
Exploring the Evolution of Software Quality with Animated Visualization

Guillaume Langelier Houari Sahraoui Pierre Poulin

Dept. I.R.O., Université de Montréal, Canada

{langelig, sahraoui, poulin}@iro.umontreal.ca

Abstract

Assessing software quality and understanding how

events in its evolution have lead to anomalies are two im-

portant steps toward reducing costs in software mainte-

nance. Unfortunately, evaluation of large quantities of code

over several versions is a task too time-consuming, if not

overwhelming, to be applicable in general.

To address this problem, we designed a visualization

framework as a semi-automatic approach to quickly inves-

tigate programs composed of thousands of classes, over

dozens of versions. Programs and their associated quality

characteristics for each version are graphically represented

and displayed independently. Real-time navigation and an-

imation between these representations recreate visual co-

herences often associated with coherences intrinsic to sub-

sequent software versions. Exploiting such coherences can

reduce cognitive gaps between the different views of soft-

ware, and allows human experts to use their visual capacity

and intuition to efficiently investigate and understand vari-

ous quality aspects of software evolution.

To illustrate the interest of our framework, we report our

results on two case studies.

1. Introduction

Over the years, development of software has gone

through many transformations. At first, scientists built

small software for their own needs with mainly functional

goals in mind. Today’s software aims at a larger public, is

often more complex, and involves more programmers. Hav-

ing many people from many locations over a more signifi-

cant period of time can introduce communication problems

and induce extra cost in the project. It becomes therefore

important to quickly understand code from others because

original developers are not always available. This develop-

ment model can lead to quality flaws that greatly impact a

project and that must be corrected quickly to reduce their

costs [10]. In this context, evolution plays a crucial role in

understanding quality aspects of software. Evolution can

explain the current state of a program and can be used to

adjust the development process to better respond to quality

expectations.

Therefore it has become necessary to analyze the com-

plex programs present nowadays, both in terms of compre-

hension and quality. However, the analysis of these pro-

grams generates a lot of raw data that must be interpreted in

order to extract valuable information concerning its quality.

The presence of multiple versions in the analysis of soft-

ware evolution increases this amount of raw data by adding

the dimension of time into the equation. It is hardly possible

for an expert to assess this amount of data when the object

of study grows over the size of toy programs. This analysis

task is also difficult to automate because the exact factors

impacting quality and maintenance costs are still unknown

or blurry, and general rules are difficult to derive automat-

ically. While machine learning approaches do not require

rules from theory, they rely on data assumptions and large

learning sets not easily available for software evolution.

Our solution proposes to use visualization as a semi-

automatic approach to analyze the quality of programs over

many versions. Visualization re-arranges and displays data

in a more convenient way for an expert who can manually

extract information from these images and make decisions

using his knowledge and judgement. We use structural met-

rics and version control information that we map on graph-

ical entities. The visualization consists in 3D boxes laid out

over a 2D plane according to the program architecture, with

an algorithm inspired from Treemap [15]. This basic visu-

alization is augmented by a representation of evolution.

A number of approaches visually represent software evo-

lution within a single frame for one system or one aspect

of a system and all its versions [6, 17, 18, 21, 27, 28].

Other approaches present different snapshots of a system

and place them side-by-side for analysis [7, 11, 25, 29, 30].

The first strategy requires aggregating data before present-

ing it; the other strategy uses a lot of space and prevents the

analysis of larger systems. Our solution to these problems

uses animation and the metaphor of time . Versions are pre-

sented one after the other using animation and navigation

features. Placing every item adequately increases coherence



between represented versions and therefore reduces cogni-

tive gaps when going from one version to another. We use a

similar strategy to switch from a structural metric view to a

version control view, and reduce the cognitive effort while

displaying more information.

The rest of the paper is organized as follows. Section 2

summarizes work related to the present research. Section 3

introduces the different steps of our approach. Section 4

explains the data to be visualized, while Section 5 is dedi-

cated to the relation between graphical coherence, software

coherence, and their application in the animation of soft-

ware evolution. Section 6 describes the techniques used to

represent software evolution using visualization. Finally,

Section 7 discusses our framework and its applicability, and

Section 8 concludes with some remarks.

