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Abstract

In this paper, we tackle the problem of generalizing confdmaps to volumetric meshes. Current methods seek for hracityo

but unfortunately, no computational methods optimize oomflity in the volumetric context. As it is proven that corrhal maps

do not exist for general volume transformations, we seekptinoze shape preservation with a generalization of thecGgu
Riemann equations. Our algorithm is fast and easily ad#ptakexisting harmonic mapping methods. Compared to haignon
maps, results show improvements on both angular and voligrestergy measures at a cost below 1% of total computations.
The method extends well in any dimension and several raseaeas could benefit from our derivations of volumetric comial
optimization.

Conformality has important qualities such as angle andlloca
shape preservation, and thus it is natural to ask for sirpiiap-
erties when extending from surfaces to volumes. As far as we
know, no such attempts to generalize conformal maps to the 3D
context has been made so far.

By generalizing the Cauchy-Riemann equations, we obtain
a first order matricial operator that optimizes confornyaiit
each of the three canonical orthogonal planes. Minimizirgg t
error in the least-squares sense leads to a simple secoad ord
operator similar to the Laplace operator. In fact, a family o
operators can be obtained using the same derivationsnbpadi
to other forms of energy minimization, thus showing the gen-
erality of the equations. Indeed, we show that orthogonalit
() Harmonic (b) ACAP (¢) Uniform scale and uniform scaling can be weighted to obtain the desired map

constraints.
Figure 1: An identical planar cut through a sphere with a simaip that is . . . .
parameterized with (a) the Laplace operator, (b) the ouratpe and (c) the The mathematical expression being similar to the Laplace

uniform scale operator = 0.6125). operator, many parameterization methods could benefit from
our approach. We also believe that this could have several ap
plications in areas where the Laplace operator is curreistiy,
such as in physically-based and non-physically-based anim

1. Introduction

Parameterization plays an important role in computer graphtions [3]-
ics. It is best known for texturing 3D models but it is also  The paper is organized as follows. Section 2 reviews the es-
used for shape matching and analysis, remeshing, spline copential surface and volumetric parameterization methadd,
struction, physical simulation, etc. [1]. While being migst then introduces the contributions of our method. Sectior-3 d
studied for surfaces, volumetric parameterization hasntyg ~ Scribes the energy minimization technique, starting fréwe t
shown an increased interest, notably in the domain of ergine continuous case to the discrete case, before synthestzing t
ing and medical imaging [2], where structural evaluatioss r whole method in a simple algorithm. Numerical and visual re-
quire a good distribution of internal volume elements. sults are provided in Section 4, and conclusions in Section 5
Most of the current parameterization techniques are based o
harmonic maps that are obtained by solving the Laplace equa-
tion. They dfer good deformation properties for the interior of 2. Related Work
the object, but the boundary oftenfiars from higher nonuni-
form scaling, as shown in Figure 1. Surface parameterization has been extensively studidabin t
This paper revisits the Laplace operator by generalizieg th past. Even though volumetric parameterization is builtam t
well known conformal maps to the volumetric context, thusof surface parameterization, reviewing the latter is belytire
leading to volumetric as-conformal-as-possible (ACAPpma scope of this paper. For good surveys on these technigues, se
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Figure 2: As-conformal-as-possible volumetric map of (8@ Mudface model to a polycube along with (b) a iso-v cut and(side iso-u cut of the mesh. The
iso-u cut shows diierences between harmonic mapping and our mapping. Notadteased uniformity near the surface borders.

[4, 5, 6, 1]. In our implementation, we use a simple piecewisevolumetric parameterization, and three recent technigues
linear parameterization approach that optimizes confityna worth noticing. A mapping to the polycube is computed us-
on arbitrary domains. Other methods could be used as well. ing rotation- and position-driven deformations [20]. The r

Volumetric parameterization techniques began to appear iaulting parameterization is used to map the hexahedra of the
2003. Wang et al. [7] introduce a simple method for computingoolycube to the original object in order to produce a hexahe-
volumetric harmonic maps by conformally mapping the swefac dral mesh. The CubeCover method [21] uses a technique sim-
of a genus zero object to a sphere, and then optimizing for thigar to QuadCover [22], where each element is optimized to be
interior using methods similar to those used to solve thé heaaligned to a given vector field. Using an anisotropic metric,
equation. The technique is also applied to brain mapping [8]Lévy and Liu [23] produce a hex-dominant mesh using Cen-
While the method is not strictly restricted to genus zereeoty, troidal Voronoi Tesselation.
the authors do not describe how to extend it to domains of arbi  Thin-shell parameterization considers that the surfadbef
trary topology. mesh is a volumetric shell that needs to be taken into acéount

Many papers have emerged since 2007. The method of furthe mapping computation. The shell can be mapped to a poly-
damental solutions (MFS) uses the electric charge metaphaube [24] or unfolded to a periodic plane of constant thicene
to compute harmonic maps between shapes sharing the saf#®]. Both papers use harmonic maps. Li et al. [26] use a
topology [9, 10]. This method is improved by aligning feasir harmonic field to map a thin shell representation of a stahdar
on the codomain shape [11]. The MFS is also used to computeexahedral facial model to a patient-specific facial modelav
harmonic maps on star-shaped domains [12, 13]. maximizing orthogonality. Although the method shares some

