
Visual Computer manuscript No.
(will be inserted by the editor)

Modeling with Blocks

Luc Leblanc � Jocelyn Houle � Pierre Poulin

Received: date / Accepted: date

Abstract This paper presents a simple and general
modeling primitive, called a block, based on a gener-
alized cuboid shape. Blocks are laid out and connected
together to constitute the base shape of complex ob-
jects, from which is extracted a control mesh that can
contain both smooth and sharp edges. The volumetric
nature of the blocks allows for easy topology speci�ca-
tion, as well as CSG operations between blocks. The
surface parameterization inherited from the block faces
provides support for texturing and displacement func-
tions to apply surface details. A variety of examples il-
lustrate the generality of our blocks in both interactive
and procedural modeling contexts.

Keywords Subdivision surface� surface parameteri-
zation � polycube map � z-brush � displacement map�
geometry image� CSG

1 Introduction

Modeling objects must satisfy di�erent requirements,
depending on the objects' surface properties, topology
constraints, and on the modeling process itself. Along
the years, several surface representations have been in-
troduced, including polygonal meshes, subdivision meshes,
polynomial patches, implicit surfaces, etc. Tools used to
manipulate those surface representations have evolved
to meet a broad spectrum of modeling needs, from high
precision design to fast prototyping.

We introduce a modeling primitive to quickly and
intuitively produce objects with good properties for its
surface and its topology. We are interested in a model-
ing primitive that can be used in two modeling contexts:

LIGUM, Dept. I.R.O., Universit�e de Montr�eal
E-mail: f leblanc, houlejo, poulin g@iro.umontreal.ca

{ Interactive modeling: fast and intuitive construction
of an approximate object, that can be subsequently
easily sculpted and modi�ed by a user.

{ Procedural modeling: easy topology speci�cation, vol-
umetric de�nition (for CSG operations), general sur-
face parameterization, and good surface control.

1.1 Related Work

When modeling objects with polygons, subdivision sur-
faces [1], and polynomial patches [16], the artist must
be very careful to avoid self-intersections, cracks, du-
plicated vertices, incoherent interior/exterior de�nition,
discontinuous surface parameterization, etc. These prob-
lems are accentuated when the resulting objects must
have consistent surface and volume properties.

Implicit surfaces [4] and F-Rep [15] o�er continuous
surfaces with valid interior/exterior properties. Unfor-
tunately their limit surface can be complex to extract,
and a good surface parameterization can be di�cult to
provide due to, among a number of problems, changes
in topology.

ZSpheres/ B-Mesh [17,10] form a very exible mod-
eling primitive based on a subdivision mesh enclosing a
tree of spheres. It o�ers good surface and volume prop-
erties and a consistent surface parameterization, allow-
ing to sculpt surface details through displacement map-
ping. It is well designed for organic-like objects, but less
for CAD-like objects with sharp edges.

Polycube maps[19,21] have been used to e�ciently
represent objects of di�erent topologies, but less as a
complete modeling primitive. Each face of a polycube
encodes well a displacement map to generate the �nal
polygonal mesh.

2 L. Leblanc, J. Houle, P. Poulin

(a) Blocks (b) Connections (c) Control mesh (d) Final mesh and tessellation

Fig. 1: The four stages of the pipeline for modeling with blocks.

1.2 Overview

Inspired by these last two representations and by im-
plicit surfaces in general, we have integrated a number
of their key concepts into our block modeling. Each
block can be interpreted as a cube in a polycube map,
with its associated parameterization of faces. Blocks are
assembled by connecting faces, similar to implicit sur-
faces andZSpheres, but the connection is controlled
with a resolution for each block face. The resulting con-
nected blocks provide the basic shape of an object. The
parameterization of each exterior block face is used to
encode surface details, pasted on top of an adaptive sub-
division surface. The original block edges provide also a
mechanism to generate sharp and smooth edges on the
�nal surface.

This combination of representations leads to an in-
tuitive, easy to control, and general modeling tool that
can generate a wide variety of objects with consistent
surface and volume properties, and of di�erent topolo-
gies.