2. Previous Work

A frequent representation of evolution uses a static frame

and place entities in a matrix-like configuration. Usually,

rows encode entities and columns versions in chronologi-

cal order. A matrix cell contains a glyph representing the

state of given entity at a given time. For instance, Wu et

al. [28] represent the evolution of programs with spectro-

graphs. Rows represent files, columns represent versions,

and at a cell, a pixel is colored according to the time elapsed

since the last modification. Lommerse et al. [18] use a simi-

lar approach, but they align multiple two-dimensional views

one below the other to display multiple metrics for a given

time frame (column). Voinea and Telea [27] use the same

idea but represent the evolution of files with bands simi-

lar to time lines. D’Ambros and Lanza [6] compare bugs

and cvs activities of a given system by means of discrete

time figures, which resemble time lines. They also com-

bine these views in a hierarchical system of files. Lanza and

Ducasse [17] draw at each row-column cell a rectangle with

its height, width, and color attached to class metrics. They

also developed a metaphor based on astronomy to interpret

observed phenomena. Finally, Mesnage and Lanza [21]

draw 3D representations in the same matrix-like layout to

display more metrics simultaneously.

Other work considers different representations for evolu-

tion, but still uses static visualization. D’Ambros et al. [7]

visualize cvs entries and especially contributions of each

programmer using figures inspired from fractals. Fischer

and Gall [11] study co-changes in files and analyze them in

the perspective of the structural information of these files.

They use an energy-based graph to represent logical cou-

pling and a time-line representation to compare files within

a same time frame. Pinzger et al. [25] visualize the evo-

lution of metrics in programs with Kiviat diagrams repre-

senting multiple module metrics. Evolution is represented

with layers on the Kiviat diagram, and Kiviat diagrams are

connected together to represent coupling between modules.

Lingu et al. [19] present a tool with several simple visual-

izations to analyze super repositories. Super repositories

contain several projects handled by a single company or

linked together semantically. Views include plot diagrams,

nodes, links, and timelines. Wu et al. [29] use ordered

Treemap views to represent cvs information. The size and

color of each node are mapped to metrics related to the size

of changes and the date of the last commit. Links repre-

sent relationships. With their tool cv3D [30], Xie et al. use

polycylinders to display metrics at different levels : system,

class, method, and line. They use a single view to aggregate

the whole system or to display modifications between ver-

sions. They also use multiple pictures juxtaposed to com-

pare one element at different versions.

Evolution has also been represented with animation and

time. D’Ambros and Lanza [5] use a visualization tech-

nique called the evolution radar to track logical coupling

of modules in a system. Diagrams from different time win-

dows are computed on demand, providing a multi-frame vi-

sualization. Collberg et al. [4] present a visualization based

on 3D graphs to represent the hierarchy, the call graph, or

the control flow graph of a program. The layout is de-

termined with an attraction-repulsion model with the same

nodes from different versions being attached together to re-

duce movement. Beyer and Hassan [1] present a solution

more closely related to ours. It introduces a storyboard con-

cept which consists in a series of frames representing dif-

ferent periods of time, and therefore, their approach uses

animation. They also use an energy-based layout and give

information through clustering, colors, and links. However,

they target cvs information and logical coupling, while we

consider also structural metrics. They filter out many nodes

from their visualization to reduce occlusion and visual sat-

uration which is not required in our approach.

Amongst these techniques, only the last two [1, 4] use

animation to represent evolution. All the other techniques

use single images, which are more or less based on graphs

or on the matrix principle. These techniques impose a limi-

tation on the number of elements visualized, or on the num-

ber of attributes associated with each element.

Even though little research is based on animation to

represent software, some applications of this strategy have

been used in the more general area of information visual-

ization. Nguyen and Huang [22] present a technique where

the node of interest in a 2D graph is exchanged with one

of its children with animated movements towards the root.

Bladh et al. [2] put emphasis on parts of a Treemap, but it

effectively acts like a zoom. They do not rearrange or resize

the zoomed in parts. Fekete and Plaisant [9] modify the val-

ues represented by a Treemap, therefore changing the size

of container rectangles present in the visualization. They

animate movement and size modifications in two phases to



reduce saturation of the human visual system. However,

they do not consider the addition or removal of items, which

is always the case in software evolution. North [23] also

presents an approach for incremental graph drawing that op-

timizes the stability of node locations. Other approaches use

similar principles to incrementally display graphs [12, 24].

3. Approach Overview

The analysis process with our framework can be sum-

marized in five steps. First, metrics and relationships are

extracted from ByteCode of Java Programs and version con-

trol repositories. The second step automatically creates rep-

resentations of the extracted data and displays them in our

3D environment. In the third step, experts evaluate the pro-

gram by performing investigation actions such as navigat-

ing through the environment, navigating in time through the

different versions, and switching from a structural view to

a version control view in order to compare and understand

the different elements presented. A fourth step may be nec-

essary to verify observations made in more details. Indeed,

our tool is designed to analyze software at the granularity

level of classes, and therefore some analysis results must be

confirmed with external tools or simply by directly inspect-

ing the code itself. The fifth and final step applies conclu-

sions from the visualization process in order to correct the

observed flaws, starts to add new features in a newly under-

stood piece of software, or makes decisions concerning the

process of future software projects. Our tool enables quick

assessing of programs with thousands of classes modified

over dozens of versions.

4. Metrics and Relationships

Various types of data are useful to understand and to

evaluate the quality of software. We present in this sec-

tion three such categories. They are mapped to graphical

characteristics in order to be visually interpreted by experts.

Structural metrics represent code well because they si-

multaneously encapsulate and summarize code, while pro-

viding information about its quality. For example, classes

with large coupling and high complexity are recognized to

lead to poorly maintainable software. While our system can

extract several metrics, the examples described in this paper

use mainly CBO (Coupling Between Object) for coupling,

WMC (Weighted Methods per Class) for complexity and

size, and LCOM5 (Lack of Cohesion in Method) for cohe-

sion [3]. Metric values are extracted from ByteCode of Java

programs using a homemade tool [14]. Information on dif-

ferent versions is stored independently for each pair (class,

version) and is only merged back during visualization.

Our framework representsUML relationships. For each

class, associations, invocations, interface implementations,

and generalization/specialization relationships are reverse-

engineered with another tool [13]. These relationships are

stored individually for each version.

Our framework also works with version control met-

rics (cvs). This information, extracted from cvs log files,

indicates the author of a modification, the owner1 of a file

(class/interface), the size of a modification, and the num-

ber of versions since the last modifications. These met-

rics are interesting because they represent information about

what happened between two versions of a system, instead

of being attached to a version in particular. Version con-

trol metrics give raw information about the development

of the software product, but do not explicitly describe im-

portant process decisions that may explain design flaws.

However, some information can be abstracted from them

to greatly help explaining the quality of the code. Examples

of abstracted informations include author changes in a pack-

age, phases of refactoring where many classes are modified,

large modifications, creation of multiple classes, introduc-

tion of new authors, code constantly or never modified, etc.

Most current visualization tools present either structural

metrics [4, 17, 25] or version control information [6, 7, 18,

21, 27, 29]. In order to gain a more complete understand-

ing and analysis of the quality of a system as a whole, it

is preferable to have easy access to both types of metrics

within a single unified tool. However, this is not as sim-

ple a task as merging two tools together. Informations from

control version and structural metrics are often not aligned

together. The former ones are extracted according to indi-

vidual commits or dates, while the latter ones are usually

computed on major releases. In order to display both types

of information in a coherent way (see Section 5), it is impor-

tant to synchronize them so they correspond to each other

on a timeline. To achieve this, we convert version control

events into metrics to represent what happens between two

versions. By keeping in parallel both contexts, the cogni-

tive gap between views is reduced and the analysis of these

metrics in conjunction is facilitated.

5. Graphical Coherence Applied to Software

Coherence

Graphical temporal coherence resides in the similarity

between two images following each other in time, such as

in an animated film. With each image drawn similar to the

previous one, slight differences will reflect small progres-

sion in the scene. Putting all-together all images results in a

coherent sequence serving the purpose of a complex story.

Because large portions of the images remain unchanged, we

do not have to reconstruct their full structure each time. We

only need to assess the differences. Since human vision is

1The author who committed the larger portion of lines for this file.



inherently attracted by moving elements, the task of follow-

ing a coherent sequence of images does not require signifi-

cant cognitive efforts.

Coherence also exists between versions in the evolution

of a program. New versions are built on top of previ-

ous ones, and therefore modified and new elements affect

only a portion of an otherwise unaltered large common por-

tion. Therefore to analyze software evolution, it is more

important to concentrate on the modifications rather than

to comprehensively analyze each individual version. Al-

though static, i.e., unaltered parts, represent the context that

helps better understand a modification, we do not need to

re-evaluate this context at each transition between versions.

Hence in a visualization tool exploring the quality of

software evolution, it is natural to combine coherence be-

tween software versions and coherence of graphical anima-

tion, in order to help experts extract information more effi-

ciently. The combination is however not straightforward, as

will be discussed in detail in Section 6.2.

6. Visual Representation

6.1 Single Version Representation

Because our multiple version visualization is built on-top

of our single version visualization, we first briefly introduce

its principles.

To understand our single version visualization, we sim-

ply describe the representation of an individual class and

how to position it in the environment. More details are

available in [16].

6.1.1 Single Class Representation

Classes are represented as 3D boxes arranged over a 2D

plane. The 3D box was chosen because it is both efficient

to render on graphics hardware and easy to understand by

humans. Since we are working with Java Programs, inter-

faces are differentiated from classes by using cylinders. A

set of graphical characteristics are mapped to metrics: a

color scale from blue to red or a set of discrete colors to

represent nominal data, the box’s height, and the box’s rota-

tion around the up axis (twist). These characteristics do not

introduce important perception bias on each others, but it

would be difficult to add many more characteristics without

impacting on the clarity of existing ones. Metrics are as-

sociated by a linear mapping between their values and cor-

responding graphical characteristics. The maximum value

for each graphical characteristic corresponds to a practi-

cal maximum value for the metric. Values higher than this

threshold are mapped at this maximum value. We gener-

ally use the following associations for metrics and graphical

characteristics: color and coupling, twist and cohesion, size

and height. These associations help experts in their analyses

because of related metaphors [20]. Red often means danger

and a high coupling is recognized as a problem in the soft-

ware engineering literature, height relates naturally to size,

and finally a cohesive class can be seen as going straight to

a goal and a non-cohesive class as going in all directions,

so it appears twisted. We also map size of modifications

to height, time since the last modification to twist, and dis-

crete colors to authors in a second view on version control

information.

6.1.2 Layout

The layout of entities (classes/interfaces) follows their full

name path and the package hierarchy it represents. This

adds new information without extra dimensions. The goal

is to represent this hierarchy while using space as efficiently

as possible. To do so we use a variant of the Treemap [15]

algorithm, which is a space filling visualization represent-

ing trees and using a starting rectangle to subdivide it recur-

sively. However, this technique must be adapted because

as seen in Section 6.1.1, each box needs a given amount of

space on the plane, while the original Treemap is based on

continuous values. Our solution enlarges the original rect-

angle when necessary in order to fit the discrete elements.

It is not a problem since we are in a 3D environment and

there are no strict constraints on the resulting rectangle.

6.1.3 Navigation

Users can navigate in our 3D environment according to the

information they are looking for. The camera rotates on

an hemisphere, can smoothly move the center of the hemi-

sphere, as well as zoom in and out. The camera is al-

ways pointing toward the layout plane to prevent confusion.

Users can also directly access the metrics numerical values

or the code itself by clicking on a given class. Another mode

allows users to click on a class to fetch information about

its relationships. Instead of drawing links between entities,

we simply reduce the saturation of classes not concerned by

relationships without altering the others.

6.2 Multiple Versions

Our representation for multiple versions is based on our

representation for a single version. We display each version

one after the other, with different strategies to increase vi-

sual coherence. The navigation in time (forward and back-

ward) between versions is controled by the user.

6.2.1 Animation of a Single Class

During the animation of an individual class, we always con-

sider only two of its states: at version vi and version vi+1.



Figure 1. Four frames of RSSOwl using (top) the static position layout animation and (bottom) the

relative position layout animation.

At the beginning of the animation, the class representation

at vi is displayed. A linear interpolation with the use of in-

between frames is then displayed to reach the state of its

next version. All three graphical characteristics are simul-

taneously incremented. When position must be modified,

classes are translated in a first phase of animation and their

characteristics are changed in a second phase. These ani-

mations last only a second, but attract the visual attention of

the expert while being efficient for the understanding of pro-

gram modifications [26]. These smooth transitions between

representations of two subsequent versions are one of the

ways we use to achieve more coherence in the system.

6.2.2 Animation of the Layout

In order to achieve coherence during layout animation, we

need to reduce unnecessary movements of classes as much

as possible. Classes that are not moving or moving less

are much easier to track. Therefore, it is not a good idea

to use the Treemap layout generated for each independent

version and interpolate between consecutive versions. Be-

cause the Treemap algorithm is recursive and not iterative,

the addition of only a few classes can dramatically change

the layout. The two next paragraphs present alternatives that

increase coherence.

Static Position Animation. In this layout animation ap-

proach, all classes remain at the same position during the

visualization of all versions. The position of each entity

is computed for all versions at the beginning of the visual-

ization. To do so, all classes that ever existed in the sys-

tem and their package hierarchy are merged in a virtual tree

for which we compute a Treemap layout. Classes in this

animation approach are easily followed because they re-

main static. However this creates holes where classes were

deleted in a previous version or where classes are not yet

created. This can result in an important loss of space for

early versions where only few classes are present. Figure 1

shows four frames of the evolution of RSSOwl using this

layout animation.

Relative Position Animation. Relative Position Anima-

tion is built on top of Static Position Animation, but uses a

post-processing step to reduce the space lost in the early

versions where only a few classes are present. We simply

compute the Treemap algorithm for the virtual Tree as men-

tioned above, and then take each version individually and

try to shrink them in order to use less space, but with the

added constraint that all classes must keep their relative po-

sition. This means that if class A was placed to the left of

class B, class B will never be able to go to the left of class A.

In order to achieve this, we simply try to move classes left or

down, and see if constraints are violated. If it is not the case,

we move it to the new position. We continue the process un-

til no classes can be moved. Using this technique, classes

usually move in groups and are easier to track visually than

in the independently computed Treemap. The space reduc-

tion is significant for very large programs, or in presence of

major renamings where large portions of the system move

in the visualization. Figure 1 shows again RSSOWL, but

using this layout animation technique.

6.3 Switching Context

Our switching context feature is useful to represent more

metrics without having to add more visual characteristics.

Switching context transfers the visualization from one set

of metrics to another, while navigating in the visualiza-

tion. Any set of metrics can be mapped to both contexts

but usually, structural metrics are used in the first context



and version control metrics in the second context. With

the click of a button, the mapping changes instantly, allow-

ing rapid flips. Between the two images associated with

the switch, only graphical characteristics are modified; the

point of view and the current version remain the same. This

switching is more coherent because users do not have to

re-evaluate from a new point of view, but only fetch new

information while in the midst of their navigation process.

Figure 2 shows two contexts from the same view of the pro-

gram Freemind.

Figure 2. Two contexts from the same view
angle in the program Freemind.

7. Applications and Evaluation

Since our approach is semi-automatic, the examples pre-

sented in this section are the result of explorations. The

whole investigation took a short amount of time (a few

hours to explore more than 15 systems) and required some

movements backward and forward in time to be executed.

However, considering the size of the explored systems, we

think this effort is reasonable compared to the results ob-

tained. These examples were found by experimented users,

although novice users were able to achieve similar results to

find phenomena on static visualization [8, 16]. We believe

that this learning curve should translate well to our multiple

version environment.

7.1 Applications

Exploration. Free exploration simply maps interesting

metrics and lets the user navigate freely in the code and its

versions. The visual aspect of our approach is well suited to

attract the eye on suspicious events, anomalies, and recur-

rent patterns. It can also help to give an idea of the general

quality of a system.

Verification of Automatic analysis. In order to calibrate

or evaluate automatic analysis, it is necessary to verify its

output against data that are verified and accurate. Manually

reviewing results of automatic analysis can be tedious, if not

impossible. Our semi-automatic approach of visualization

can reduce the effort required by this manual inspection,

especially for the quick verification of false positives.

Study of Evolution Patterns. Some evolution patterns

are known to be suspicious, e.g., constantly growing classes,

quick birth and death of classes, and explosions in complex-

ity in a short span of time. These patterns are difficult to

define precisely and their evolution can differ from the ex-

pected behavior. Therefore their detection is difficult to au-

tomate. With our framework, an expert can recognize them

easily and deal with such differences.

Context and Evolution of Known Anomalies. Several

researches have already exposed anomalies from different

programs. These anomalies are difficult to understand and

correct because they represent only symptoms. Our frame-

work allows following problematic classes over their evolu-

tion and their program context to give more information on

reasons why they became problematic.

Applications mentioned above are only examples of the

capabilities of our framework. In fact, it presents raw data

to users so they can freely interpret them. Mappings are

fully customizable and determined dynamically so multiple

sources of different data can be used to create visualizations

not restrained to software. Our framework is flexible and

ranges from careful inspection of characteristics from each

entity in a system, to an overview of several systems in a

few minutes.

7.2 Case Study of Evolution Patterns

In order to evaluate our framework on real software, we

have investigated Azureus, a well-known open source peer-

to-peer program, for evolution phenomena and particulari-

ties. We have studied four main versions of Azureus, which

contain over 2500 classes. Table 1 shows our findings using

our framework during an exploration of about 90 minutes.

Figure 3 shows an example taken from the case study

where two classes (UpdateChecker and UpdaterUpdate-

Checker) are shrinking simultaneously even though they are

in different packages. After more careful observation, we

see that these two classes are highly inter-related and that

the importance attached to their behavior in the code has

reduced between these two versions.

Figure 3. An example of rapidly shrinking

classes found in Azureus.

Figure 4 shows an example where a class disappears

while its neighbor class becomes suddenly complex. In



Table 1. Examples from the case study on evolution patterns concerning Azureus.
Type Nb. Concerned Classes

Responsibility Overload 3 TorrentUtils, FileUtil, ThreadPool

Class Renaming * 2 LGlogger → Logger, LGloggerImpl → LoggerImpl,

BTProtocolMessage→ BTMessage, devices → services

Responsibility Transfer 1 TRTrackerUtilsImpl → TRTrackerUtils

Rapidly Growing Classes 4 DiskManagerImpl, NetworkManager, IncomingMessageQueue, ConfigurationDefaults

Rapidly Shrinking Classes 2 UpdateChecker, UpdaterUpdateChecker

Classes→ Interfaces 1 BufferedTableItem

fact, between versions 2.4 and 2.5, developers decided they

no longer needed a class and its implementation in separate

files, and transferred the code to one file.

Figure 4. An example of responsibility trans-
fer found in Azureus.

7.3 Case Study of Context and Evolution
of Known Anomalies

Studying the evolution of known anomalies helps to cor-

rect them in later phases and gives some ideas on patterns

that should be avoided in future development. We stud-

ied more than five systems containing a total of almost 80

anomalies. Observed patterns show that some anomalies

appear as problematic, while others suffer from a gradual

degradation. Other patterns showed an up-and-down cycle

toward the anomaly. We will now present two specific ob-

servations among these. The class Controller in Freemind

presented in Figure 5 can be considered a God Class. While

observing its metrics, it is obvious that this class follows

a responsibility overload pattern because it is constantly

growing to become a problem. There are two authors at-

tached to this file and both have participated in this con-

tinuous growth in terms of coupling and complexity. The

second author has modified the class many times upon his

arrival, without any observable benefits in coupling or com-

plexity. Secondly, in Lucene, the class IndexReader was

considered a potential case of Shotgun Surgery according a

study [8]. The class is in fact constantly growing in cou-

pling, even though it starts very high. Moreover its com-

plexity follows and up-and-down pattern, but in the long

run, the class is always gaining in complexity, as if devel-

opers were failing to keep good practices after a refactoring.

Figure 5. A controller class grows gradually
out of proportion in Freemind.

8. Conclusion

We have presented in this paper a framework able of vi-

sualizing software evolution and its quality aspects for sys-

tems of thousands of classes over dozens of versions. To do

so we use two parallel views to represent both structural and

control version metrics. Classes represented as 3D boxes

are arranged according to their full path containment hier-

archy. Animations between static frames represent several

versions, and in-between frames and evolution-specific lay-

outs help transform the coherence already present between

the different versions of a program into coherence between

their graphical representations. We have presented a num-

ber of applications for our tool and demonstrated its useful-

ness in two case studies. An accompanying video is also

available.3

Other tools present structural metrics and version control

information separately, but we consider that their unifica-

tion is both useful and a new challenge. The use of anima-

tion and coherence is also important because it allows the

verification of large programs that are difficult to analyze

in a single image. Our short animations and careful use of

navigation features reduces the cognitive effort required to

analyze evolution and enables rapid overview of systems.

2We found many renaming occurrences between versions 2.2 and 2.4,

but only list a few.
3www.iro.umontreal.ca/∼sahraouh/papers/vlhcc2008/vlhcc08.wmv



As future work, we need to conduct a comparative ex-

periment for the usefulness of our tool on precise software

engineering tasks. We would like to add even more informa-

tion in our framework by integrating a semantic zoom in the

visualization in order to explore different granularity levels.

We want to develop a new layout responding well to expan-

sion to prevent major modifications of the Treemap layout

when adding classes. We would also like to develop an in-

tuitive and efficient metaphor to represent both the software

product and the software process.

References

[1] D. Beyer and A. E. Hassan. Animated visualization of soft-

ware history using evolution storyboards. In WCRE ’06:

Proc. Working Conf. on Reverse Engineering, pages 199–

210, 2006.

[2] T. Bladh, D. A. Carr, and M. Kljun. The effect of animated

transitions on user navigation in 3D tree-maps. In Proc. Intl.

Conf. on Information Visualization, pages 297–305, 2005.

[3] S. R. Chidamber and C. F. Kemerer. A metric suite for ob-

ject oriented design. IEEE Trans. on Software Engineering,

20(6):293–318, June 1994.

[4] C. Collberg, S. Kobourov, J. Nagra, J. Pitts, and K.Wampler.

A system for graph-based visualization of the evolution of

software. In Proc. ACM Symp. on Software Visualization,

pages 77–86, 2003.

[5] M. D’Ambros andM. Lanza. Reverse engineering with logi-

cal coupling. InWCRE ’06: Proc. Working Conf. on Reverse

Engineering, pages 189–198, 2006.

[6] M. D’Ambros and M. Lanza. Software bugs and evolution:

A visual approach to uncover their relationship. In CSMR

’06: Proc. Conf. on Software Maintenance and Reengineer-

ing, pages 229–238, 2006.

[7] M. D’Ambros, M. Lanza, and H. Gall. Fractal figures: Vi-

sualizing development effort for cvs entities. In Proc. IEEE

Intl. Workshop on Visualizing Software for Understanding

and Analysis, pages 46–51, 2005.

[8] K. Dhambri, H. Sahraoui, and P. Poulin. Visual detection of

design anomalies. In CSMR ’08: Proc. Conf. on Software

Maintenance and Reengineering, pages 279–283, 2008.

[9] J.-D. Fekete and C. Plaisant. Interactive information visu-

alization of a million items. In INFOVIS ’02: Proc. IEEE

Symp. on Information Visualization, pages 117–124, 2002.

[10] N. E. Fenton and S. L. Pfleeger. Software Metrics: A Rigor-

ous and Practical Approach. Course Technology, 1998.