Xia et al. [14] map the object to a polycube [15] decomposedroperties with conformality, uniform scaling is not pafttoe
into a floor, walls, and a ceiling. A harmonic scalar functisn optimization.
computed on the object and the polycube with boundary values
specified on the floor and the ceiling. The final map is compute€ontributions. This paper presents the first method that intro-
by following the integral curves of the gradient of the hanmitco  duces a simple and practical definition of conformal optimal
function on both domains. ity for volumes. The generalization of the Cauchy-Riemann

A trivariate B-spline can be fitted to an object by mappingequations in conjunction with the generalized Dirichle¢myy
it harmonically to the cylinder [2]. The method can be gen-leads to a fast discrete least-squares approximation dbcon
eralized to other trivariate representations with moreglesn ~ mality in 3D. The result is fundamental, theoretically foleal,
topologies by segmenting the volume into trivial parts,uens and can be incorporated in many existing methods without dif
ing coherence between volumetric patches [16]. A genamliz ficulty. The linearity of the operator plays an importaneral
polycube representation can manage non-trivial topotoglien  making the method fast, straightforward, and simple.
as volumetric Mobius bands and identified cube borders[17]  As shown in Section 4, our method performs better than har-

Another method consists in mapping the object to a polysmonic maps for both angle and volume energy measures.
cube by ensuring orthogonality on the first vertex layer, and
then minimizing an edge-length constraint on interior icext
[18]. It can lead to sheared interior elements in high cumet
areas. The method is used to simulat@ugion of light in het-
erogeneous translucent media.

Yin et al. [19] map a volume with complex topologies to the In 2D, conformal maps are functions that locally preserve
periodic hyperbolic space using a discrete curvature fldvis T the shape of the original space, i.e., the Jacobian mateactt
method generalizes to 3D the fact that high genus surfaces cgoint of the space is a similarity transformation. For fuocf :
be mapped to the hyperbolic plane without singularities. S, — R? defined over surfac8s, this constraint is expressed

Hexahedral meshing methods share similar concepts withy the Cauchy-Riemann equations
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3. As-Conformal-As-Possible Mapping

3.1. Continuous Case



0% —0y|[f
oy ox ||t

=0. \/”i = Afy

In 3D, the local shape preservation constraint is too sttong
be perfectly respected [27], but it can be as optimal as possi
ble. For this reason, we propose to apply the Cauchy-Riemann
equations on each of the three canonical orthogonal planes a -

a way to maximize local rigidity. For functioh: Sz — R Figure 3: Tetrahedron notatiow; is the area of the face opposite to vertgx
defined over volumetric sha, we define the new constraint #; is the unit normal of the face, amg is the area-weighted normal.
Df = 0where

0 9 -0 Having computed all the derivatives, it is now easy to define
0 9. o our discrete operatdd over the tetrahedron as
Z) _ (9)( 0 —(92
10, 0 oy | 104
ox -9y O Df = VA Z Difj
ay ax O i=1

The operatom is unfortunately not rotational invariant be- WhereDi is defined as

cause each equation considers that its corresponding jriane 0 ny -ng

the parametric domain will not change its orientation dgitime 0 n, ny

transformation. We therefore propose to use a techniquedss ny 0 —ni,

from mesh deformation, namely Warpedfi8téss [28], which Di = ni:Z 0 ni,>; : (@)
consists in removing the local rotation of the map at eachtpoi Nix —Ny O

before applying the operator. LRtbe the local rotation at point Ny Nix

X, the constraint becomes

At this point, we use a technique similar to Wang et al. [7]
and Lévy et al. [30] to derive the least-squares formutatio
The goal is to minimize an energy functional over the whole

In this form, the Jacobian matrix of the map is overcon- . . o
strained. That is why we propose to minimize it in the least-etrahedral mesh. The discretized map being linear by paets

squares sense. To achieve this, we seek to minimize theviollo 9€fine t,hr? energy on zaICh |rl1d|V|d_uaI elﬁment. Fofr tetr_ahfe?ro
ing energy functional t € 7 with precomputed local rotatidR:, the energy functiona
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3.2. Discrete Case

DRTf = 0.

1
aziﬂpmw%w

To obtain a linear system, weftirentiate the discrete en-

We first proceed by discretizing the space and functions desgy at vertew; € v with one-ring vertex neighborhodd(vi),
fined on this space. LeM be a tetrahedral mesh with vertices obtaining

V and tetrahedrd . A function is defined oveM by associ-

ating a value to every vertex and linearly interpolatingdes Z Kifj=0 (3)
a tetrahedron. Let € 7 be a tetrahedron of volumé with jeN (WUt}
function valuef; at vertexv;. The barycentric interpolation on
tetrahedrort is whereKj; is the matrix defined by
4 T nT
1 Rt Dt i DI,JRt
f(X) = -5 ), (x-ni)fi @ Kij = —ovu
3Vt ; te?%:,vj) 9Vt

wheren; is the outside normal of the opposite face of the |\ here 7(vi,v;) are the tetrahedra sharing edge v;} and
vertex in the tetrahedron, with normal length equal to tremaar 7(vi, Vi) are the tetrahedra sharing verigx

of the face. Notations are illustrated in Figure 3.
The constraints being applied on the values of the Jacobian _
matrix, we compute the latter by firentiating Equation (1). -3 Algorithm

Using the tensor product [29], we obtain To solve the system defined by Equation (3) and obtain

1 & the as-conformal-as-possible volumetric map, we use atand
J= “3v Z fi ® n;. solvers at each step of the technique. Here is a description o
tis each step.



Step 1- SurfaceMap. The first step is to map the surface of the
mesh to the surface of the codomain using any method. Note
that the quality of the surface mafects the quality of the
volumetric map, e.g., singularities and triangle invemsioould

be propagated to a certain distance in the interior. As lang a
the surface mapping is appropriate, whatever the mappidy us
good results should be expected.

We chose the codomain to be a cube, a sphere, or a polycube
[15]. This choice depends on how well the surface maps to each
codomain. Except for the simplest objects, we chose pogsub
as the preferred codomains. Figure 7 shows typical polysube
for some of the objects tested. The surface map is set to be con
formal. We compute the surface map with a Gradient Descent
method with adaptative step size. The number of iteratiens i
approximately the number of surface vertices. The threkisol
set to 10° using the average squared residual.

Step 2 - Volumetric Harmonic Map. The second step relies on
work by Wang et al. [7] to compute the first approximation of
the volumetric part of the map. Using the equations of Sec-
tion 3.2, we obtain the linear system for a harmonic map by

modifying theK; ; matrices. We define the new d@eients of © @
Equation (3) to Figure 4: Results of (left) harmonic maps and (right) asf@onal-as-possible
~ Ng - nt]- maps.
Kii= - .
b Z M

te7 (vi.vj)

We then obtain a symmetric linear system that can be solved ith GPU leration techni C t
with a Conjugate Gradient method with a Jacobi preconditipn processor wit ou_t any 5L acceleration technique. Lomputa
. : : . tion times of the interior (i.e., without surface map) arewh

keeping surface vertices constant. The number of iteraii®n in Table 1
usually around 150 for each mesh with a threshold 010 '
The volumetric parameterization times are approximately
Step 3 - Local Rotationsand Coefficients. Using the harmonic  multiplied by a factor between three and four using the our op
map as a first approximation, we can compute the local retatioerator compared to the Laplace operator alone. It is impotta
of each vertex. Using those rotations, we computekfjeco-  note that in general, most of the complete parameterization
efficients. cess is completely absorbed by the surface parametenzatio
it uses a Gradient Descent method, which is known to be slow.
Step 4 - As-Conformal-As-Possible Map. The last step is to A multi-grid method could be used for this part, but this i& le
compute the volumetric map with our operator by solving Equafor future work. In fact, the volumetric parameterizatiames
tion (3) using a Conjugate Gradient method with a Jacobi prerepresent generally much less than 1% of that of the surface,
conditioner. The number of iterations is also usually atbun which thus far outweighs the increase in time of performisig a
150 for each mesh with a threshold of £0 conformal-as-possible mapping. Considering the miniroat ¢
We found that iteratively updating local rotations and theang the fact that results are always at least somewhat pietter

mapping only leads to epsilon improvements, which is why wes worth taking the extra step toward conformality.
only evaluate local rotations once.
From a qualitative point of view, we can note some visual in-

dicators that show improvements. While harmonic maps have

4. Results very good behavior in the center of the object, quality at the
, ) , borders is often poor. It is shown in the bumpy sphere of Egur

This section presents the results of the volumetric maps ob o4 it is also noticeable in Figure 4. As a compromise, im-

tt_':uned using our metric. We a_lso compare with alternative me provements at the borders come at the price of slightly rieduc
rics and discuss the mainftirences between these MEtriCS. hq quality of the interior, but nonetheless the overallligys

Not_e Fhat our aim is_to introdqce a fast and simple metric thaFmproved and the interior has still a good behavior.

optimizes conformality. For this reason, we focus our diben

on the behavior of each metric instead of the final map as a To quantitatively measure improvements of the mapping, we

whole. use an angle and a volume energy measure based on equa-
The method is implemented in+G in the Graphite soft-  tions found in the book by Botsch et al. [3] and summarized

ware [31] and all tests were conducted on an Intel Xenon E552By Solomon et al. [32]. Adapted to volumes, we obtain

4



Harmonic ACAP

Mesh [V |77 Codomain| Time | Eangle | Evoume | Time | Eangle Evolume
Sphere 10k 53k Box 0.18 | 2.246| 2.096 | 0.89 | 2.226 2.060
Torus 15k 59k | Polycube| 0.12 | 2.424| 2.392 | 0.58 | 2.400 2.331
Squirrel 18k 73k Polycube | 0.15 | 3.118| 3.453 | 0.84 | 2.638 3.113
Bust 18k 77k | