Goal

Procedural generation of buildings with coherent interiors
Why?

- Multiple variations
- Easy modifications
- Quick results

Before
(Shape) Grammar
Defined by a tuple (N, E, S, R), where N is a set of nonterminal symbols
E is a set of terminal symbols
$\mathrm{S} \in \mathrm{N}$ is the starting symbol
R is a set of production rules:
$S \rightarrow a S b$
$S \rightarrow \varepsilon$
ab, aabb, aaabbb,

Changes

- order of rules execution
- rules become queries (any symbol subset)
- operator execution (each, all)
- symbol becomes a component (persistent)
- any operator

Operators

Split and slice
Connection

Extrusion

Boolean

Solution

Component

Component Graph

- boundary and bounding box
- labels
- user attributes (inheriting)
- child components
- regions
- connector

Program

// Main component.
component (label="floor", size=\{10, 2.5, 10\}),

end

end
// Creation of the elevator shaft (A).
component
$\begin{gathered}\text { component } t \\ \text { 1abel } \\ \text { size } \\ \text { size }\end{gathered}=\{2$ "elevator", "room" $\}$,

end ${ }^{\prime}$
$/ /$ Creation of doors by using regions (D).
for c in query ("wall" and not parent ("corrid region(c, label="door") and occlusion("corridor") >0) do
end
for r in rquery ("door") do
connect (component FromFile("door01") , r
end
// Creation of the actual geometry.
for c in

end

Geometry Graph (CSG)

Conclusion

- Programming environment
- Flexible and powerful
- Complex task

Future Work

- Higher level interface
- Optimization of space partitioning

