
Guaranteed Occlusion and Visibility
in Cluster Hierarchical Radiosity

Luc Leblanc Pierre Poulin
Département d’informatique et de recherche op´erationnelle

Université de Montréal

Abstract.
Visibility determination is the most expensive task in cluster hierarchical radios-
ity. Guaranteed full occlusion and full visibility can reduce these computations
without causing visibility errors. We build a hierarchy of large convex occluders
using face clustering. This structure is efficiently exploited to avoid computing
visibility between mutually fully occluded scene elements. Used in conjunction
with a full visibility culling method, we show improvements on several scenes.

1 Introduction

Cluster hierarchical radiosity [26, 23, 24, 12, 2] possesses attractive theoretical and
practical advantages to solve the problem of global illumination. Recently, adapted
multiresolution surfaces [34, 6] have been introduced to better control the quantity and
quality of energy transfers between surfaces rather than individual polygons or self-
occluding volume clusters. While these improvements are essential to provide an in-
creased realism for complex scenes at reduced computation cost, the major cost in these
algorithms remains determining the visibility between pairs of elements, whether they
are patches (subdivided or not), face clusters, or volume clusters.

In these hierarchical approaches, we can greatly benefit if we canguarantee effi-
ciently at the highest possible level of the hierarchy that a pair of elements is mutually
fully occluded or fully visible. Then no visibility computations would be required for
any pair of children elements derived from these two parent elements. Guaranteed vis-
ibility and occlusion ensures no errors are introduced in the energy exchanges. We
observed that full visibility and full occlusion can represent a significant proportion of
visibility between pairs of elements in a scene. For instance in our test scenes, full
visibility varies between 20 and 60% and full occlusion between 40 and 80%.

Guaranteed full visibility has been successfully exploited before by testing a shaft
[13] enclosing the pair of elements against bounding volumes of the scene hierarchy.
Testing full occlusion of these visibility shafts is more difficult. To be efficient, occlud-
ers should be as large as possible. Unfortunately objects in a scene can have complex
concave shapes, resulting in difficulties to efficiently guarantee occlusion. Moreover in
many scenes, objects are so finely meshed that no single polygon can be considered a
good occluder. Algorithms handling the combined occlusion of several polygons have
appeared in recent years [27, 10, 21], but they often require an important preprocessing
step and a large amount of memory to store the corresponding structures.

In this paper, we fit a set of large convex polygons to handle efficiently the occlusion
due to a large mesh of small polygons. Face clustering is first used to determine flat
sections in surfaces. Then a small set of large convex polygons (our occluders) are fitted
to each flat face cluster to efficiently represent the occlusion. The user can control the

1

minimum size and the number of the occluders. The full occlusion query proceeds by
testing the rays bounding the visibility shaft against our convex occluders, themselves
organized in a hierarchical structure.

Our results demonstrate that even with a limited number of occluders, we can find
a large proportion (40 to 93%) of the full occlusions in several tested scenes. When full
visibility is used in conjuntion with full occlusion, we observe reduction of the total
rendering time (up to 11 times in our test scenes). Moreover even in scenes with little
full occlusions, the cost of testing full occlusion is small enough that it almost never
seems to penalize the visibility computations, and if it does, it will be negligible.

Although our visibility determination method is applied here to cluster hierarchi-
cal radiosity, its generality indicates it should also provide interesting results in walk-
throughs [4, 16] and direct illumination from extended light sources.

In the next section, we briefly classify visibility techniques in the context of radios-
ity. In section 3, we describe how large convex occluders are extracted from the face
clustering of the scene surfaces. Then we present the particularities of our cluster hi-
erarchical radiosity system, before explaining in section 5 how full occlusion and full
visibility are implemented in our system. The system has been tested with a wide range
of scenes, and section 6 analyses the results. Finally we conclude and present directions
for future improvements.

2 Related Work on Visibility Determination for Radiosity

Visibility determination is one of the fundamental problems in computer graphics, and
an extensive literature has addressed various aspects of this problem. Many techniques
are based on a single viewpoint, and therefore less directly applicable to specific vis-
ibility determination between pairs of elements in radiosity algorithms. Due to space
constraints, we refer the interested reader to a more comprehensive survey such as the
Ph.D. thesis of Durand [7].

We roughly divide the methods into sampled visibility, volumetric visibility, ana-
lytical visibility, portals, and occlusion culling. A large class of visibility methods are
based on sampled visibility. The most popular of these methods simply shoots a num-
ber of rays between the pair of elements [32, 14]. They can prove efficient and their
observed accuracy can usually be increased by using more samples, at the additional
cost of increased computation time. However they suffer from the lack of bounds on
the error of the estimated visibility, leading to potential light or shadow leakages in
difficult configurations.

Volumetric visibility [22, 24] associates a density for a volumetric representation of
surfaces, and the occlusion is approximated as an attenuation factor. While it provides a
general sense of occlusions, the method assumes a uniform distribution of small objects,
and therefore fails to accurately represent occlusions that are in nature more directional.

Analytical 3D visibility methods [20, 5, 29, 9] provide the complete and accurate
solution to visibility. Unfortunately their algorithmic complexity quickly becomes a
serious concern for any practical use in large scenes. Even though some extensions [8]
make them more practical, the robustness problems of these methods remain.

Portals [30] offer major gains between elements distributed in separated rooms. If
the information about portals is not included into the scene design, methods exist to
automatically construct such portals [30, 17]. However portals become inefficient out-
side typical architectural scenes, within a single room, or as the rooms mutual visibility
increases.

Occlusion culling based on a single large convex occluder [19, 4, 15] can eliminate

2

Fig. 1. Two views of a given level of face clustering applied on a sofa

an important portion of an entire scene in walkthroughs. However one must provide a
list of such occluders and this list should depend on the positions of the pair of elements.
The preprocessing of visibility using cells [31, 3, 33] allows to identify large occluders
with respect to the current cell. However when the scene is mostly constituted of a soup
of small polygons, they cannot fuse together these occluders to form a large occluder,
and the expected gains are quite reduced.

Recent methods have been presented to extract large occluders from polygonal mod-
els. One approach uses simplification mesh techniques preserving occlusion [16]. The
resulting occluders are not convex, which is essential in our case to efficiently guarantee
full occlusion. Another approach grows octree boxes within closed geometric models
[1]. This algorithm is restricted to closed models, which is not always guaranteed in
many geometric modelers. Our extraction technique is similar to this one, but is based
on a surface rather than a volume. We believe both solutions are useful and should be
used in conjunction to identify the best occluders. In fact, these two occluder types can
be integrated in our occlusion culling algorithm described in section 5. The next section
details our extraction algorithm.

3 Extraction of Large Convex Occluders

Our occlusion culling structure relies on the presence of large occluders in the scene.
Unfortunately for many scenes, the only information available is a list of a large number
of small polygons, or if we are lucky, a list of objects, each constituted of its list of
polygons.

As a preprocessing step, we first need to build a list of “good” convex occluders. To
create these occluders, we use face clustering [11] to identify face clusters (a group of
adjacent polygons) that are flat and as large as possible. These polygons are projected
onto the supporting plane of the face cluster and large rectangles are fitted onto this
projection to produce our large occluders.

3.1 Face Clustering

Face clustering [34] was introduced in cluster hierarchical radiosity in order to produce
a more accurate energy transfer between clusters of polygons forming a suitable face
cluster. We use a similar face cluster hierarchy to extract the list of occluders.

In the iterative construction of the face cluster hierarchy [11], a polygon or a group
of polygons (face cluster) that minimizes a certain number of criteria such as adjacency,
planarity, smallest perimeter, etc., is added to its corresponding face cluster. At the
end of the construction, we have a list of face clusters, each organized hierarchically.

3

Figure 1 shows two views of a sofa with face clusters of a given level identified by
different colors. Note that the face clusters in this figure are not necessarily flat; the
face clusters that we use to extract our occluders are flat. We join these face clusters
into a hierarchy of volume clusters similarly to the technique of Muelleret al. [18].

We consider a good occluder to be planar and as large as possible. Such occluders
include floors, walls, doors, desktops, shelves, etc. Therefore, starting from the root
of the scene cluster hierarchy, we look if the current face cluster can be a flat and
sufficiently large occluder. Volume clusters are simply traversed recursively until face
clusters are reached. We check the planarity of a face cluster from its associated cone of
normals.1 If the face cluster is not satisfying, we continue down the hierarchy until we
find such face clusters, or until the area of a face cluster is smaller than a user specified
fraction of the dimension of the scene.

If a face cluster lies on the contour of the bounding box of the entire scene, such as
floors and ceilings in some scenes, this face cluster would not occlude any element, and
it is simply removed from the list of occluding face clusters.

3.2 From Face Cluster to Occluder

Once a face cluster satisfies our set of conditions, we must extract a small number of
suitable convex flat polygons approximatingconservatively the occlusion of this face
cluster. These polygons will reside on the supporting plane of the face cluster. Because
the orientation on the plane influences the size of the extracted occluders, we need to
find the 2D bounding rectangle that has the smallest surface. Currently, we simply test
a number of orientations (typically 10) and keep the smallest one. More sophisticated
schemes could improve this naive solution, but so far, it has proven sufficient. The
contour of the face cluster is then projected orthogonally onto this supporting plane and
we proceed with our extraction of 2D convex polygons. It is important to note at this
point that the projected face cluster can be concave, and even contain holes.

Our extraction algorithm is similar to the extraction in 3D of volume occluders by
Andujaret al. [1]. However geometric 3D models might not be closed, or individual
polygons might be used as objects to represent ceilings or walls. Therefore to remain
as general as possible, we decided to work with surfaces.

We first check some simple conditions to determine if the polygon is already simple
and convex. If not, we construct a quadtree representing the 2D face cluster. Each
quadtree element contains a list of the edges traversing its surface, or if it is empty, its
status as interior or exterior of the face cluster.

From this quadtree, we iterate to extract occluding rectangles with the following
steps:

1. Find the interior quadtree element with the largest unmarked area.
2. Expand the quadtree element along one of its two axes until the resulting rectan-

gle intersects an edge.2

3. Expand similarly the rectangle along the second axis.
4. Mark the quadtree elements completely inside the rectangle so a different initial

quadtree element is used in the next iteration.
1In our current implementation, we consider only almost planar occluders,i.e., for which each polygon has

an orientation difference of at most 1 degree, resulting from limited representation or numerical instabilities.
2In case the quadtree axes would be slightly misaligned with the face cluster, the expanded rectangle could

get stuck with an edge. Shrinking the rectangle along the first axis (typically 1/1000th of its length) gives
better results.

4

Fig. 2. On the left: largest unmarked interior quadtree element. On the middle and right: the
occluding rectangle is expanded along each of its axis.

Fig. 3. Extracted large convex occluders in semi-transparent colors over the original mesh of a
scene.

The process stops whenever the area of the unmarked quadtree elements is smaller than
a specified threshold, or that a given number of rectangles is found. Figure 2 illustrates
these steps.

Our occluders are rectangular because they are very simple convex polygons, effi-
cient to intersect, and they are well suited in typical architectural scenes. Our occlusion
testing can be easily generalized to any convex polygon, but so far, rectangles have been
sufficient.

These rectangles can obviously overlap each other. This is an advantage in our case
since we use each of them individually to test against shafts. Each of them should there-
fore be as large as possible. Another interesting advantage of this extraction technique
is that whatever the polygonization of the scene, the extraction of the occluders provides
a set of very similar rectangles. Figures 3 and 4 show the extracted occluders for two
scenes. In all our test scenes (see Figure 5), the extraction of occluders always took less
than 10 seconds on a PC Athlon 600 MHz running linux.

The extracted occluders are kept in a separate hierarchy of bounding volumes aligned
on the scene axes. The hierarchy is stored in an array [25] to efficiently access these
occluders.

5

Fig. 4. Original scene and extracted large convex occluders.