The paper is organized as follows. First, we describe
in Section 2 our basic block primitive, connections be-
tween blocks, adaptive meshing, the usage of CSG op-
erations, and some of our experience about modeling
with blocks. Then we present and discuss features for
some typical results in Section 3. We �nally compare
our technique with other more closely related modeling
schemes in Section 4, before concluding and discussing
extensions in Sections 5 and 6.

2 Modeling with Blocks

The strategy behind modeling with our blocks is to �rst
build a coarse shape with the correct topology, without
having to deal with the details of low-level topology
operations or description. Then this coarse shape is re-
�ned with a displacement function. This is bene�cial to
both interactive modeling and procedural modeling.

An object built with blocks is de�ned by three com-
ponents. First, a set of blocks (our main primitive) is

used to describe the main parts of the object. Then,
links specify connectivity between each block. Together,
they de�ne the control mesh with correct topology. Fi-
nally, the simple parameterization inherited from the
blocks, can support an optional displacement to gener-
ate the �nal result.

From an implementation point of view, the pipeline
to generate an object is divided into four stages: def-
inition of blocks, connection between blocks, creation
of the control mesh, and generation of the mesh. An
illustration of this pipeline appears in Figure 1.

2.1 Blocks

A block is a volumetric primitive akin to a cuboid de-
�ned by eight vertices and six faces. There are no re-
strictions on the positions of the vertices, except that
they should generate a valid interior, consisting of one
continuous 3D space. This is however not enforced in
our system.

Each face of a block is de�ned as a bilinear patch
that is divided independently of its adjacent faces into
to a regular grid of sub-faces of any resolution. Faces
and sub-faces are strictly quadrilaterals; they need not
be planar.

The sub-faces are the elements de�ning the geom-
etry. They can be connected together (Section 2.2) to
form the surface using Catmull-Clark subdivision [7],
inheriting its properties: C2 continuous everywhere ex-
cept C1 for vertices of valence6= 4.

To alter smoothness, each edge of a block face can
be tagged as sharp. Figures 2 and 3 show di�erent
de�nitions for a block with sharp and smooth edges,
along with their resulting geometries. Figure 4 shows
the relations between faces, sub-faces, patches, and sub-
patches.

Now that we have a better understanding of the
structure for a single block, we will see in the next sec-
tions how blocks can connect into groups of blocks.

Modeling with Blocks 3

Fig. 2: Di�erent con�gurations of smooth/sharp edges in a
block. Red block edges produce sharp mesh edges, blue block
edges produce smooth mesh edges.

Fig. 3: Top row: increasing the number of sub-faces and mov-
ing vertices in a block with sharp edges. Bottom row: same
con�gurations with smooth edges.

2.2 Connections

Once blocks are fully de�ned (face subdivision and edge
sharpness) and positioned to establish the coarse shape
of the desired object, connections can be computed be-
tween their sub-faces. Those connections, between pairs
of faces or sub-faces of neighboring blocks, automati-
cally create the topology of the object. This process
requires only a small set of attributes assigned by the
user: a group ID for every block, a global list of group ID
pairs, and a scalar distance threshold. The group ID
pairs de�ne which parts of the model are allowed to
merge together (see Figure 5). The threshold value de-
termines the maximum allowed connection distance; it
is scale invariant by considering the perimeters of both
sub-facesA and B :

distance< threshold � (perimeter(A) + perimeter(B)) :

(a) Faces and sub-
faces

(b) Patches (c) Sub-patches

Fig. 4: The four elements of the block primitive. In the spe-
ci�c example of this �gure: (a) One face is divided into two
sub-faces. (b) One sub-face is subdivided into four patches .
(c) One patch is subdivided into four sub-patches. The blue
contours indicate regions associated with one original fac e of
the block, and �lled red indicates regions associated with o ne
sub-face.

Automatic connections work as follows. For every
sub-face (or the whole face, if it is not subdivided) of
every block, a ray is cast from the center of the sub-face
outwards along the normal (see Figure 6). A connection
between sub-faceA (caster) and sub-faceB (nearest hit)
exists if and only if:

1. Sub-facesA and B belong to di�erent blocks.
2. The group ID of A is allowed to link with the group

ID of B (from the global pair list).
3. The distance betweenA and B is within the speci-

�ed threshold.
4. Sub-faceB is A's closest sub-face, and vice versa.
5. No degenerate edges are created (Figure 7).

