

Goal

Procedural generation of buildings with coherent interiors

Why?

- Multiple variations
- Easy modifications
- Quick results

Component-based Modeling of Complete Buildings

Luc Leblanc

Jocelyn Houle

LIGUM, Dept. I.R.O., Université de Montréal

Before

(Shape) Grammar

Defined by a tuple (N,E,S,R), where N is a set of nonterminal symbols E is a set of terminal symbols $S \in N$ is the starting symbol R is a set of production rules:

- $S \rightarrow aSb$
- $S \rightarrow \epsilon$

ab, aabb, aaabbb, ...

Changes

- order of rules execution
- rules become queries (any symbol subset)

- operator execution (each, all)
- symbol becomes a component (persistent)
- any operator

Operators

Split and slice

Extrusion

Connection

Boolean

Pierre Poulin

Solution

Component

- boundary and bounding box
- labels
- user attributes (inheriting)
- child components
- regions
- connector

Program

// Main component. component(label="floor", size={10, 2.5, 10})

// Creation of the apartments. for c in query("floor") do

split(c, "Z", { label="living space", rel=1 }, { label="corridor" , abs=2 }, { label="living space", rel=1 })

end

for c in query("living space") do split(c, "X", { label="apartment", rel=1 }, { label="apartment", rel=1 })

end

```
// Creation of the elevator shaft (A).
component (
   label ={"elevator", "room"},
   size =\{2, 2.5, 2\},\
   position={4, 0, 2}
// Creation of rooms cut by the elevator shaft (B).
for c in query( "apartment" or "corridor" ) do
  subtract( c, query( "elevator" ), { label="room" } )
end
// Extrusion of room walls, with a color attribute (C).
var i = 0
for c in query( "room" ) do
   i = i + 1
   for f in fquery( c, "SIDE" or "BOTTOM" ) do
      component( c, label="wall", boundary=f )
```

end extrude(query(c, "wall"), -0.05, { label="iwall", color=i }

end

// Creation of doors by using regions (D). for c in query("wall" and not parent("corridor") and occlusion("corridor") > 0) do region(c, label="door" end

for r in rquery("door") do connect(componentFromFile("door01"), r) end

// Creation of the actual geometry. for c in query("iwall") do solidGeometry(c, c.color) end

Conclusion

- Complex task

Future Work

Component Graph

 Programming environment Flexible and powerful

• Higher level interface Optimization of space partitioning

