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Abstract

In this paper, we tackle the problem of generalizing conformal maps to volumetric meshes. Current methods seek for harmonicity
but unfortunately, no computational methods optimize conformality in the volumetric context. As it is proven that conformal maps
do not exist for general volume transformations, we seek to optimize shape preservation with a generalization of the Cauchy-
Riemann equations. Our algorithm is fast and easily adaptable to existing harmonic mapping methods. Compared to harmonic
maps, results show improvements on both angular and volumetric energy measures at a cost below 1% of total computations.
The method extends well in any dimension and several research areas could benefit from our derivations of volumetric conformal
optimization.

(a) Harmonic (b) ACAP (c) Uniform scale

Figure 1: An identical planar cut through a sphere with a small bump that is
parameterized with (a) the Laplace operator, (b) the our operator, and (c) the
uniform scale operator (ω = 0.6125).

1. Introduction

Parameterization plays an important role in computer graph-
ics. It is best known for texturing 3D models but it is also
used for shape matching and analysis, remeshing, spline con-
struction, physical simulation, etc. [1]. While being mostly
studied for surfaces, volumetric parameterization has recently
shown an increased interest, notably in the domain of engineer-
ing and medical imaging [2], where structural evaluations re-
quire a good distribution of internal volume elements.

Most of the current parameterization techniques are based on
harmonic maps that are obtained by solving the Laplace equa-
tion. They offer good deformation properties for the interior of
the object, but the boundary often suffers from higher nonuni-
form scaling, as shown in Figure 1.

This paper revisits the Laplace operator by generalizing the
well known conformal maps to the volumetric context, thus
leading to volumetric as-conformal-as-possible (ACAP) maps.

Conformality has important qualities such as angle and local
shape preservation, and thus it is natural to ask for similarprop-
erties when extending from surfaces to volumes. As far as we
know, no such attempts to generalize conformal maps to the 3D
context has been made so far.

By generalizing the Cauchy-Riemann equations, we obtain
a first order matricial operator that optimizes conformality in
each of the three canonical orthogonal planes. Minimizing the
error in the least-squares sense leads to a simple second order
operator similar to the Laplace operator. In fact, a family of
operators can be obtained using the same derivations, leading
to other forms of energy minimization, thus showing the gen-
erality of the equations. Indeed, we show that orthogonality
and uniform scaling can be weighted to obtain the desired map
constraints.

The mathematical expression being similar to the Laplace
operator, many parameterization methods could benefit from
our approach. We also believe that this could have several ap-
plications in areas where the Laplace operator is currentlyused,
such as in physically-based and non-physically-based anima-
tions [3].

The paper is organized as follows. Section 2 reviews the es-
sential surface and volumetric parameterization methods,and
then introduces the contributions of our method. Section 3 de-
scribes the energy minimization technique, starting from the
continuous case to the discrete case, before synthesizing the
whole method in a simple algorithm. Numerical and visual re-
sults are provided in Section 4, and conclusions in Section 5.

2. Related Work

Surface parameterization has been extensively studied in the
past. Even though volumetric parameterization is built on top
of surface parameterization, reviewing the latter is beyond the
scope of this paper. For good surveys on these techniques, see
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Figure 2: As-conformal-as-possible volumetric map of (a) the Mudface model to a polycube along with (b) a iso-v cut and (c) a side iso-u cut of the mesh. The
iso-u cut shows differences between harmonic mapping and our mapping. Note the increased uniformity near the surface borders.

[4, 5, 6, 1]. In our implementation, we use a simple piecewise-
linear parameterization approach that optimizes conformality
on arbitrary domains. Other methods could be used as well.

Volumetric parameterization techniques began to appear in
2003. Wang et al. [7] introduce a simple method for computing
volumetric harmonic maps by conformally mapping the surface
of a genus zero object to a sphere, and then optimizing for the
interior using methods similar to those used to solve the heat
equation. The technique is also applied to brain mapping [8].
While the method is not strictly restricted to genus zero objects,
the authors do not describe how to extend it to domains of arbi-
trary topology.