To detect connections, simple ray-casting is used
from the sub-face's center position. This has the advan-
tage of being fast, easy to implement, and non-ambiguous.
If this is deemed too limiting, it can be replaced with
any coverage computing technique such as casting mul-
tiple rays or a form of shaft-tracing.

(a) (b) (c)

Fig. 5: Three variations of a hand where shades represent
three group IDs: (a) no connections, not even within the same
group ID; (b) all groups connect together; and (c) group IDs
of �ngers connect to the hand, but not between each pair of
adjacent �ngers. To connect with the �ngers, the palm's top
face is subdivided into 4x1 sub-faces and the left side into 3 x1
sub-faces (the thumb connects to the middle sub-face).

4 L. Leblanc, J. Houle, P. Poulin

Fig. 6: Sub-faces connection. The upper sub-faces connect
together since they are each other's closest sub-face, to th e
contrary of the lower pair.

Fig. 7: Example of an invalid connection. If connection B
is executed after A has already been connected, the three
vertices will merge and form a degenerate edge (red).

To prevent inconsistent topology (Condition 5, above),
only one connection can be established between two
blocks. As such, only the connection with the shortest
distance will be kept. A list of manual connections, in-
dependent of the actual distances, can be speci�ed for
added exibility by specifying the two sub-faces to be
joined for each connection.

After all connections have been established, vertex
positions for all connected sub-faces are modi�ed to be
joined together. To do so, we �rst determine a relation
between pairs of vertices from both sub-faces. Since we
work on quadrilaterals, there are four possible ways of
connecting the two sub-faces. To �nd the best one, we
�rst choose an arbitrary pair of vertices, one vertex from
each sub-face, then we match the remaining vertices in
counter-clockwise order for sub-faceA and clockwise or-
der for sub-faceB . Figure 8 illustrates this process. We
compute the total distance between each pair of vertices
as the cost of the connection. We test the other three
con�gurations by changing one vertex of the starting
pair to each of the other vertices of the sub-face. After
evaluating all these connections, we select the con�gu-
ration having the lowest cost.

The new position of joined vertices is computed as
their average. It is important to note that more than

two vertices can be joined together, notably, for ver-
tices lying on the edges of a block with multiple neigh-
bors (see Figure 9). In that case, the resulting vertex
can have any valence higher than 2, depending on the
number of connected blocks. Nothing prevents us from
computing a weighted average of the positions. It is
however unclear how those weights can automatically
or intuitively be set up, especially in cases of multiple
connections, such as shown in Figure 9.

2.3 Control Mesh

The next step creates a control mesh to generate a sub-
division surface. This control mesh is created by assem-
bling the set of all exterior sub-faces (i.e., sub-faces that
are not connected) in a watertight mesh. Interior sub-
faces are simply ignored and do not participate in the
�nal geometry. An edge is tagged as sharp (i.e., form-
ing a crease) when at least one of the original block
edges forming this edge is sharp. Priority is given for
sharpness over smoothness since sharpness is an added
property on an edge.

The assembled exterior sub-faces form a mesh of
quadrilaterals, possibly containing T-vertices due to dif-

Fig. 8: Connection between two sub-faces. The vertices num-
bered 1 form the starting connection pair.

Fig. 9: Computation of a joined vertex of valence 4. Dashed
segments represent connections between blocks. The center
black dot is the new vertex position computed as the average
of four vertices.

Modeling with Blocks 5

ferent resolutions for the grid of sub-faces. This is cor-
rected in two steps. First, vertices are added to quadri-
laterals containing T-vertices, transforming them into
n-gons. Second, one pass of Catmull-Clark subdivision [7]
is applied to obtain a control mesh composed exclu-
sively of quadrilaterals.

2.4 Mesh Generation

The last step of the process uses subdivision surface to
generate the �nal mesh. The control mesh made exclu-
sively of quadrilaterals (Figure 1c) is adaptively subdi-
vided with respect to both local curvature and applied
displacement of the model. Boolean operations are sup-
ported by inserting edges and vertices at interpenetrat-
ing locations and determining interior and exterior re-
gions through the evaluation of the CSG tree. A �nal
meshing operation yields a closed (watertight) triangu-
lar mesh.

2.4.1 Patch Subdivision

To achieve a high quality mesh with fewer subdivisions,
we approximate the subdivision surface with paramet-
ric patches [14]. This has two main advantages over
conventional Catmull-Clark subdivision: at any subdi-
vision level, each vertex is immediately positioned on its
limit surface, and the subdivision pattern is decoupled
from the evaluation.

After converting each quadrilateral of the control
mesh to a parametric patch, we subdivide the patch
in a set of sub-patches in akd-tree manner [11]. Each
vertex of the sub-patch is placed at the location derived
from its parametric patch evaluation, and moved by its
displacement map or function. The parameterization
used is similar to the one by Burley and Lacewell [5],
where each patch has its unique mapping of size related
to its world size or its level of detail.

A sub-patch is subdivided according to the following
metric. If the displacement is expressed as a function
(and not as a map), we build a geometry image [8] of
the desired quality, thus converting the displacement
function as map. We only need to keep a small number
of patches in memory, i.e., the current patch and its
neighbors, in order to blend edges and avoid cracks in
the displacement function.

A sub-patch is either subdivided in u, in v, or in
both uv directions. In each case, the sub-patch is sub-
divided at its middle position. A two-pass evaluation of
the applied displacement map is done, one inu and the
other in v. When evaluating in u, we compare each texel
(a displaced 3D point), row by row, to the 3D segment
de�ned by the �rst and last texels of the row. As soon as

(a)

(b)

Fig. 10: A patch is subdivided in u when a 3D point from
a texel in a row is farther than a certain threshold from the
segment formed by the �rst and last texels; similarly in v.
Top: subdivision of a patch in uv . Bottom: subdivision of a
sub-patch in u only.

one texel is farther than a speci�ed threshold, the sub-
patch is marked to be subdivided inu. The evaluation in
v is similar, but column by column. Figure 10 illustrates
this process. In the top �gure, the red dot indicates that
a subdivision is requested inu when traversing the rows
of texels, and the blue dot inv. The sub-patch is there-
fore subdivided in four sub-patches labelledui vj in gray.
In the bottom �gure, for one sub-patch, the red dot in-
dicates that a subdivision is requested inu, but no such
subdivision is requested inv. This sub-patch is there-
fore subdivided only in u into two sub-patches. This
metric provides a good anisotropic subdivision scheme,
as can be observed in Figure 11.

2.4.2 CSG

Since our blocks give a volumetric de�nition, CSG eval-
uation can be used to increase the expressiveness of
an object. The boolean operations are expressed in a
complete CSG tree, supporting the standard operations
(union, subtraction, intersection) where each leaf is a
group of blocks. After the adaptive subdivision of the
sub-patches, linearization of all the edges of the sub-
patches is performed to simplify the intersection compu-

6 L. Leblanc, J. Houle, P. Poulin

Fig. 11: A patch with an associated displacement map is sub-
divided hierarchically and anisotropically into sub-patc hes.

tation (a patch can now be represented by two triangles
without creating cracks).

The process starts by �nding which patches inter-
sect each other. For each pair of intersecting sub-patches,
segments at the intersections are created and assigned
to both sub-patches (Figure 12b for one pair). Those
segments are generated by approximating each sub-patch
with a pair of triangles, and performing a triangle-triangle
intersection (Figure 12a). After computing all intersec-
tions, all the segments associated with one sub-patch
are intersected between themselves. An intersected seg-
ment is divided into two sub-segments at the intersec-
tion point. The resulting segments are then traversed to
form non-overlapping polyline loops (Figure 12c). For
each of those loops, a ray is cast along the normal from a
point contained within the loop. This ray is intersected
with all the other patches and compared to the CSG
tree in order to determine if the surface bounded by
the loop is on the �nal mesh (after CSG). If a loop is
on the surface, it is tagged as such, and so are its sub-
patch and its patch. This way, when tessellating the
object, entire patches or sub-patches can be skipped if
not tagged.

2.4.3 Meshing

While doing patch subdivision, vertices are inserted on
all neighboring sub-patches sharing an edge in order to
avoid cracks due to T-vertices. If CSG was not used,
or if a sub-patch contains only one loop (the sub-patch
contour), a simple triangulation algorithm such as the
one of Cignoniet al. [6] can be used. In cases of a com-
plex concave boundary or multiple loops, we use an
ear-clipping algorithm [9].

2.5 Usage and Limitations

Our experience shows that the process of describing ob-
jects with blocks is fast and fairly easy. There are no

restrictions on the possible topologies that can be re-
produced, when proceeding by �rst building a coarse
shape, and then adding details with displacement map-
ping. While we have not encountered any problem so
far, we have also not tried to build many precise control
meshes using only blocks. However, we can speculate
that some cases could prove more di�cult.

For example, when dealing with a number of blocks
of di�erent scales, it could be a limiting factor that each
face has only its own �xed grid of sub-faces. This could
result in the need to split a block into smaller blocks.
Allowing the subdivision of sub-faces into multi-level
grids could help in such cases.

Also, in some cases with lots of connections, setting
correct group IDs to ensure the resulting connections
are the desired ones, could prove a little tedious. How-
ever, this should still be a lot easier than manually han-
dling the issues due to topology.

3 Results

Figures 13 to 20 show results modeled exclusively with
blocks. They illustrate the exibility of the block primi-
tive as it is used to model architectural objects, such as
buildings and staircases, as well as more organic shapes,
such as trees and characters. Objects containing both
a blend of sharp and smooth edges, such as a chair, are
also well adapted to modeling with blocks.

All buildings in Figures 18 to 20 and the staircases
in Figure 17 are modeled procedurally with our in-house
system [13]. This procedural system uses blocks as its
foundation to generate the geometry, and as a result,
gains several interesting features: every entity has a vol-
ume (i.e., walls are not paper-thin), and the tessellation
is watertight and adaptative. Moreover, CSG enables
easy insertion of doors and windows to existing walls
by �rst subtracting blocks from the wall to create a
hole, and then adding the window or door. Connections
ensure that no cracks are left out between a window
and its pierced wall. To support physical simulation,
we could easily extend our block description to include
material properties.

4 Comparing with Other Modeling Schemes

Many modeling primitives and techniques exist, each
having its own set of advantages and disadvantages.
Among them, the implicit surfaces such as theblob-
tree [20] and the ZSpheres[17] are closer to our block
primitive.

Modeling with Blocks 7

(a) Sub-patches (b) Edges and vertices (c) Loops (d) Tessellation

Fig. 12: The di�erent stages of a CSG union evaluation. (a) Intersect ion test of the blue sub-patch against the red sub-patches.
(b) Insertion of intersecting edges and vertices. (c) Inter section of the segments on one sub-patch, stitching into clo sed loops,
and testing against the CSG tree. (d) Tessellation of the uni on of the two blocks, without any interior geometry.

Fig. 13: The general shape of each die is modeled by one
block with a 4 � 4 subdivision for each face, and all smooth
edges. Each dot is modeled as a small block with no sub-faces,
and all smooth edges. Each dot is subtracted from the general
die shape. The black segments show the �nal tessellation.

Fig. 14: Terrain (height �eld) displaced on a sharp at face
of a block, and on a smooth rounded face. Sub-patches are
drawn as black segments.

4.1 Implicit Surfaces

Implicit surfaces, also calledmetaballsor blobbies, were
introduced by Blinn [3] as the isosurface of a �eld func-
tion de�ned by the sum of simple primitive functions
such as the gaussian distance from a point. In theblob-
tree [20], the density �eld is described as a tree of oper-
ations and it supports blending, warping, and boolean
operations. To better control the locality of the blend-
ing, Bernhardt et al. [2] present a novel solution limiting
its range to the intersection of the primitives.

