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Figure 1: Variations on a building. Top: Random variations on the distribution of apartments, secondary corridors, rooms, and furniture for one
randomly generated configuration of wings in a multi-storey building. Bottom: Random variations on the wing shapes and their content.

ABSTRACT

We present a system to procedurally generate complex models
with interdependent elements. Our system relies on the concept of
components to spatially and semantically define various elements.
Through a series of successive statements executed on a subset of
components selected with queries, we grow a tree of components
ultimately defining a model.

We apply our concept and representation of components to the
generation of complete buildings, with coherent interior and ex-
terior. It proves general and well adapted to support subdivision
of volumes, insertion of openings, embedding of staircases, deco-
ration of fagades and walls, layout of furniture, and various other
operations required when constructing a complete building.

Keywords: Procedural Modeling, Architecture, Shape Grammar,
Boolean Operation

Index Terms: Computer Graphics [I.3.5]: Computational Geom-
etry and Object Modeling

1 INTRODUCTION

Buildings host a great deal of modern human activity. As such, ev-
ery immersive computer graphics (CG) project, whether it be movie
special effects, virtual reality systems, or video games, is bound to
eventually require buildings. Our familiarity with buildings man-
dates a high degree of fidelity, and therefore, many adopted solu-
tions rely mainly on manual labor from artists. Consequently, cre-
ating an entire building, or worse, all the buildings of a city, quickly
becomes a daunting endeavor.

Procedural modeling is an excellent method to tackle the com-
plexity of reality. Instead of relying on long and sustained human
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involvement, arbitrarily complex objects can be generated with lit-
tle input from a user. This approach forgoes defining every little
manual detail in favor of a succinct set of automatic rules able to
satisfy most cases reasonably well. Various procedural techniques
have been fairly popular in specialized modeling domains of CG,
such as fractals for landscapes, L-systems for plants, particle sys-
tems for fluids, and shape grammars for building exteriors.

Shape grammars constitute the state-of-the-art in procedural
modeling of building exteriors, and have produced high-quality re-
sults [4]. However, even though modeling building interiors and
exteriors appears similar, shape grammars have not yet proven to
be a good solution for modeling complete buildings. In fact, since
their creation, only a small number of grammars, such as the palla-
dian [30], have been produced for 2D floor plan generation, and
better solutions have been provided by optimization techniques.
Moreover, despite 10 years of development, shape grammars have
seemingly yet to be used to model complete buildings.

This paper presents our solution to generate procedural buildings
with coherent interiors and exteriors. We introduce a system ca-
pable of simulating split grammars and executing CSG (Construc-
tive Solid Geometry) operations within a unified context. Our tech-
nique consists of executing a series of operations (i.e., a program)
on a set of shapes selected by a query mechanism. These oper-
ations and queries are implemented as a programming language,
and consequently, our system retains the flexibility and generality
of programming languages, which is an asset in procedural model-
ing. The language is devoted to modeling with components, which
is different than a library of tools on top of a regular programming
language. Our system is currently not intended for general artists,
but rather for designers with some programming skills. Moreover,
our goal is to generate believable and coherent buildings for game
and special effects environments, similar to those from recent CG
shape grammars. While we hope to explore more advanced archi-
tectural issues in the future, we are not architects, and our system
first addresses the basic needs for building design. It provides tools,
but intelligence is still in the designer’s hands. However, with care-
ful design, the procedural modeling aspect in our system allows for



inherent variability and reusability.

The main contribution in this paper is the system proper: the
components and their attributes, the organisation of the components
into a tree, the query mechanisms to select any subset of compo-
nents, the operations applied to create new components, the con-
straints to respect, etc. Since this is a large system, some concepts
may have appeared elsewhere, in one form or another. However,
by putting them together, it creates a flexible system that has many
advantages in the construction of complete buildings.

The paper is organized as follows. After a brief survey of key
contributions in procedural modeling for buildings in Section 2, we
define all of the concepts, elements, and operations of our technique
in Section 3. We then apply it specifically to building creation and
describe typical designing steps in Section 4. We present and an-
alyze some of our results in Section 5, before concluding and dis-
cussing future extensions in Section 6.

2 PREVIOUS WORK

Buildings are studied in a multitude of research domains: architec-
ture, engineering, sociology, arts, etc. Each domain has its concerns
and methodology. However, because our goal is to procedurally
generate buildings for CG applications, we will restrict our study to
this specific field.

Procedural modeling with grammars is an efficient method to
generate scenes with rich geometric details. Generally speaking,
its production rules modify a structure by adding details at each
iteration. More than just automating the design process, it al-
lows the exploration of design alternatives, and may even suggest
possible innovative designs. A large number of design grammars
have been introduced, notably, with a representative reference: L-
systems [26], Chomsky grammars [28], graph grammars [6], shape
grammars [29], and attributed grammars [13].

In architecture, Stiny [29] and his collaborators have introduced
a number of different types of grammars to model and analyze
buildings. While they laid the basis for what was to follow in CG,
their grammars require much user involvement, which hinders the
type of efficient generative modeling generally required for build-
ings in CG applications.

Nonetheless, a number of shape grammars have been dedicated
to very specific architectural styles, but very few are accompanied
by computer implementations. In an early exception to this re-
mark, Heisserman [10] developed a boundary-solid grammar for-
malism and his implementation showed interesting variations on
Queen Anne houses.

Parish and Miiller [25] initiated much of the current trend on
procedural generation of buildings for CG applications. While their
buildings have simple shapes and their fagades use basic sets of tex-
tures, they successfully created complete and believable cities com-
prised of various buildings distributed along generated road maps.

The next step, by Wonka et al. [33], significantly improved on
Parish and Miiller’s fagades by introducing split and control gram-
mars. They created large databases of architectural elements for
fagades that can be combined to produce different decorations and
styles. Larive and Gaildrat [15] derived a wall grammar for their
fagades, integrated with ground-level building plan contours ex-
tracted from photos to extrude general shapes of buildings. Kreck-
lau et al. [14] later generalized the definition of non-terminal sym-
bols in an object-oriented way, allowing easy addition of new oper-
ators such as free-form deformations.

Another set of improvements for fagcades came from photos of
real buildings. Aliaga et al. [2] manually identified blocks on cali-
brated photos of a building, and reorganized these blocks to create
different structures. Miiller et al. [23] automatically segmented and
interpreted such photos to recreate the associated geometry. Xiao
et al. [34] showed how to extract a wider variety of facades from
street-view video footage. Nan et al. [24] demonstrated a general

interface, smartboxes, to improve on the reconstruction of patterns
even in regions with lower-quality data.

Building shapes and fagades were coherently integrated when
Miiller et al. [22] introduced CGA Shape, a shape grammar for
architecture, to create complex building shapes of high quality
with numerous facade details. They used the control grammar of
Wonka et al. [33], but among several other contributions, developed
context-sensitive shape rules (snap lines and occlusion queries) to
improve the quality of fagade elements in the presence of intersect-
ing shapes of a building. Further improvements in the form of an
interactive visual grammar editor have since been proposed by Lipp
et al. [19]. This allows for a more intuitive modeling, and avoids
a combinatorial explosion of rules by permitting local persistent
changes.

While shape grammars can produce high-quality building exte-
riors, they do not always produce the best associated details and
underlying polygonizations. The appearance of buildings can be
improved by the cellular brick textures of Legakis et al. [18], which
adapts itself on edges and corners of shapes, and by the generative
mesh modeling of Havemann [9], better adapted for complex details
and ornaments. Recently, Teoh [31] presented a technique specifi-
cally designed to generate traditional East Asian architectures.

Compared to research on building exteriors, less work has ap-
peared in CG on the design of building interiors. Harada et al. [8]
described a method for interactive context-sensitive floor plan ma-
nipulation. They did not work on actual 3D space, nor building
shapes. This argument applies in fact to most floor plan layout
techniques studied in architecture, engineering, and games (e.g.,
[12, 32]). Hahn et al. [7] created simple layouts for building inte-
riors. They propose general generation steps to create stairwells,
corridors, and rooms. However, their layouts are restricted to very
simple axis-aligned grid subdivision structures. They do not handle
room details, such as windows, decorations, etc., except for doors
(portals), and simple texture mapping. Bradley [3] presented 2D
interiors on more complex non-convex regions.

Other work addressed the reconstruction of a 3D model from
provided 2D floor plans [11, 35]. Recently, Merrell et al. [21]
described a stochastic optimization technique trained on real floor
plan data using a Bayesian network. Although they generate com-
plete two-storey town-house type buildings, they concentrate on au-
tomated 2D floor plan generation and no details are given as to how
the 3D buildings were created.

To our knowledge, no work has yet presented a unified system
to procedurally generate both interiors and exteriors with a high de-
gree of control. Our system is therefore one of the first attempts to
address this complex problem. The buildings produced as exam-
ples in this paper and in the associated website [16] illustrate the
potential of our system.

3 CONCEPTS

In our system, a procedural object (e.g., a building), is defined using
a program composed of a series of statements. Each statement,
executed in sequence, operates on a set of components to modify
its attributes or to create new components.

A component represents a shape positioned in space with a num-
ber of attributes (system- and user-defined). We use queries to re-
strict the set of components affected by each statement. Queries
retrieve components sharing a common set of attributes, and since
components are never replaced, we have access to any previously
created component (unlike grammars, which only work on the cur-
rent active symbols). Again, contrary to a grammar, the operation
contained in the statement is not restricted to a single component at
a time, but can be applied to the whole set at once, possibly even
disjoint components, opening the door to CSG operations and the
likes. While creating new components, a tree is formed, linking
source components to their children (see Figure 2).



Figure 2: Component tree associated with the simple floor layout of
four rooms, a corridor, and an elevator shaft (shown in the image).
A curved box represents a 3D component, a rectangular box repre-
sents a 2D component, and a blue ellipse represents a region. Three
dots means the same structure is repeated. Labeled dashed boxes
(A-D) refer to modifications of the component tree after executing a
portion of the code in Figure 3.

Not only can components be modified or created, they can also
be connected together with the help of regions. Regions are shapes
defining positional and orientational constraints on how two com-
ponents can be connected. This can be seen as something akin to
assembly modeling [27] sometimes used in CAD.

Our procedural modeling system unifies the equivalent of gram-
mars, assembly modeling with connecting operations, generic mod-
eling operations (CSG, extrusion, etc.), as well as some simple opti-
mization techniques explained in Section 4.1. This combination of
techniques allows choosing the best operations for different parts
of the model. For example, we use split operations for fagades,
connections for decoration placements (doors, windows, furniture,
lights, etc.), and CSG operations for interior space partitioning. Al-
though not fully implemented yet, more sophisticated optimization
operations could be devised within our system for more automated
interior design and furniture placement.

3.1 Components

A component is a basic 2D or 3D shape arbitrarily positioned in
space. Its shape is encoded as a boundary consisting of a poly-
gon (2D) or a polyhedron (3D) contained in an oriented bounding
box. The oriented bounding box defines a local space useful when
applying certain operators.

A component can have an arbitrary number of child components;
we refer to this hierarchy as the component tree. This tree can struc-
ture volumes hierarchically (e.g., a room in an apartment on a storey
in a wing of a building). Multiple trees can exist simultaneously in
the system.

A set of arbitrary attributes supplement the component’s defini-
tion by allowing the user to specify various meta-information re-
lated to the component (e.g., floor level, wall thickness, molding
style). Child components inherit their parent’s attributes.

A list of labels describe the component’s type. These labels are
used in queries to select specific components we apply operations
to. The labels are not inherited, since we typically want to work on
a component, rather than its whole subtree. Nevertheless, a compo-
nent has multiple, usually refining, labels (e.g., a room can also be
a bedroom and a master bedroom).

The boundary and labels are determined at creation time, and
they cannot be altered. The attributes can be altered at will.

// Main component.
component ( label="floor", size={10, 2.5, 10} )

// Creation of the apartments.
for c in query( "floor" ) do
split( ¢, "zZ", { label="living space", rel=1 },
{ label="corridor" , abs=2 },
{ label="living space”, rel=1 } )

end

for ¢ in query( "living space” ) do
split( ¢, "X", { label="apartment”, rel=1 },
{ label="apartment", rel=1 } )
end

// Creation of the elevator shaft (A).
component (
label ={"elevator", "room"},
size ={2, 2.5, 2},

position={4, 0, 2}
)

// Creation of rooms cut by the elevator shaft (B).

for c in query( "apartment" or "corridor" ) do
subtract ( ¢, query( "elevator" ), { label="room" } )
end
// Extrusion of room walls, with a color attribute (C).
var i = 0
for ¢ in query( "room" ) do
i=4i+1

for f in fquery( c, "SIDE" or "BOTTOM" ) do
component ( ¢, label="wall”, boundary=f )

end

extrude (
query( ¢, "wall" ),
-0.05, { label="iwall", color=i }

)

end

// Creation of doors by using regions (D).
for ¢ in query( "wall" and not parent ("corridor")
and occlusion("corridor™”) > 0 ) do
region( c, label="door" )
end

for r in rquery( "door" ) do
connect ( componentFromFile( "door01" ), r )

end

// Creation of the actual geometry.

for ¢ in query( "iwall" ) do

solidGeometry( ¢, c.color )
end

Figure 3: Pseudocode to generate the simple example of Figure 2.

3.1.1 Faces

A face is a polygon from a component’s boundary and can be tagged
with an identifier (a face ID). Unlike the component’s labels, each
face can have only a single ID, and those are not inherited, but rather
carried to newly created faces. For example, when splitting a com-
ponent in half with a split operator, two child components are cre-
ated with a new boundary each. Each face of the new boundaries
originating from the parent boundary, keeps the same ID as the orig-
inal one. In Figure 10 (left), this mode of propagation enables, for
instance, to position doors on the front center face, from a list of
face IDs such as front left, front center, front right, side, and back.

Face IDs can also limit the scope of certain operations. A notable
example is the boolean union, which will only merge faces sharing
the same ID. Thus, adjacent co-planar sections can be kept distinct
rather than being merged into a single polygon.

3.1.2 Regions

A region is a semantically meaningful shape (polygon or polyhe-
dron) belonging to a component, positioned relative to it, and defin-
ing a range of valid positions (see Figure 4). A region also consists
of a range of valid orientations, specified as minimum and maxi-
mum angles around each axis of a coordinate system.

A component is attached to another component’s region by align-
ing its connector (coordinate system) to a valid position and orien-
tation defined by the region. A component can contain multiple re-
gions, but has a single connector. A region’s area or volume defines
(in non-degenerate cases) an infinite number of potential connector
positions and orientations.
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Figure 4: Left: A rectangular floor region (in light blue) with three
chair components positioned on it; each connector is drawn as an
axis system. This region, being smaller than its room component,
restricts the placement of chairs. Right: Rotated variations of the
original chair positions (valid orientations shown as red discs, i.e.,
indicated as 0° to 360° around the UP axis).

// Operations on every queried component.
for c in query( "label” ) do

operationl( ¢, ... )

operation2( ¢, ... )

operationN( ¢, ... )
end

// Operation on all of the queried components at once.
a

operation( query( "I

// Nested queries.
for c in query( "labell” ) do

operation( ¢, query( "label2" ), ... )
end

Figure 5: Examples of statement patterns.

3.2 Program

The construction of a building consists of executing a program,
which applies a sequence of operations to a tree of components,
thereby modifying the tree. Operations work on all or some of the
components, selected with a query mechanism.

The basic element of a program, the statement, is generally com-
posed of a query and one or multiple operations. Typical statement
patterns are illustrated in Figure 5. For instance, a sequence of op-
erations can be applied on each component returned by a query, or
a single operation can be applied on the entire set of components
returned by a query. In another example (nested queries), an opera-
tion can be applied on each component returned by a first query, and
this operation is applied with a second set of components returned
by a different query.

Since our program is written as a script, it benefits from the ad-
dition of conditional and generic loop statements. As an example, a
probability of execution (if-statement) can determine if a sequence
of operations (or an individual operation) is executed, thus creating
families of buildings. This access to conditions and random gener-
ators (random values, random seeds, controled seeds) is at the heart
of the procedural creation of variations at any level of the building
structure. This concept is illustrated in Figure 1, as well as provided
by some images and video sequences available on the associated
website [16].

3.3 Queries

In order to limit the scope of the operations, a query mechanism
parses through all of the components to select those respecting ar-
bitrarily complex criteria. If source components are passed as argu-
ments to a query, the parsing will be limited to these components
and their children.

Three types of criteria are available for filtering: component at-
tributes (e.g., labels, face ID, user-defined), component proximity,
and component occlusion. A query with the proximity criteria finds
all components within a certain distance of a given component. The
occlusion factor between a component and a group of components

is computed by projecting the boundary of the group on the compo-
nent, and evaluating the fraction of the component area covered by
this projection. In Figure 3, occlusion is used to identify a wall (2D
component) adjacent to a corridor in order to place a door. Special-
ized queries allow retrieval of regions (for connection) as well as of
boundary faces of components (e.g., to create 2D components to be
used for extrusion).

3.4 Operations

The operations described in this section are but a few of all of the
possible operations one could imagine or require. They have been
used to produce the results presented in this paper.

3.4.1 Alteration

The simplest operation is to add, modify, or delete component at-
tributes. Components can contain an arbitrary number of generic
attributes.

3.4.2 Connection

Connecting a component to the region of another component con-
sists of aligning the source component’s connector (a coordinate
system) onto the other component’s region. The resulting rigid
transformation is then propagated to the source component’s chil-
dren.

Since a region typically defines multiple possible coordinate sys-
tems, we allow the user to specify the exact position and orientation
at the time of the connect. When no position or orientation is spec-
ified, a random one is generated within the range specified by the
region. This is illustrated in Figure 4.

3.4.3 Creation

Since our technique relies on generating a hierarchy of components,
there are a number of ways to generate them.

Instancing explicitly creates a component, either as a root com-
ponent, or from a parent. Child components are defined in the par-
ent’s space, and by default, a child component has its boundary
clipped by its parent’s boundary, as to not extent outside its parent.
This clipping is optional but very useful to create complex space
partitioning in buildings. A face of a boundary can also be used
to apply operations to it, but it first needs to be converted into 2D
components.

Slicing generates multiple components by cutting a parent with a
single specific size along one of the three main axes of its reference
coordinate system. This operation is similar to the repeat operation
from [33, 22], with the distinction that we have multiple policies to
distribute the left-over space (give to first, give to last, split amongst
both, or spread across everyone).

Splitting (also present in [33, 22]) creates child components
along one of the three main axes using a list of sizes (relative, ab-
solute, or both). Absolute sizes are first deducted from the parent’s
component dimension, and the remaining space is divided amongst
all of the relative ones, weighted using their specified importance.

Boolean operations (union, intersection, and subtraction) can be
applied to either 2D or 3D components. Union and intersection
work on a set of components, and the result is stored as a root com-
ponent to avoid conflicts in parent attributes. The subtraction cuts a
set of components from a single other one, and stores the result as
a child of the component undergoing the subtraction.

Extruding a 2D component along an arbitrary vector generates
a 3D component. When applied to a set of 2D components, each
edge shared by two adjacent 2D components is extruded in a single
direction computed from these 2D components, thus generating two
new 3D components which share a face, as illustrated in Figure 6.
This is used extensively to create coherent non-overlapping walls
and fagades.



Figure 6: Comparison of extrusion modes. Left: Sides are extruded
separately. Right: Sides are extruded together.

Roofing is a specialized extrusion to create simple roofs. The
base polygon of the 2D component is extended towards a degener-
ate version of that same polygon in such a way as to yield gables.

The creation of regions, stored in components, as well as con-
straints, stored in user variables (see Section 3.5), complete our
current list of operations.

3.5 Constraints

Constraints are spatial entities (polyhedra, polygons, or planes) that
restrict or enforce the location or dimension of components. While
any operation could be applied with a requirement to satisfy a list
of such constraints, at this moment, they are mainly used with split
and slice operations.

Constraints can serve to avoid having perpendicular walls cross-
ing windows (see Figure 7), to align corridors or floors across wings
of a building, or any other case where structural elements may af-
fect neighboring components.

The user is solely responsible for determining the priority of the
elements, and must therefore decide whether, for example, the in-
terior walls will affect the fagade layout, or whether it is the other
way around. We have not devised an optimizing solution, as the
scope of such work extends beyond this current research. We have
instead opted to use a simpler solution, similar to what Miiller et
al. [22] have introduced.

Constraints affect the boundary of each component created with
the split and slice operations. With the use of repulsion or attrac-
tion, the component’s sides can avoid or snap to the constraints.
This is achieved by reducing the problem into 1D along the axis
of the operation. A specialized version of the slice operation can
directly match a given list of constraints and use them as cutting
planes.
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Figure 7: An example of creating and enforcing constraints, with the
results without (far rooms) and with (near rooms) their application.

3.6 Geometry

The component hierarchy created by our technique is purely ab-
stract, and only represents the spatial partitioning of the building. It
serves as containers for real geometry that can be attached to it. Any
component node can carry geometry, not only the leaf components
of the hierarchy.

The geometry can come from a conversion of the component’s
boundary (this is the solidGeometry() call of Figure 3), or from
any other external source (such as commercial modeling softwares).
When using the solidGeometry operation, a surface parameteriza-
tion is automatically generated for the geometry to enable the place-
ment of a texture (a texture map or procedural texture).

The geometry used to define the building’s structure (i.e., floors,
walls, ceilings, doors, and windows) requires support of solid mod-
eling, since doors and windows cut holes in walls (see Section 4.4
for details). It is important to note that this use of solid model-
ing is not the same as the CSG operators described previously in
Section 3.4.3, since in this case, we are working on geometry as
opposed to components. In contrast, the geometry used for deco-
ration (furniture, appliances, fixtures, etc.) is not involved in CSG
operations, and can therefore take advantage of instancing. We use
our own system to model all our geometry; it is based on a block
primitive [17].

4 BUILDING CREATION

Building creation can be divided in four steps:

(1) Space partitioning divides the building in sections, mainly
hallways, stairwells, rooms, and closets.

(2) Base geometry creation adds walls, floors, and roofs.

(3) Architecture elements, such as doors, windows, and staircases,
are applied to the base geometry, generally with connect op-
erators.

(4) Decoration adds the final touch with placement of furnitures,
light fixtures, paintings, etc.

The first three steps may alternate in parts. For instance when a
window should affect wall placement, steps for space partitioning
and base geometry creation would also occur after the application
of the related architecture elements.

4.1 Space Partitioning

In order to obtain the 3D components required for the base geome-
try, we successively partition the volume of the building using var-
ious operations. In general, we proceed as follows.

We first represent the building using a group of 3D components
accounting for the general appearance of the building’s boundary.
For each component requiring a roof, its top face is converted in
a 2D component, which becomes the polygonal base used by the
roofing operation. With a boolean merge operation, we combine
the various parts of this base shape into a single component. We
then slice the whole building into multiple storeys, assigning auto-
matically a level number (an attribute) to every created component.

For every component of a storey, we segment it into corridors and
apartments, using a combination of operations such as split, slice,
and explicit component creation. The level number is automatically
inherited as attribute to all newly created components. Similarly to
levels, apartment numbers can be assigned.

Apartments are then subdivided into rooms, again with a combi-
nation of split, slice, and explicit component creation. Room cate-
gorization (living room, kitchen, bedroom, bathroom, etc.) is done
using the component’s label.

Some components created after the storeys generation may span
across multiple storeys (stairwells, elevator shafts, auditoriums) and
overlap other components. Since the base geometry requires non-
overlapping space partitioning, intersecting volumes must be as-
signed to a single component. This is done by judiciously cutting
volumes out of components, either explicitly, or through an auto-
matic system. In the automatic case, the user specifies a priority
(an attribute) in the components, and each overlapping component
will get cut by any higher priority component. Since a component’s
boundary is fixed at creation, we store the results of the boolean
subtractions using child components. This is illustrated in Fig-
ure 2, where component “elevator” (a label) is overlapping com-
ponents “apartment”. A subtraction operation creates the new non-
overlapping components “room”.



Stairwells, being shafts across multiple floors, require storey sep-
arations in order to create flights of stairs properly aligned with
floors. Although we could mimic the slice operations previously
used to create the storeys, we can also use constraints. By querying
the components neighboring a stairwell, we can extract their floor
2D components, and use them to create a list of planar constraints.
We then slice the stairwell with that list and recover our exact storey
separations.

Constraints are also handy for other situations. To avoid having
perpendicular walls crossing a window, we specify repulsion con-
straints on window areas we first collected using the neighborhood
query. These constraints will then guide the placement of the walls
being generated by splitting and slicing. Figure 7 gives an illustra-
tion of the results. On the other hand, snapping constraints can be
used to align corridors across adjacent wings of a building.

While this way of creating space partitioning is flexible and pow-
erful, it can also be difficult to produce the necessary set of state-
ments. This is especially true when trying to create a building sport-
ing multiple distinct variations. A simpler way would be to add a
new operator capable of partitioning a component with a 2D floor
plan optimization technique, such as the one of Merrell et al. [21].
Such an operator would fit nicely in our system, providing precise
control where needed (using other more manual operators), and let-
ting the system optimize in other cases. It would also be useful to
propose alternatives or variations in spatial designs.

4.2 Base Geometry

We refer to the base geometry of a building as the geometry associ-
ated to the spatial division of the building. It is comprised of all the
walls, floors, and ceilings of every room, corridor, and stairwell, as
well as facade elements. It excludes openings, such as doors and
windows, as well as decorations, such as furniture and moldings.

We form the base geometry by first extracting a subset of 3D
components from the tree of components. We then extrude together
the faces (2D components) of those components to form the walls,
floors, and ceilings. This can be seen in Figure 2 where components
with label “room” are chosen to create 2D components “wall” that
are extruded towards the inside “iwall”. These “iwall” 3D compo-
nents are converted to solid geometry at the end of the program.

Interior components (rooms, corridors, stairwells, etc.) are ex-
truded towards the inside of the room, while exterior components
(facade elements) are extruded towards the outside of the building.
Figure 8 illustrates the interior and exterior extrusions of a simple
building.
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Figure 8: The resulting base geometry of Figure 2 extended with
a simple fagade (in dark gray). For each room, walls are extruded
towards the interior; facade walls are extruded towards the exterior.

4.3 Facades

Facades are made from the exterior walls (2D components) of the
building. They are created using a series of split and slice op-
erations in a manner very similar to previous facade-generating
techniques, such as [33]. Extrusions of the 2D components cre-
ate ledges, bricks, etc., while regions are defined for windows, bal-
conies, and doors (see Section 4.4).

We obtain the exterior walls by merging all of the wing com-
ponents making the building. These merged components form the
outer shell of the building. We can merge the wings either before or
after they are sliced into storeys, depending on whether or not we
want facade elements to match floor locations. When floor location
is respected, the level attribute can be used to control the variations
(see Figures 9 to 11). The face IDs (originally defined in the wings)
can also be used to vary the facades, e.g., by identifying the main
entrance at the front of the center wing.

4.4 Architectural Elements

Up to this point, all of the generated geometry is hermetically
closed. To access rooms, we need a way to cut geometry out of
them. This is done by performing boolean operations (subtracts in
particular) on the component’s geometry (not its boundary).

Doors and windows are therefore created with a combination
of boolean operations that will first cut a hole in the wall prior to
adding the frame, then add the door or window pane. This compos-
ite boolean operation (a subtract followed by a union) is stored with
the component’s geometry, and its placement is controlled through
the connection mechanism within regions. Placing doors next to
corridors is done by leveraging the occlusion factors to find the
proper room sides.

Other architectural elements, such as balconies (see Fig-
ure 11 (top)) and light fixtures, also rely on connections for their
placement, but do not require cutting holes.

Again, variation is easily possible through an interpretation of
attributes or face IDs (e.g., vary the door type being connected if it
leads to a corridor, another room, or a closet).

4.5 Furnishing Elements

Furniture is positioned using regions placed on the floor plan of a
room. Some elements, such as shelves, cabinets, and appliances,
typically adjoin walls, while some other elements, such as tables,
carpets, couches, usually tend to be more centered in a room. We
define and use floor regions accordingly.

Light fixtures are placed on the ceiling of rooms, not too close
to walls, while floor lamps are placed near other furniture. Care
must be taken for wall-mounted elements (picture frames, shelves,
etc.) to not overlap windows and doors, the latter including their
movement range. For that, we use a combination of constraints
with neighboring queries and occlusion factors.

Although we have procedurally generated all elements in our
system, the user is free to attach any external geometry to any com-
ponent. For instance, models from commercial softwares can be
connected anywhere in our component forest.

It should be noted that we have not tried, nor is it the goal of
this research, to optimize placement, even if it should offer nicer
results. We have simply used ad hoc placement policies, and used
randomization to vary the results.

5 RESULTS

Figures 1 and 9 to 11 show various building models created with
our system. In order to give a little more insights on how the system
was used, the actual code used to generate a number of buildings is
provided in the website associated to this paper [16].

In the accompanying video, fly-over and walk-through se-
quences in some of these buildings give a more immersive feeling
of the divisions of spaces, and of the decorations attached to some
structural elements. A sequence of more gradual variations on a
number of parameters shows how our system produces floor subdi-
visions adapted to the design and the constraints.

Another sequence of variations on much larger buildings show
how random generators can be used to procedurally create families
of buildings. One generator is assigned to the wing shapes, another
one to the distribution of apartments. In a cutaway view of the



Figure 10: A small hotel, loft-style office building, and block-style apartment complex.

second storey (of multiple storeys), the sequence shows corridors,
apartments, rooms, and furniture for variations on connected wing
shapes. For one building shape, the sequence shows variations only
on the distribution of apartments and secondary corridors. Figure 1
shows a subset of these images. Note that the design of the apart-
ments and furniture have been simplified, the primary intention be-
ing to illustrate the variations.

Running the program to generate the component tree for each
building took less than 5 seconds on an Intel Core 2 Duo laptop
running at 2.2 GHz on a single thread. Creating its geometry (i.e.,
executing boolean operations for doors, windows, and all the other
geometries) has been taking up to 2 minutes for the largest models
(e.g., in Figure 1), and produced between 20K to 500K triangles.

The following table gives approximate numbers of triangles and
operations executed to produce their respective buildings (see Fig-
ures 9to 11).

building | row house house block apt hotel  loft
triangles 90K 36K 160K 33K 78K
operations 80 67 22 25 58

Creating from scratch all of the operations for an entire build-
ing can be time consuming, taking a few hours. Nevertheless, since
most buildings share a lot of common elements, we have evolved
our operations into reusable libraries (e.g., corridor configurations,
staircase patterns, fagades and apartment layouts). As such, cre-
ating buildings based on previous templates becomes increasingly
faster.

6 CONCLUSION

We have presented a technique to procedurally generate complex
buildings with coherent exteriors and interiors. In our procedural
building program, the sequence of operations creates a building by
modifying a hierarchy of components, each describing various 3D
and 2D elements of the building. We feel this paradigm, which

more closely matches the traditional approach of programming, is
powerful enough to handle the complex interrelations present in
complete buildings. In fact, we do not see any limitation on the
types of buildings or building elements that can be generated with
our technique. Even though highly curved surfaces could prove a
challenge in our current implementation, it is only a technical issue
for efficiency.

While we have shown in this paper results of mainly static final
buildings, the procedural nature of the process and the implemen-
tation as a programming language allow the creation of variations
at most stages of our design through the use of random generators
and conditional statements. Some of these variations are shown in
the accompanying video sequences [16].

Although our design scheme is intended for users with program-
ming skills, and as such it breaks away from the current trend of
catering to the needs of non-experts, we believe that game and spe-
cial effect industries have access to such programmers, and that a
system similar to ours should prove appropriate.

In our opinion, a number of key concepts have been exploited to
achieve flexibility in our technique:

e The query mechanism selects components sharing an identical
pattern of labels or attributes. The same operations are then
applied on the arbitrary number of selected components.

e The inheritance of component attributes offers a flexible
scheme to semantically augment components.

e Placing regions on components allows us to delay some de-
sign (e.g., the connection of components) to a more appropri-
ate stage of the modeling.

e Constraints permit to adjust the location of boundaries when
creating new components, such as to avoid walls perpendicu-
lar to windows, or to align corridors.



Figure 11: House and view of its interior.

For future work, we would like to exploit other types of se-
mantics in our data to improve rendering efficiency, or even to
achieve on-the-fly generation of visible building sections. Another
promising but challenging research direction is to develop an intu-
itive graphical user interface for our system, thus making it more
amenable to non-programmers.
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