Many papers have emerged since 2007. The method of fun-
damental solutions (MFS) uses the electric charge metaphor
to compute harmonic maps between shapes sharing the same
topology [9, 10]. This method is improved by aligning features
on the codomain shape [11]. The MFS is also used to compute
harmonic maps on star-shaped domains [12, 13].

Xia et al. [14] map the object to a polycube [15] decomposed
into a floor, walls, and a ceiling. A harmonic scalar functionis
computed on the object and the polycube with boundary values
specified on the floor and the ceiling. The final map is computed
by following the integral curves of the gradient of the harmonic
function on both domains.

A trivariate B-spline can be fitted to an object by mapping
it harmonically to the cylinder [2]. The method can be gen-
eralized to other trivariate representations with more complex
topologies by segmenting the volume into trivial parts, ensur-
ing coherence between volumetric patches [16]. A generalized
polycube representation can manage non-trivial topologies such
as volumetric Möbius bands and identified cube borders [17].

Another method consists in mapping the object to a poly-
cube by ensuring orthogonality on the first vertex layer, and
then minimizing an edge-length constraint on interior vertices
[18]. It can lead to sheared interior elements in high curvature
areas. The method is used to simulate diffusion of light in het-
erogeneous translucent media.

Yin et al. [19] map a volume with complex topologies to the
periodic hyperbolic space using a discrete curvature flow. This
method generalizes to 3D the fact that high genus surfaces can
be mapped to the hyperbolic plane without singularities.

Hexahedral meshing methods share similar concepts with

volumetric parameterization, and three recent techniquesare
worth noticing. A mapping to the polycube is computed us-
ing rotation- and position-driven deformations [20]. The re-
sulting parameterization is used to map the hexahedra of the
polycube to the original object in order to produce a hexahe-
dral mesh. The CubeCover method [21] uses a technique sim-
ilar to QuadCover [22], where each element is optimized to be
aligned to a given vector field. Using an anisotropic metric,
Lévy and Liu [23] produce a hex-dominant mesh using Cen-
troidal Voronoi Tesselation.

Thin-shell parameterization considers that the surface ofthe
mesh is a volumetric shell that needs to be taken into accountin
the mapping computation. The shell can be mapped to a poly-
cube [24] or unfolded to a periodic plane of constant thickness
[25]. Both papers use harmonic maps. Li et al. [26] use a
harmonic field to map a thin shell representation of a standard
hexahedral facial model to a patient-specific facial model while
maximizing orthogonality. Although the method shares some
properties with conformality, uniform scaling is not part of the
optimization.

Contributions. This paper presents the first method that intro-
duces a simple and practical definition of conformal optimal-
ity for volumes. The generalization of the Cauchy-Riemann
equations in conjunction with the generalized Dirichlet energy
leads to a fast discrete least-squares approximation of confor-
mality in 3D. The result is fundamental, theoretically founded,
and can be incorporated in many existing methods without dif-
ficulty. The linearity of the operator plays an important role in
making the method fast, straightforward, and simple.

As shown in Section 4, our method performs better than har-
monic maps for both angle and volume energy measures.

3. As-Conformal-As-Possible Mapping

3.1. Continuous Case

In 2D, conformal maps are functions that locally preserve
the shape of the original space, i.e., the Jacobian matrix ateach
point of the space is a similarity transformation. For function f :
S2 → R

2 defined over surfaceS2, this constraint is expressed
by the Cauchy-Riemann equations
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In 3D, the local shape preservation constraint is too strongto
be perfectly respected [27], but it can be as optimal as possi-
ble. For this reason, we propose to apply the Cauchy-Riemann
equations on each of the three canonical orthogonal planes as
a way to maximize local rigidity. For functionf : S3 → R

3

defined over volumetric shapeS3, we define the new constraint
Df = 0 where
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.

