considered such an approximation for small
translations.



4308 3000 2000

1000 500 250

Figure 3: Simplification results, with associated face
counts.

the edge collapse costs in all the poses of an animated se-
quence, or in a set of extreme poses. This set of poses
should preserve the more dynamic parts of the model
longer without unduly increasing processing time. Such a
multi-pose simplification surely helps in choosing a best
edge to collapse, but unfortunately increases the difficulty
of defining a best position of collapse.

The simplified model is an articulated CLOD repre-
sentation that can easily be managed interactively. Un-
fortunately, it is not quite fast enough to manage multiple
models simultaneously. To do so, we must lower the run-
time requirements.

5 Transition by Morphing

In order to improve the rendering speed, we construct
discrete LODs. This approach has been used with static
models for quite some time. However, the transition be-
tween two LODs usually exhibits popping, due to abrupt
differences in visual appearance. We exploit our CLOD
representation similarly to Hoppe’s geomorphs [7] in or-
der to improve the transition between two such LODs.

5.1 Vertex Positions
The vsplit structures indicate towards which vertex an-
other collapses. This correspondence can be chained with
further collapses involving the same vertex. We therefore
know, for each vertex of the detailed meshMd, towards

which vertex in the simplified meshMs it will ultimately
end up. By linearly interpolating the positions, we con-
struct a geomorph fromMd toMs.

During the geomorph, faces exclusive toMd gradually
degenerate until the remaining faces exactly match those
of Ms. We must also interpolate the face attributes for
the degenerateMd to appear exactly asMs. Compared
to alpha-blending, such a morphing offers more semanti-
cally accurate transitions.

Morphing is controlled by a parametert varying from
0 (which corresponds toMd) to 1 (which corresponds to
Ms). Vertex interpolation can be expressed as follows:

P′i = Pi(1− t) + Pf(i)t 0 < t < 1 (3)

wherePi is the original vertex position inMd, Pf(i) is the
corresponding final position inMs, andf(i) is the corre-
spondence function. Such a formulation is quite fast in
practice since we start with a copy ofMd, which already
containsPi.

5.2 Attributes
Interpolation of normals is done in a similar fashion. Al-
though quaternions provide the correct interpolation be-
tween two normals, a possible shortcut, albeit incorrect,
consists in interpolating linearly the two tips of the nor-
mals (with or even without renormalization). Since mor-
phing is typically done in less than a second, we observed
no objectionable artifacts. Transition smoothness appears
thus more important than transition correctness.

Although our current implementation only manages
vertices and normals, further attributes (vertex color, tex-
ture coordinates, etc.) could be integrated as well. Since
the morphing is done swiftly, such attributes most prob-
ably can get away with similarly incorrect interpolation
unnoticed.

5.3 Approach
We have chosen to apply the morphing interpolation on
static meshes instead of articulated ones, mainly for per-
formance issues. Since articulated meshes typically con-
tain a number of weighted vertices, interpolation of such
vertices would have to be applied to every vertex repre-
sentation. This would needlessly multiply the processing
requirements since the morphing results are the same.

Our final structure consists in a series ofm discrete
articulated LODs combined with a series ofm− 1 corre-
spondence tables describing morphing between every two
consecutive LODs. These correspondences (simple index
pairs) take litte extra memory compared to the complete
meshes. Consecutive morphing correspondences can be
chained to allow morphing of non-consecutive LODs.

To avoid always morphing a model, we can construct
3D morphing zones (or slices) based on distance to the



camera. These zones, which can be suitably defined
by the user, are separated by appropriately larger non-
morphing zones where the discrete (optimized) skeletal
LODs are used. Such an approach can amortize the over-
head associated with the morphing by restraining the re-
gion of morphing, and therefore, by reducing the overall
time spent morphing.

5.4 Results
Our approach builds two static LODs based on skeletal
ones, and interpolates between them. Since transforming
a skeletal model into a static one is usually a well opti-
mized path (real-time applications typically do so each
time they render the mesh), we consider this operation to
incur only reasonable overhead.

The rendering time of the morphed model is the same
as that of the highest-resolution LOD since it has exactly
the same number of faces, vertices, and attributes: only
the actual values are different.

The morphing time directly depends on the number of
elements to morph, which is proportional to the number
of different vertices and attributes between two LODs.
In our unoptimized implementation capable of more that
500 000 interpolations per second (vertices and normals
combined), morphing time is slightly faster than ren-
dering time of the resulting static mesh. This indicates
that morphing slows down the performance by half, but
it is so only for the actual duration of the morphing.
Afterwards, greater gains are attained with the lower-
resolution model, which can even be optimized with tri-
angle strips.

Compared to alpha-blending two LODs, our technique
shares roughly the same processing requirements: both
the lower- and higher-resolution models must be trans-
formed prior to rendering. Our technique simply replaces
the lower-resolution rendering with the morphing step.
We feel the morphing offers far more pleasing transi-
tions for a comparable overall cost. For cases where the
whole LOD is resident in video memory, alpha-blending
is faster because our technique needs to send the vertices
every time. Upcoming vertex shading rendering architec-
tures eliminate that advantage, and permit to do both the
skeletal and morphing transforms on the graphics chip
specialized hardware. We assume this would further in-
crease the appeal of our technique.