[11] M. Fischer and H. Gall. Evograph: A lightweight approach

to evolutionary and structural analysis of large software sys-

tems. In WCRE ’06: Proc. Working Conf. on Reverse Engi-

neering, pages 179–188, 2006.

[12] Y. Frishman and A. Tal. Dynamic drawing of clustered

graphs. In INFOVIS ’04: Proc. IEEE Symp. on Information

Visualization, pages 191–198, 2004.

[13] Y.-G. Guéhéneuc and H. Albin-Amiot. Recovering binary

class relationships: putting icing on the UML cake. In Conf.

on Object-Oriented Programming, Systems, Languages, and

Applications, pages 301–314, 2004.

[14] Y.-G. Guéhéneuc, H. Sahraoui, and F. Zaidi. Fingerprint-

ing design patterns. In WCRE ’04: Proc. Working Conf. on

Reverse Engineering, pages 172–181, 2004.

[15] B. Johnson and B. Shneiderman. Treemaps: A space-filling

approach to the visualization of hierarchical information

structures. In IEEE Visualization Conf., 1991.

[16] G. Langelier, H. Sahraoui, and P. Poulin. Visualization-

based analysis of quality for large-scale software systems.

In ASE ’05: Proc. IEEE/ACM Intl. Conf. on Automated Soft-

ware Engineering, pages 214–223, 2005.

[17] M. Lanza and S. Ducasse. Understanding software evolution

using a combination of software visualization and software

metrics. In Langage et modèles à objets, pages 135–149,

2002.

[18] G. Lommerse, F. Nossin, L. Voinea, and A. Telea. The visual

code navigator: An interactive toolset for source code inves-

tigation. In Proc. IEEE Symp. on Information Visualization,

pages 25–32, 2005.

[19] M. Lungu, M. Lanza, T. Girba, and R. Heeck. Reverse en-

gineering super-repositories. In WCRE ’07: Proc. Working

Conf. on Reverse Engineering, 2007.

[20] L. Mason. Fostering understanding by structural alignement

as a route to analogical learning. Instructionnal Science,

32(6):293–318, November 2004.

[21] C. Mesnage and M. Lanza. White coats: Web-visualization

of evolving software in 3D. In Proc. IEEE Intl. Workshop on

Visualizing Software for Understanding and Analysis, pages

40–45, 2005.

[22] Q. V. Nguyen and M. L. Huang. A space-optimized tree

visualization. In Proc. IEEE Symp. on Information Visual-

ization, pages 85–92, 2002.

[23] S. C. North. Incremental layout in dynadag. In GD ’95:

Symp. on Graph Drawing, pages 409–418. Springer, 1996.

[24] G. M. Oster and A. J. Kusalik. Icola — incremen-

tal constraint-based graphics forvisualization. Constraints,

3(1):33–59, 1998.

[25] M. Pinzger, H. Gall, M. Fischer, and M. Lanza. Visualizing

multiple evolution metrics. In Proc. ACM Symp. on Software

Visualization, pages 67–75, 2005.

[26] M. Shanmugasundaram, P. Irani, and C. Gutwin. Can

smooth view transitions facilitate perceptual constancy in

node-link diagrams? In GI ’07: Proc. Graphics Interface,

pages 71–78, 2007.

[27] S. L. Voinea and A. Telea. A file-based visualization of soft-

ware evolution. In Proc. ASCI: Advanced School for Com-

puting and Imaging, 2006.

[28] J. Wu, R. C. Holt, and A. E. Hassan. Exploring software

evolution using spectrographs. InWCRE ’04: Proc. Working

Conf. on Reverse Engineering, pages 80–89, 2004.

[29] X. Wu, A. Murray, M.-A. Storey, and R. Lintern. A reverse

engineering approach to support software maintenance: Ver-

sion control knowledge extraction. In WCRE ’04: Proc.

Working Conf. on Reverse Engineering, pages 90–99, 2004.

[30] X. Xie, D. Poshyvanyk, and A. Marcus. Visualization of cvs

repository information. In WCRE ’06: Proc. Working Conf.

on Reverse Engineering, pages 231–242, 2006.