The operatorD is unfortunately not rotational invariant be-
cause each equation considers that its corresponding planein
the parametric domain will not change its orientation during the
transformation. We therefore propose to use a technique issued
from mesh deformation, namely Warped Stiffness [28], which
consists in removing the local rotation of the map at each point
before applying the operator. LetR be the local rotation at point
x, the constraint becomes

DRT f = 0.

In this form, the Jacobian matrix of the map is overcon-
strained. That is why we propose to minimize it in the least-
squares sense. To achieve this, we seek to minimize the follow-
ing energy functional

E =

∫

S3

∥

∥

∥DRTf
∥

∥

∥

2
dV.

3.2. Discrete Case

We first proceed by discretizing the space and functions de-
fined on this space. LetM be a tetrahedral mesh with vertices
V and tetrahedraT . A function is defined overM by associ-
ating a value to every vertex and linearly interpolating inside
a tetrahedron. Lett ∈ T be a tetrahedron of volumeVt with
function valuefi at vertexvi . The barycentric interpolation on
tetrahedront is

f(x) = −
1

3Vt

4
∑

i=1

(x · ni) fi (1)

whereni is the outside normal of the opposite face of theith
vertex in the tetrahedron, with normal length equal to the area
of the face. Notations are illustrated in Figure 3.

The constraints being applied on the values of the Jacobian
matrix, we compute the latter by differentiating Equation (1).
Using the tensor product [29], we obtain

J = −
1

3Vt

4
∑

i=1

fi ⊗ ni .

ni = Ai n̂i

vi

Figure 3: Tetrahedron notation:Ai is the area of the face opposite to vertexvi ,
n̂i is the unit normal of the face, andni is the area-weighted normal.

Having computed all the derivatives, it is now easy to define
our discrete operatorD over the tetrahedron as

Df = −
1

3Vt

4
∑

i=1

Difi

whereDi is defined as

Di =
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. (2)

At this point, we use a technique similar to Wang et al. [7]
and Lévy et al. [30] to derive the least-squares formulation.
The goal is to minimize an energy functional over the whole
tetrahedral mesh. The discretized map being linear by parts, we
define the energy on each individual element. For tetrahedron
t ∈ T with precomputed local rotationRt, the energy functional
is

Et =
1
2

∫

t

∥

∥

∥DRT
t f

∥

∥

∥

2
dVt.

To obtain a linear system, we differentiate the discrete en-
ergy at vertexvi ∈ V with one-ring vertex neighborhoodN(vi),
obtaining

∑

j∈N(vi )∪{i}

Ki j f j = 0 (3)

whereKi j is the matrix defined by

Ki j =
∑

t∈T (vi ,v j)

RtDT
t,iDt, jRT

t

9Vt

where T (vi , v j) are the tetrahedra sharing edge{vi , v j} and
T (vi , vi) are the tetrahedra sharing vertexvi .

3.3. Algorithm

To solve the system defined by Equation (3) and obtain
the as-conformal-as-possible volumetric map, we use standard
solvers at each step of the technique. Here is a description of
each step.
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Step 1 - Surface Map. The first step is to map the surface of the
mesh to the surface of the codomain using any method. Note
that the quality of the surface map affects the quality of the
volumetric map, e.g., singularities and triangle inversions could
be propagated to a certain distance in the interior. As long as
the surface mapping is appropriate, whatever the mapping used,
good results should be expected.

We chose the codomain to be a cube, a sphere, or a polycube
[15]. This choice depends on how well the surface maps to each
codomain. Except for the simplest objects, we chose polycubes
as the preferred codomains. Figure 7 shows typical polycubes
for some of the objects tested. The surface map is set to be con-
formal. We compute the surface map with a Gradient Descent
method with adaptative step size. The number of iterations is
approximately the number of surface vertices. The threshold is
set to 10−5 using the average squared residual.

Step 2 - Volumetric Harmonic Map. The second step relies on
work by Wang et al. [7] to compute the first approximation of
the volumetric part of the map. Using the equations of Sec-
tion 3.2, we obtain the linear system for a harmonic map by
modifying theKi, j matrices. We define the new coefficients of
Equation (3) to

K̃i, j =
∑

t∈T (vi ,v j )

nt,i · nt, j

9Vt
.

We then obtain a symmetric linear system that can be solved
with a Conjugate Gradient method with a Jacobi preconditioner,
keeping surface vertices constant. The number of iterations is
usually around 150 for each mesh with a threshold of 10−8.

Step 3 - Local Rotations and Coefficients. Using the harmonic
map as a first approximation, we can compute the local rotation
of each vertex. Using those rotations, we compute theKi j co-
efficients.

Step 4 - As-Conformal-As-Possible Map. The last step is to
compute the volumetric map with our operator by solving Equa-
tion (3) using a Conjugate Gradient method with a Jacobi pre-
conditioner. The number of iterations is also usually around
150 for each mesh with a threshold of 10−8.

We found that iteratively updating local rotations and the
mapping only leads to epsilon improvements, which is why we
only evaluate local rotations once.

4. Results

This section presents the results of the volumetric maps ob-
tained using our metric. We also compare with alternative met-
rics and discuss the main differences between these metrics.
Note that our aim is to introduce a fast and simple metric that
optimizes conformality. For this reason, we focus our attention
on the behavior of each metric instead of the final map as a
whole.

The method is implemented in C++ in the Graphite soft-
ware [31] and all tests were conducted on an Intel Xenon E5520

(a) (b)

(c) (d)

Figure 4: Results of (left) harmonic maps and (right) as-conformal-as-possible
maps.

processor without any GPU acceleration technique. Computa-
tion times of the interior (i.e., without surface map) are shown
in Table 1.

The volumetric parameterization times are approximately
multiplied by a factor between three and four using the our op-
erator compared to the Laplace operator alone. It is important to
note that in general, most of the complete parameterizationpro-
cess is completely absorbed by the surface parameterization as
it uses a Gradient Descent method, which is known to be slow.
A multi-grid method could be used for this part, but this is left
for future work. In fact, the volumetric parameterization times
represent generally much less than 1% of that of the surface,
which thus far outweighs the increase in time of performing as-
conformal-as-possible mapping. Considering the minimal cost
and the fact that results are always at least somewhat better, it
is worth taking the extra step toward conformality.

From a qualitative point of view, we can note some visual in-
dicators that show improvements. While harmonic maps have
very good behavior in the center of the object, quality at the
borders is often poor. It is shown in the bumpy sphere of Figure
1 and it is also noticeable in Figure 4. As a compromise, im-
provements at the borders come at the price of slightly reducing
the quality of the interior, but nonetheless the overall quality is
improved and the interior has still a good behavior.

To quantitatively measure improvements of the mapping, we
use an angle and a volume energy measure based on equa-
tions found in the book by Botsch et al. [3] and summarized
by Solomon et al. [32]. Adapted to volumes, we obtain
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Harmonic ACAP
Mesh |V| |T | Codomain Time Eangle Evolume Time Eangle Evolume

Sphere 10k 53k Box 0.18 2.246 2.096 0.89 2.226 2.060
Torus 15k 59k Polycube 0.12 2.424 2.392 0.58 2.400 2.331

Squirrel 18k 73k Polycube 0.15 3.118 3.453 0.84 2.638 3.113
Bust 18k 77k Polycube 0.19 2.829 3.526 0.87 2.660 3.447
Foot 20k 89k Polycube 0.19 2.441 2.455 0.98 2.372 2.384

Pensatore 30k 150k Box 0.47 2.554 2.488 2.03 2.441 2.288
Lion Vase 40k 163k Polycube 0.44 3.324 3.229 2.09 2.869 3.216

Grog 46k 197k Polycube 0.51 3.521 3.600 2.30 3.174 3.461

Bumpy Sphere 66k 307k
Sphere 2.08 2.003 2.011 5.45 2.003 2.007
Box 2.01 2.283 2.126 6.53 2.252 2.077

Alien Shark 185k 850k Polycube 5.16 2.697 2.783 17.48 2.538 2.568
Human Elder 188k 877k Polycube 5.68 2.598 2.417 30.59 2.524 2.298

Bimba Con Nastrino 203k 969k Polycube 6.36 2.825 5.912 23.14 2.486 5.443
Chinese Lion 273k 1203k Polycube 9.37 2.964 3.105 34.71 2.636 3.079

Kitten 342k 1968k Polycube 23.72 2.668 4.073 74.57 2.530 3.655
Human Torso 389k 1863k Polycube 16.33 3.056 3.910 53.91 2.571 3.569

Mudface 1183k 5569k Polycube 48.12 2.634 3.178 154.52 2.469 2.802

Table 1: Quantitative results for different meshes. Timings are in seconds and the optimal minimalvalue for both energy measures is 2.

Eangle=
1
V

∑

t∈T

Vt

(

σt,min

σt,max
+
σt,max

σt,min

)

Evolume=
1
V

∑

t∈T

Vt

(

σt,1σt,2σt,3 +
1

σt,1σt,2σt,3

)

whereV is the total volume of the mesh,σt,i are the singular
values of the Jacobian matrix of the tetrahedra transformation,
andσt,min andσt,max are respectively the minimum and maxi-
mum singular values.

These measures can be numerically unstable near singulari-
ties. For this reason, we decided that energy values higher than
a fixed threshold should be ignored, due to the bias that they
introduce. Even though ignoring values also introduces a bias,
the result is still much more representative of the total energy
than incorporating unstable data. These extremal values repre-
sent generally less than 0.3% of the total volume, which renders
the bias negligible when computing global map energies.

From these measures, we can see an improvement on both
angle and volume global energies for all tested meshes, as sum-
marized in Table 1. Although not shown in the table, energy
variance is also significantly decreased on both measures. Fig-
ure 5 shows a color-coded energy distribution of a planar cut
through the Chinese Lion model along with a histogram of this
distribution for the entire tetrahedral mesh.

Note that bijectivity is not garanteed for large deformations.
In fact, linear constraints do not generally lead to barriermet-
rics, which means that applying enough force on an element

will eventually invert it. For this reason, codomains should be
chosen carefully. While polycubes in this paper are built manu-
ally, Gregson et al. [20] provide an automatic geometry-friendly
polycube construction method that could be used to minimize
element inversion.

4.1. Alternative Metrics
Other metrics can also optimize conformality in higher di-

mensions. Because the Jacobian matrix of a conformal map
should be a scaled rotation, the following energy functional
could be used

Et =
1
2

∫

t
‖J − sR‖2 dVt

wheres= |J|
1
3 .

We found that the results with this metric are better than har-
monic maps, but not better than ACAP maps, as shown in Ta-
ble 2. An average of four iterations are needed to converge for
tested meshes.

The metric developed by Gregson et al. [20] could also be
considered

ṽi −
1
N

N
∑

j=1

ṽ j =
1
N

N
∑

j=1

(

Ri + R j

2

)

· (vi − v j)

whereN = |N(vi)| andṽi is the mapped vertex position.
Unfortunately, this operator is highly dependent on the local

topology of the vertex and less on the geometry of the volume,
in the same vein as mass-spring systems.
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(a) (b)

(c) Harmonic (d) ACAP

Figure 5: Angle energy measure for the Chinese Lion mapped toa polycube. A
planar cut with color-coded energy and the associated deformation distribution
for (left) the harmonic map and (right) the as-conformal-as-possible map. Note
that 86% of the volume has an energy value below 3 for our map compared to
76% for the harmonic map.

Li et al. [26] developed a metric trying to improve orthogo-
nality, but it has a preferred direction. While it is appropriate
for their application, it is an unwanted behavior for general vol-
umetric mappings.

Cage-based deformations could also be considered as po-
tential mapping metrics. The surface map acting as the cage
deformation, interior points are moved accordingly to the for-
mulation of the method. Green coordinates [27], being not in-
terpolatory, lead to highly distorted elements near boundaries
since vertices can stand outside the cage after deformation. Har-
monic maps being uniquely defined by their boundary values,
Harmonic coordinates [33] were not considered here. Finally,
Mean value coordinates (MVC) [34] gave slightly better results
than harmonic maps regarding energy measures on the tested
meshes, as shown in Table 2. However, the computation time is
prohibitive for large meshes and the negative value property of
MVC can lead to high distortion in concave parts.

SRJ [GSZ11] [LLT11] MVC
Sphere 2.242 2.258 2.234 2.245

Pensatore 2.493 2.560 2.638 2.442
Alien Shark 2.637 2.584 2.746 2.585

Table 2: Angle energy measures of alternative metrics for three meshes. Similar
results were obtained with all tested meshes and the volume measureEvolume.
Compared metrics are the scaled rotated Jacobian matrix (SRJ), the metric from
Gregson et al. [20], the metric from Li et al. [26], and Mean value coordi-
nates [34].

(a) ω = 0.3 (b) ω = 0.45 (c) ω = 0.6 (d) ω = 0.7

Figure 6: Uniform scale optimization for the sphere parameterized to a box.

4.2. Uniform Scaling

We can also introduce a parameter to operatorD to add a
degree of freedom to the results. A logical parameterization
would be to separate the uniform scaling constraint from the
orthogonality constraint using a weighting factorω ∈ [0, 1],
notingω = 1 − ω. Explaining only for the discrete case, we
redefine the matrix of Equation (2) to be

Di,ω = 2
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while all other equations remain the same.
From experiments, we found thatω ∈ [0.3, 0.7] gives best

results,ω = 0.5 being the original operator. Extremal values
of ω must be avoided because singularities of the surface map
may cause degeneracies in the volumetric map. Figure 6 shows
mappings computed for different values ofω.

5. Conclusion and Future Work

We introduced an operator that minimizes a 3D conformal
energy similar to the Cauchy-Riemann equations in 2D. We
showed that this operator can be parameterized such that uni-
form scaling and orthogonality constraints can be weightedas
desired. In fact, any system of constraints using only first-order
derivatives can be used with the same derivations. The general-
ization in any dimension is also trivial.

The derivations are based on a mathematically sound ap-
proach. Although the results might not always visually appear
significantly improved, they are consistently better than not us-
ing our metric, and at a cost of less than 1% of the total com-
putations. Like most other methods, we rely on a conformal
surface map. Our polycube map helps to obtain better results,
but as shown in Figure 7, simple polycubes prove sufficient to
achieve reasonable surface map.

Several methods could benefit from our work. Indeed, most
papers that use volumetric harmonic maps as a central tech-
nique can be adapted without much difficulty to our maps. This
is due to the fact that the core concepts of the mapping re-
main unchanged, while adding more generality and flexibility
to these methods.

Our operator shares the same limitations than the Laplace
operator, i.e., that the one-to-one mapping and the convergence
are not guaranteed for meshes that lead to ill-conditioned linear
systems.
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(a) (b) (c) (d) (e)

Figure 7: As-conformal-as-possible maps of (a) Foot, (b) Bust, (c) Pensatore, and (d) Human Torso. (e) Codomains of eachobject.

In the future, we will look for a rotational-invariant operator,
hopefully linear, thus eliminating the need for harmonic map
pre-processing. We also aim at letting the boundary evolve on
the codomain surface as the interior is optimized. Such method
would give more room for optimization and could lead to a
much better energy minimization. However, this generalization
is not straightforward and would need nonlinear optimization.

As parameterization can be seen as a deformation of a shape,
we believe that the presented method can have several applica-
tions in animation, notably for cage-based, skeleton-based, and
point-based deformations.
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