MODELING WITH BLOCKS

Luc Leblanc, Jocelyn Houle, Pierre Poulin

Dept. I.R.O. Université m de Montréal

CGI Ottawa, June 13-15, 2011

- Object modeling has different requirements according to
 - surface properties
 - topological constraints
 - modeling process itself
- Applications can vary from high-precision CAD to 3D sculpting

- Object modeling has different requirements according to
 - surface properties
 - topological constraints
 - modeling process itself
- Applications can vary from high-precision CAD to 3D sculpting

from Akleman et al.

- Object modeling has different requirements according to
 - surface properties
 - topological constraints
 - modeling process itself
- Applications can vary from high-precision CAD to 3D sculpting

from the The Digital Michelangelo Project

- Object modeling has different requirements according to
 - surface properties
 - topological constraints
 - modeling process itself
- Applications can vary from high-precision CAD to 3D sculpting

from solidworks

- Object modeling has different requirements according to
 - surface properties
 - topological constraints
 - modeling process itself
- Applications can vary from high-precision CAD to 3D sculpting

from 3d-coat

GOALS

- Procedural modeling
 - simple topology specification
 - volumetric definition
 - surface parameterization
 - surface control

INSPIRATIONS

- Implicit surfaces
- ZSpheres
- Polycube maps

RELATED WORK

- Implicit surfaces and F-Rep
 - Iso-surface of a field defined by simple primitives
 - ✓ easy topology specification
 - ✓ volumetric definition
 - X complicated quality mesh extraction
 - X complex surface parameterization

RELATED WORK

- ZSpheres (zbrush), B-mesh
 - subdivision mesh enclosing a tree of spheres
 - ✓ surface parameterization
 - ✓ volumetric definition
 - ✓ appropriate for organic objects
 - X more difficult for industrial objects with sharp edges

from Ji et al.

RELATED WORK

- Polycube maps
 - displacement map applied on surfaces of a set of aligned connected cubes
 - ✓ efficient representation for different topologies
 - X not used as a modeling primitive

OUR BLOCKS

- Inspired by last three previous work
- Similarities
 - block as a cube of polycube, with parameterization on individual exterior face
 - blocks assembled as zspheres and implicit surfaces
 - subdivision surfaces of exterior faces

MODELING PIPELINE

Place blocks

Connect blocks

Control Mesh

Subdivision of patches

Final triangle mesh

MODELING PIPELINE

Subdivision of patches

Final triangle mesh

A BLOCK

- Cuboid: 8 vertices, 6 faces
- No restrictions imposed on the vertices
 - except that they should generate a valid continuous interior (not verified)

A BLOCK

• Each edge is smooth or sharp

A FACE OF A BLOCK

- Each face is a bilinear patch subdivided in a grid of sub-faces
- Each sub-face is a quad (not necessarily planar)
- Catmull-Clark subdivision of sub-faces

MODELING PIPELINE

Place blocks

Connect blocks

Control Mesh

Subdivision of patches

Final triangle mesh

CONNECTING BLOCKS

- BlobTree-like merging group IDs
- Maximum of one connection between two blocks
- Relative distance (sub)face-(sub)face
- Connected vertices computed as averaged position

CONNECTING SUB-FACES

- Ray casting from every subfaces center
- Validate connection between two sub-faces
 - Belong to different blocks
 - Group ID is valid
 - Distance within a threshold
 - Mutually closest

CONNECTINGVERTICES

MODELING PIPELINE

Subdivision of patches

Final triangle mesh

CONTROL MESH

- Assemble all exterior (not connected) sub-faces in a watertight mesh
- If one connected edge is sharp → all sharp
- Add vertices to eliminate T-vertices
- Catmull-Clark to obtain quads

MODELING PIPELINE

Place blocks

Connect blocks

Control Mesh

Subdivision of patches

Final triangle mesh

ADAPTIVE SUBDIVISION

- Recursive subdivision of subpatches
- Patch evaluation + displacement
- Two pass evaluation (U,V)
 - no subdivision
 - subdivide in U
 - subdivide in V
 - subdivide in UV

ANISOTROPIC SUBDIVISION

LEVELS OF DETAIL

CSG OPERATIONS

- Compute by intersecting subpatches
- Insert vertices and segments

TESSELLATION

- Simple triangulation for convex sub-patches
- ear-clipping algorithms (concave, CSG)

TERRAIN ON FLAT OR CURVED BLOCK

STAIRCASES

HOUSE

CONCLUSION

- Flexible
 - Organic objects
 - Mechanical/architectural objects
- Simple to use
 - Topology specification
- Volumetric
 - Boolean operations
- Surface control
 - Vertex positioning
 - Displacement mapping

FUTURE WORK

- Room for improvements
 - Some limitations on connections
 - Some distortion on the parameterization
- Incorporate within an interactive modeler

PROCEDURAL AND INTERACTIVE ICICLE MODELING J. GAGNON AND E. PAQUETTE TUESDAY, 15:30 PM - 17:30 PM (SITE B)

QUESTIONS

leblanc@iro.umontreal.ca

PUBLICATIONS

 Component-Based Modeling of Complete Buildings Graphics Interface 2011
Luc Leblanc, Jocelyn Houle, Pierre Poulin

CONNECTING SUB-FACES

- Invalid connection
 - Degenerate edges

REGULAR PATCH

IRREGULAR PATCH

PARAMETERIZATION

MESH STRUCTURE

NEW MESH STRUCTURE

NEW MESH STRUCTURE

NOTATION

Sub-faces

Patches

Sub-patches

MODELING PIPELINE

- Place blocks to approximate the shape of the object
- Topology results by connecting neighboring sub-faces of blocks
- Refine the surface to provide details

INVALID BLOCK

- Polygonal meshes
- Polynomial patches
- Subdivision surfaces
- Point sets
- etc.

- Polygonal meshes
- Polynomial patches
- Subdivision surfaces
- Point sets
- etc.

from Autodesk

- Polygonal meshes
- Polynomial patches
- Subdivision surfaces
- Point sets
- etc.

from subdivisionmodeling.org

- Polygonal meshes
- Polynomial patches
- Subdivision surfaces
- Point sets
- etc.