4 Cluster Hierarchical Radiosity

This section describes the specificities of the radiosity algorithm we developed.
We implemented our occlusion structure within an algorithm of cluster hierarchical

radiosity without links, similar to the one of Stammingeret al. [28]. We integrated
in this algorithm a simplified version of the face clustering of Willmottet al. [34],
postponing to a later date the introduction of the notion of “vector-based radiosity” in
our system. Face clustering [11] is also used to extract the set of the largest convex
occluders. It has shown useful to correct for small inaccuracies in geometric models,
thus avoiding undesired cracks.

The scene hierarchy is stored as a binary tree of bounding boxes aligned with the
scene axes. It is built with the criteria from Muelleret al. [18].

In the radiosity solution, we proceed down the scene hierarchy and shoot radiosity
between scene elements starting only at the level of the face clusters or below; we do
not currently exchange energy if a volume cluster is involved, although we plan to add
it soon to our system. Our oracle uses aBFA refinement criterion,i.e., the shooting
radiosity value times the form factor times the area of the face cluster or of the polygon.

We use the technique described by Smitset al. [25] when rays need to be shot
between two scene elements to test for full occlusion with the bounding segments of
shafts or to test partial occlusion [14].

5 Hierarchical Occlusion Culling

In the context of guaranteed occlusion and visibility, we can benefit from the two ex-
treme cases: full visibility and full occlusion.

5.1 Full Visibility

Full visibility has been exploited in a number of visibility techniques. In the case of vis-
ibility between two elements (polygons, face clusters, or volume clusters), a shaft [13]
between the two elements is constructed from planes, and if no other scene elements
lay within the shaft, the two elements are considered fully visible, notwithstanding self-
occlusions by the elements.

Our full visibility testing algorithm between two clusters recursively traverses the

6

bounding boxes intersecting the shaft until:

� A bounding box is completely inside the shaft. We can then stop and consider
the two elements as not fully visible.

� A bounding box contains a single polygon. We then test if the polygon intersects
the shaft and if so, we consider the two elements as not fully visible.

Any bounding box outside the shaft is simply culled without any further processing.

5.2 Full Occlusion

Determining all the visibility events resulting from a combination of several occluders
is a complex task. It is much easier to determine if a single convex occluder blocks
the entire shaft. This simply corresponds to test all segments bounding the shaft with
the occluder. If all the segments intersect the convex occluder, the two elements are
guaranteed to not see any portion of each other. If a single segment does not intersect
the convex occluder, although another occluder could block the remaining portion of
the shaft, we cannot conclude anything except the two elements might be occluded. We
then proceed by subdividing the shaft, treating the sub-shafts recursively. If we reached
the lowest level in the scene hierarchy, we resort to the traditional solution of generating
n rays randomly between the two elements [14] to test for occlusion.

Our occlusion testing algorithm between two clusters follows these steps:

1. A shaft [13] is built from the bounding boxes (aligned on the scene axes) of the
two elements.

2. Depending on the configuration, four to eight segments on the contour of the
shaft are computed.

3. The shaft is tested with the hierarchy of extracted occluders.

(a) We cast a segment in the list of occluders.
(b) For an occluder intersected, we test with all the remaining segments.

� As soon as one segment does not intersect this occluder, we start again
with another occluder of the list.

� If all the rays intersect this occluder, we have guaranteed full occlusion.

Since many segments must be tested, we implemented an iterative approach [25] to
efficiently traverse the scene hierarchy of bounding boxes instead of the conventional
recursive approach. We observed a gain of a factor of three to four in speed for this
portion of the algorithm.

5.3 Full Occlusion and Full Visibility in Cluster Hierarchical Radiosity

Our cluster hierarchical radiosity algorithm treats light exchanges by going down the
hierarchy. Our oracle determines if the light exchange should be computed between
the two current elements, or if we should subdivide one of the two elements and test
recursively. Light is exchanged only between face clusters or polygons, never at the
level of volume clusters. Visibility requests are included within this oracle. The oracle
observes the following conditions:

� If the two elements (face cluster or polygon) are considered flat enough, we com-
pute a standardBFA oracle. If the two cones of normals are entirely backfacing
each other, we can stop the recursion.

7

� Visibility between two elements is tested only every four subdivision levels down
the hierarchy. This allows the shaft to be sufficiently smaller to increase the
probability of full visibility or full occlusion, and this reduces the computation
costs. The jump of four levels empirically provided the best trade-offs in our test
scenes. A visibility test is always computed when a light exchange is required
between two elements.

� Full occlusion is less expensive to compute, so it is treated first. If we detect
full occlusion, subdivision is stopped and no light exchanges occur. Because the
occluder hierarchy is separated from the scene hierarchy, it becomes inefficient
to attempt to traverse the two hierarchies in parallel.

� If full occlusion is not detected, the test for full visibility is computed. Obviously,
one would think that if partial occlusion was detected, there is no needs to test
for full visibility. However we observed that marking bounding boxes outside the
shaft (explained below) is more efficient even if we know there will not be full
visibility.

� In case of full visibility, this information is passed down to their children so they
are not tested for visibility.

� All the bounding boxes of the scene hierarchy that are detected as outside the
current shaft are marked so they are not tested if the shaft is further subdivided.

6 Results

6.1 Statistics on our Test Scenes

The results for the visibility method presented in the previous section are summarized
in Table 1. We selected a set of scenes that feature a variety of visibility types. An
image of these scenes appears in Figure 5, along with the number of polygons and the
number of extracted occluders. Some of these images have been gamma corrected to
better display their features.

Scenes A and E feature arrangements of rooms with relatively limited energy ex-
changes between them, while in scene B, every room can see a good proportion of the
others (scene B is constructed from an array of10 � 10 rooms). Scene C has a high
occlusion factor but is an open room, this configuration being difficult to handle with
portals. Scene D is an example of a room with very little occlusion. Finally, scene F is
a mix between full visibility and full occlusion.

We tested three schemes. In thenormal technique, the oracle decides at which
level in the hierarchy of clusters the exchange happens. When this level is reached,
the visibility coefficient is calculated by ray casting [14]. Eight rays were used for all
scenes, except for scene C (10 rays) and scene D (20 rays). In this latter case, 20 rays
were used only to compute an image with less noise. Thevisibility technique is the
same as thenormal technique with the addition of the full visibility test. Theocclusion
technique adds the full occlusion test to the visibility technique.

A single pass in radiosity consists of shooting radiosity from the scene onto itself,
going down the scene hierarchy with ourBFA criteria. One pass corresponds to all
direct illumination, two passes to all the first reflections, etc.

The total time is in seconds, and comes from a PC Athlon 600 MHz with 256 MB
of memory and running linux.

For every scene, Table 1 gives the number of energy exchanges between the ele-
ments (face clusters or polygons) and the number of them fully blocked, that is every
rays shot are blocked. The number of rays shot and the number of these rays blocked by

8

full occlusion or partial occlusion are also shown. The number of shafts built represents
the number of visibility queries for full visibility and full occlusion.

Full occlusion is divided in two parts. First, the proportion of energy exchanges
fully occluded. In fact, this number represents a superset of all the fully occluded ex-
changes because this statistics relies only on the rays cast. Therefore when all sampling
rays are blocked, we consider this exchange as fully occluded while it might not be.
The second number represents the proportion of full occlusion detected in comparison
with the maximum possible. For instance in scene A, 38% of all exchanges were ful-
ly occluded. We detected 73% of these full occlusions, therefore close to 28% of all
exchanges. Full visibility is the proportion of exchanges that were calculated without
requiring to casting rays because they were detected as fully visible.

6.2 Analysis

As one can see from the timings, the combined visibility methods resulted in speedups
ranging from 1.3 to 11 for our test scenes, with a typical acceleration of approximately
2.5. Full occlusion testing is fairly efficient, and only in the second and third passes in
scene D did we observe a very slight increase (about 1% of computation time) due to
full occlusion testing.

One can note that the gain slightly reduces for indirect lighting. We believe this oc-
curs because these energy exchanges have lower energy and thus are handled at higher
levels in the scene hierarchy. As a consequence the relative size of our occluders with
respect to the size of shafts tends to diminish, so that full occlusion and full visibility
become less frequent.