Figure 4 shows a morphing between two animated
LODs. The morphing is almost total since less than 5% of
the vertices and normals of the mesh are left untouched.

We have found that the morphing needs little time in
order to improve transition smoothness. In fact, only a
few frames morphing in less than a second are enough to
remove popping. An animated sequence from the same
web site shows such examples.

6 Conclusion

We have described a simplification technique which can
be applied to skeletally-animated meshes. Furthermore,
we have described how to use this CLOD representation
in order to easily generate discrete skeletal LODs which
can smoothly be morphed in real-time.

Our approach allows the various LODs to be optimized
for rendering, such as by using strips. Because we must
interpolate the vertices every frame, we cannot take ad-
vantage of hardware support for skeletal meshes. How-
ever, the simplicity of our technique makes it a good can-
didate for a hardware implementation on future architec-
tures.

Further research is warranted, especially in terms of
quality evaluation of the simplified models. A metric in-
tegrating the rendering impact of the simplification and
morphing (inspired by recent image-based metrics [15])
could probably improve even more LOD transition, as
well as offer a heuristic for automatic LOD selection. Op-
timal vertex placement, with consideration to weights, is
also an avenue left unexplored. A tight integration with
current and next generation graphics hardware is also in-
tended.

7 Acknowledgments

This research was made in collaboration with Electronic
Arts Canada, under the supervision of John W. Buchanan.
The authors would like to thank Alain Fournier, and peo-
ple from IMAGER at UBC and LIGUM at UdeM for
many enlightening discussions. The models and anima-
tion sequences are courtesy of Electronic Arts. This re-
search was made possible by grants from Electronic Arts
Canada and NSERC.

References

[1] Paolo Cignoni, Claudio Montani, and Roberto
Scopigno. A comparison of mesh simplification
algorithms. Computers & Graphics, 22(1):37–54,
February 1998.

[2] Carl Erikson. Polygonal simplification: An
overview. Technical Report TR96-016, University
of North Carolina, Department of Computer Sci-
ence, 1996.

[3] Michael Garland. Multiresolution modeling: Sur-
vey & future opportunities. State of the art report
(STAR), Eurographics ’99, 1999.

[4] Michael Garland and Paul S. Heckbert. Surface
simplification using quadric error metrics. InSIG-
GRAPH ’97 Conference Proceedings, Annual Con-
ference Series, pages 209–216, August 1997.



[5] Michael Garland and Paul S. Heckbert. Simplify-
ing surfaces with color and texture using quadric er-
ror metrics. InVisualization ’98 Proceedings, pages
263–269, October 1998.

[6] Hughes Hoppe. New quadric metric for simplifying
meshes with appearance attributes. InIEEE Visual-
ization 1999, pages 59–66, October 1999.

[7] Hugues Hoppe. Progressive meshes. InSIGGRAPH
’96 Conference Proceedings, Annual Conference
Series, pages 99–108, August 1996.

[8] Hugues Hoppe. Efficient implementation of pro-
gressive meshes.Computers & Graphics, 22(1):27–
36, February 1998.

[9] Robert Huebner. Application of continuous level-
of-detail for 3D games. InSIGGRAPH 2000 Course
Notes, number 39, July 2000.

[10] Robert Huebner. Bringing life to the un-
dead. In Game Developer’s Conference 2000.
http://www.nihilistic.com/GDC2000/gdc2000lecture,
2000.

[11] Leif Kobbelt, Swen Campagna, and Hans-Peter Sei-
del. A general framework for mesh decimation. In
Graphics Interface ’98, pages 43–50, June 1998.

[12] J.P. Lewis, Matt Cordner, and Nickson Fong. Pose
space deformations: A unified approach to shape
interpolation and skeleton-driven deformation. In
SIGGRAPH 2000 Conference Proceedings, Annual
Conference Series, pages 165–172, July 2000.

[13] Peter Lindstrom and Greg Turk. Fast and memory
efficient polygonal simplification. InProceedings
of IEEE Visualization ’98, pages 279–286, October
1998.

[14] Peter Lindstrom and Greg Turk. Evaluation of
memoryless simplification.IEEE Transactions on
Visualization and Computer Graphics, 5(2):98–
115, April – June 1999.

[15] Peter Lindstrom and Greg Turk. Image-driven
simplification. ACM Transactions on Graphics,
19(3):204–241, July 2000.

[16] David Luebke. A survey of polygonal simplifica-
tion algorithms. Technical Report TR97-045, Uni-
versity of North Carolina, Department of Computer
Science, December 1997.

[17] Dieter Schmalstieg and Anton Fuhrmann. Coarse
view-dependent levels of detail for hierarchical and
deformable models. Technical Report TR-186-2-
99-20, Vienna University of Technology, 1999.

t = 0.0

t = 0.2

t = 0.4

t = 0.6

t = 0.8

t = 1.0

Figure 4: Morphing example: from 4308 to 500 faces.


	Introduction
	Previous Work
	Overview
	Simplification
	Back-propagation
	Weighted Vertices
	Results

	Transition by Morphing
	Vertex Positions
	Attributes
	Approach
	Results

	Conclusion
	Acknowledgments