We can think of our block connections as a dis-
crete form of blobbies. Compared to them, our connec-
tions are less versatile, becauseblobbies can connect

Fig. 15: Stylized tree. The twisting trunk is modeled by ten
blocks, each branch by �ve to seven blocks, and the foliage by
two large blocks. All edges are smooth. The block connecting
the two top branches forming a Y-intersection has its top fac e
subdivided in 2x1. The images on the right show a close-up
view on the connecting branches where the top one shows the
blocks, and the bottom one the resulting sub-patches. The
object consists of 30 blocks, 502 patches, 13,498 sub-patches,
and 25,778 triangles. Sub-faces are drawn as black segments.

Fig. 16: Two views of an o�ce chair. The bottom of each leg
is modeled with sharp edges, as well as one edge for each leg
raising up to become an arm. Sub-faces are drawn as black
segments.

anywhere, no matters the position of the basic primi-
tives (sphere, skeletal, etc.), contrary to blocks, where
a connection is made only sub-face to sub-face. How-
ever, with blocks, we have much more control over the
�nal appearance of the surface and can easily add sharp

8 L. Leblanc, J. Houle, P. Poulin

Fig. 17: Procedural staircases modeled with blocks and sharp
edges. Patches are drawn as black segments.

Fig. 18: The four-storey o�ce building has mainly empty in-
terior spaces, except for a staircase. It consists of 1,694 b locks,
34,864 patches, 62,836 sub-patches, and 105,264 triangles.

Fig. 19: The hotel building has a mid-level terrasse, and
unfurnished rooms. It has 986 blocks, 22,832 patches, 23,40 8
sub-patches, and 36,658 triangles.

edges. Our subdivision surface leads to better tessella-
tion and the surface has a good parameterization, an
aspect which sorely lacks toblobbies.

4.2 ZSpheres

ZSpheres [17] and B-Mesh [10] (a variant of the for-
mer) describe an object as a hierarchy of spheres. A
control mesh is built on top of the spheres, keeping the

Fig. 20: The bottom image is an interior view from the three-
storey house in the top image. It has 1,407 blocks, 28,456
patches, 33,036 sub-patches, and 58,632 triangles. For all the
buildings, all windows and doors result from CSG operations .

same topology as the tree. Unlike our blocks,ZSpheres
do not seem to support complex topology (genus> 0),
but should be modi�able to do so. They are only suit-
able for smooth, organic-like objects, and cannot easily
model architectural or mechanical objects. Also, they
cannot model complex surfaces containing creases, val-
leys, and ridges without displacement mapping. Since
their mapping is done automatically based on the con-
trol mesh, it could prove di�cult to use in a procedural
context.

It should be noted that our block approach could
emulateZSpheresresults by using a similar tree descrip-
tion.

5 Conclusion

We have presented a simple block primitive to easily
model objects in both interactive and procedural con-
texts. Our block primitive possesses important and de-
sirable characteristics:

{ simple topology speci�cation with connections,
{ valid volumetric de�nition,
{ good control over the surface with editable block

vertices,

Modeling with Blocks 9

{ adaptive surface meshing with the subdivision sur-
face.

The block representation is fairly compact, consider-
ing the number of �nal triangles that can be generated.
In the buildings of Figures 18 to 20, consisting mainly
of at surfaces, one block generates between 37 to 62
times more triangles. For the tree of Figure 15 with
surfaces that are more curved, one block generates on
average close to 860 times more triangles. While this is
clearly related to the subdivision metric, we have been
conservative with respect to the obtained visual quality.

We consider our modeling system represents a good
step in the direction of de�ning a simple, yet powerful
modeling primitive.

6 Future Work

There are several interesting avenues that we propose to
explore. For connections, weights could be added, faces
could be subdivided in sub-faces automatically, and an-
other type of connection could be permitted by �lling
the space between two blocks instead of merging their
vertices. In the latter case, it could be generalized to
allow more than a two-block connection. T-Splines [18]
could possibly be used as a replacement for the Catmull-
Clark subdivision surface, thus reducing the tessellation
and distortions of the parametrization in some cases.

Compared to polycube maps [19,21], a block model
with its more exible vertex con�gurations should rep-
resent an object with fewer cubes (blocks) while more
closely matching the shape. It would therefore o�er
a better compression of the associated displacement
maps.

In this paper, we presented a tessellation algorithm
for the blocks, but since blocks are higher level primi-
tives, they can be converted to di�erent formats. Con-
verting to voxels with an algorithm based on work by
Lai and Chang [12] should enable faster and more ro-
bust CSG operations.

Acknowledgements The authors thank the anonymous re-
viewers for their constructive comments, and acknowledge � -
nancial support from FQRNT, NSERC, and GRAND.

References

1. Andersson, L.E., Stewart, N.F.: Introduction to the
Mathematics of Subdivision Surfaces. SIAM (2010)

2. Bernhardt, A., Barthe, L., Cani, M.P., Wyvill, B.: Im-
plicit blending revisited. Computer Graphics Forum
29(2), 367{375 (2010)

3. Blinn, J.F.: A generalization of algebraic surface drawi ng.
ACM Trans. Graphics 1(3), 235{256 (1982)

4. Bloomenthal, J. (ed.): Introduction to Implicit Surface s.
Morgan Kaufmann (1997)

5. Burley, B., Lacewell, D.: Ptex: Per-face texture mapping
for production rendering. In: Eurographics Symposium
on Rendering '08, pp. 1155{1164 (2008)

6. Cignoni, P., Montani, C., Scopigno, R.: Triangulating
convex polygons having T-vertices. Journal of Graphics,
GPU, and Game Tools 1(2), 1{4 (1996)

7. DeRose, T., Kass, M., Truong, T.: Subdivision surfaces
in character animation. In: SIGGRAPH '98, pp. 85{94
(1998)

8. Gu, X., Gortler, S.J., Hoppe, H.: Geometry images. In:
SIGGRAPH '02, pp. 355{361 (2002)

9. Held, M.: FIST: Fast industrial-strength triangulation of
polygons. Algorithmica 30(4), 563{596 (2001)

10. Ji, Z., Liu, L., Wang, Y.: B-mesh: A modeling system
for base meshes of 3D articulated shapes. Computer
Graphics Forum (Proc. Paci�c Graphics) 29(7), 2169{
2178 (2010)

11. Lai, S., Cheng, F.: Adaptive rendering of Catmull-Clark
subdivision surfaces. In: CAD-CG '05: Proc. Intl. Conf.
Computer Aided Design and Computer Graphics, pp.
125{132 (2005)

12. Lai, S., Cheng, F.: Voxelization of free-form solids usi ng
Catmull-Clark subdivision surfaces. In: GMP'06: Lecture
Notes in Computer Science, pp. 595{601. Springer (2006)

13. Leblanc, L., Houle, J., Poulin, P.: Component-based mod -
eling of complete buildings. In: Graphics Interface 2011
(2011)

14. Ni, T., Yeo, Y., Myles, A., Goel, V., Peters, J.: GPU
smoothing of quad meshes. In: SMI'08: IEEE Intl. Conf.
on Shape Modeling and Applications, pp. 3{9 (2008)

15. Pasko, A., Adzhiev, V., Sourin, A., Savchenko, V.: Func-
tion representation in geometric modeling: concepts, im-
plementation and applications. The Visual Computer 11,
429{446 (1995)

16. Piegl, L., Tiller, W.: The NURBS book. Springer-Verlag
(1995)

17. PIXOLOGIC: ZBrush (2011). URL
http://www.pixologic.com/

18. Sederberg, T.W., Zheng, J., Bakenov, A., Nasri, A.: T-
splines and T-NURCCs. ACM Trans. Graph. 22, 477{484
(2003)

19. Tarini, M., Hormann, K., Cignoni, P., Montani, C.:
Polycube-maps. In: SIGGRAPH '04, pp. 853{860 (2004)

20. Wyvill, B., Galin, E., Guy, A.: Extending the CSG Tree.
Warping, blending and boolean operations in an implicit
surface modeling system. Computer Graphics Forum
18(2), 149{158 (1999)

21. Xia, J., Garcia, I., He, Y., Xin, S.Q., Patow, G.: Editabl e
polycube map for GPU-based subdivision surfaces. In:
I3D '11: ACM Symposium on Interactive 3D Graphics
and Games, pp. 151{158 (2011)