Although our occluder extraction algorithm does not allow general occluder fusion,
as much as 93% (scene F, pass 1) of all occlusions were accounted for by our occluders.
Another interesting aspect is that the occlusion test is fairly inexpensive, so that even
though scene D has very little occlusion, the full occlusion test had almost no impact
on the total time.

The maximal proportion of full occlusions calculated in our test scenes can appear
less than what one might expect. For instance, test scene F, pass 1 has a full occlusion
factor of 38%. This is explained by the fact that most of the energy exchanges occur
nearby the emitter, due to the form factor contribution to theBFA error metrics in the
oracle. Therefore many of the light exchanges between distant elements (that would be
good candidates for full occlusion) are never considered because of this oracle; these
exchanges occur at a higher level in the scene hierarchy.

7 Conclusion

We presented a guaranteed visibility culling algorithm implemented in a cluster hierar-
chical radiosity algorithm with face clustering. We exploited efficiently full visibility
and full occlusion, providing an early stop in visibility determination with no errors.
This leads to higher quality energy exchanges at a lower computational cost.

We put emphasis on culling due to full occlusion. Face clustering is used to extract
a set of rectangles representing flat sections of surfaces. These rectangles are organized
in a hierarchy of occluders for efficient visibility queries with the segments bounding a
shaft between two elements. The user can control the size and the number of occluders.

We tested our culling method onto a large set of different scenes, and analyzed
the results. In all cases, our structure proved useful, even when full visibility and full
occlusion were not apparent. The resulting visibility structures are very simple to build,

9

Scene Culling Total Energy Exch Rays Rays Shafts Full Full
Pass Technique Time Exch Blocked Shot Blocked Built Occlus. Vis.

(sec) (M) (M) (M) (M) (M) (%) (%)

normal 428 4.7 1.78 37.9 15.8 0
A . 1 visibility 271 4.7 1.78 20.3 15.8 3.0 38 73 46

occlusion 220 3.4 0.47 9.9 1.9 1.9

normal 382 4.8 2.91 39.0 24.5 0
B . 1 visibility 275 4.8 2.91 27.7 24.5 9.5 61 69 29

occlusion 173 2.8 0.86 11.3 8.1 3.4

normal 199 1.20 0.64 12.07 6.96 0
C . 1 visibility 141 1.20 0.64 9.80 6.96 0.98 53 81 19

occlusion 88 0.68 0.13 4.65 1.84 0.44
normal 430 2.40 1.95 23.72 20.84 0

C . 2 visibility 435 2.40 1.95 23.33 20.84 6.96 81 75 2
occlusion 200 0.93 0.49 8.68 6.45 2.57
normal 532 2.99 2.66 29.90 28.12 0

C . 3 visibility 553 2.99 2.66 29.66 28.07 8.99 88 77 1
occlusion 228 0.93 0.62 9.14 7.58 3.17

normal 93 0.32 0.05 6.60 1.29 0
D . 1 visibility 28 0.32 0.05 2.88 1.29 0.08 16 40 56

occlusion 25 0.30 0.02 2.31 0.73 0.07
normal 55 0.23 0.02 4.62 0.85 0

D . 2 visibility 33 0.23 0.02 3.04 0.85 0.18 9 50 34
occlusion 34 0.22 0.02 2.95 0.80 0.17
normal 44 0.17 0.02 3.38 0.98 0

D . 3 visibility 33 0.17 0.02 2.57 0.98 0.22 12 50 24
occlusion 34 0.16 0.02 2.48 0.93 0.22

normal 273 2.29 1.41 18.37 12.02 0
E . 1 visibility 158 2.29 1.41 15.14 12.02 1.02 62 81 18

occlusion 95 1.15 0.27 6.01 2.89 0.47
normal 118 0.98 0.40 7.84 3.74 0

E . 2 visibility 76 0.98 0.40 5.81 3.74 0.74 41 58 26
occlusion 69 0.75 0.17 3.95 1.92 0.49
normal 89 0.84 0.48 6.70 4.24 0

E . 3 visibility 73 0.84 0.48 5.53 4.23 0.96 57 65 17
occlusion 59 0.53 0.18 3.08 1.82 0.52

normal 1017 11.13 4.26 89.04 34.30 0
F . 1 visibility 413 11.13 4.26 34.92 34.30 2.28 38 93 61

occlusion 92 7.15 0.29 3.12 2.50 0.36
normal 639 5.63 2.41 45.06 19.66 0

F . 2 visibility 256 5.63 2.41 21.07 19.66 1.50 43 66 53
occlusion 139 4.05 0.82 8.36 6.96 1.05
normal 298 2.57 1.12 20.53 9.24 0

F . 3 visibility 126 2.57 1.12 10.11 9.24 0.78 44 53 51
occlusion 86 1.98 0.54 5.40 4.53 0.66

Table 1. Full visibility and full occlusion on various scenes

10

as small as desired, provide interesting speed ups, and produce no visibility errors.
We integrated our culling method in a cluster hierarchical radiosity algorithm, but

it should be simple to use it in walkthroughs, in rendering from a given viewpoint, and
direct illumination.

We expect also that the method could be exploited in improved radiosity algorithms
with exchanges between volume clusters, irradiance vectors, and final gathering.

Other promising directions for future work include the use of volume occluders and
directional occluders for curved surfaces.

Acknowledgments. We acknowledge financial support from NSERC and Discreet, a
division of Autodesk. We would like to thank Fr´edo Durand and Filippo Tampieri for
helpful comments.

References

1. C. Andújar, C. Saona-V´azquez, and I. Navazo. LOD visibility culling and occluder synthesis.
Computer Aided Design, 2000. Accepted for publication.

2. P.H. Christensen, D. Lischinski, E.J. Stollnitz, and D.H. Salesin. Clustering for glossy global
illumination. ACM Transactions on Graphics, 16(1):3–33, January 1997.

3. D. Cohen-Or, G. Fibich, D. Halperin, and E. Zadicario. Conservative visibility and strong
occlusion for viewspace partitioning of densely occluded scenes.Computer Graphics Forum
(Eurographics ’98), 17(3):243–254, 1998.

4. S. Coorg and S. Teller. Real-time occlusion culling for models with large occluders. In1997
Symposium on Interactive 3D Graphics, pages 83–90, April 1997.

5. G. Drettakis and E. Fiume. A fast shadow algorithm for area light sources using backpro-
jection. InProceedings of SIGGRAPH ’94, Annual Conference Series, pages 223–230, July
1994.

6. R. Dumont and K. Bouatouch. Using levels of detail to speedup radiosity computation.
Technical Report RR-3602, INRIA, 1999.

7. F. Durand.3D visibility, analysis and applications. Ph.D. thesis, Universit´e Joseph Fourier,
Grenoble, 1999.

8. F. Durand, G. Drettakis, and C. Puech. Fast and accurate hierarchical radiosity using global
visibility. ACM Transactions on Graphics, 18(2):128–170, April 1999.

9. F. Durand, G. Drettakis, and C. Puech. The visibility skeleton: A powerful and efficient
multi-purpose global visibility tool.Proceedings of SIGGRAPH 97, pages 89–100, August
1997.

10. F. Durand, G. Drettakis, J. Thollot, and C. Puech. Conservative visibility preprocessing using
extended projections. InSIGGRAPH 2000 Conference Proceedings, Annual Conference
Series, July 2000, to appear.

11. M. Garland.Quadric-Based Polygonal Surface Simplification. Ph.D. thesis, Carnegie Mellon
University, 1999.

12. S. Gibson and R.J. Hubbold. Efficient hierarchical refinement and clustering for radiosity in
complex environments.Computer Graphics Forum, 15(5):297–310, 1996.

13. E. Haines and J. Wallace. Shaft culling for efficient ray-traced radiosity. InEurographics
Workshop on Rendering, 1991.

14. P. Hanrahan, D. Salzman, and L. Aupperle. A rapid hierarchical radiosity algorithm. In
Computer Graphics (SIGGRAPH ’91 Proceedings), volume 25, pages 197–206, July 1991.

15. T. Hudson, D. Manocha, J. Cohen, M. Lin, K. Hoff, and H. Zhang. Accelerated occlu-
sion culling using shadow frustra. InProceedings of the Thirteenth Annual Symposium on
Computational Geometry, pages 1–10, June 1997.

16. F.-A. Law and T.-S. Tan. Preprocessing occlusion for real-time selective refinement. In1999
Symposium on Interactive 3D Graphics, pages 47–52, 1999.

11

17. D. Meneveaux.Lighting simulation in complex architectural environments: sequential and
parallel approaches. Ph.D. thesis, Universit´e de Rennes I, 1998.

18. G. Mueller, S. Schaefer, and D. Fellner. Automatic creation of object hierarchies for radiosity
clustering. InPacific Graphics ’99, October 1999.

19. H. Plantinga. Conservative visibility preprocessing for efficient walkthroughs of 3D scenes.
In Proceedings of Graphics Interface ’93, pages 166–173, May 1993.

20. H. Plantinga and C.R. Dyer. Visibility, occlusion, and the aspect graph.International Journal
of Computer Vision, 5(2):137–160, 1990.

21. G. Schaufler, J. Dorsey, X. Decoret, and F.X. Sillion. Conservative volumetric visibility with
occluder fusion. InSIGGRAPH 2000 Conference Proceedings, Annual Conference Series,
July 2000, to appear.

22. F. Sillion. Clustering and volume scattering for hierarchical radiosity calculations. InFifth
Eurographics Workshop on Rendering, pages 105–117, June 1994.

23. F. Sillion, G. Drettakis, and C. Soler. A clustering algorithm for radiance calculation in
general environments. InEurographics Rendering Workshop 1995, pages 196–205, June
1995.

24. F.X. Sillion. A unified hierarchical algorithm for global illumination with scattering volumes
and object clusters.IEEE Transactions on Visualization and Computer Graphics, 1(3):240–
254, September 1995.

25. B. Smits. Efficiency issues for ray tracing.Journal of Graphics Tools, 3(2):1–14, 1998.
26. B. Smits, J. Arvo, and D. Greenberg. A clustering algorithm for radiosity in complex en-

vironments. InProceedings of SIGGRAPH ’94, Annual Conference Series, pages 435–442,
July 1994.

27. C. Soler and F.X. Sillion. Fast calculation of soft shadow textures using convolution. In
SIGGRAPH 98 Conference Proceedings, Annual Conference Series, pages 321–332, July
1998.

28. M. Stamminger, H. Schirmacher, P. Slusallek, and H.-P. Seidel. Getting rid of links in hier-
archical radiosity.Computer Graphics Forum (Eurographics ’98), 17(3):165–174, 1998.

29. A.J. Stewart and S. Ghali. Fast computation of shadow boundaries using spatial coherence
and backprojections. InProceedings of SIGGRAPH ’94, Annual Conference Series, pages
231–238, July 1994.

30. S. Teller and P. Hanrahan. Global visibility algorithms for illumination computations. In
Proceedings of SIGGRAPH ’93, Annual Conference Series, pages 239–246, 1993.

31. S.J. Teller and C.H. S´equin. Visibility preprocessing for interactive walkthroughs. InCom-
puter Graphics (SIGGRAPH ’91 Proceedings), volume 25, pages 61–69, July 1991.

32. J.R. Wallace, K.A. Elmquist, and E.A. Haines. A ray tracing algorithm for progressive
radiosity. InComputer Graphics (SIGGRAPH ’89 Proceedings), volume 23, pages 315–
324, July 1989.

33. Y. Wang, H. Bao, and Q. Peng. Accelerated walkthroughs of virtual environments based
on visibility processing and simplification.Computer Graphics Forum (Eurographics ’98),
17(3):187–194, 1998.

34. A. Willmott, P. Heckbert, and M. Garland. Face cluster radiosity. InEurographics Workshop
on Rendering, pages 293–304, June 1999.

12

A: 37424 triangles (204 occluders) B: 83600 triangles (1140 occluders)

C: 51296 triangles (549 occluders) D: 741 triangles (119 occluders)

E: 14453 triangles (549 occluders) F: 642 triangles (203 occluders)

Fig. 5. Test scenes

13

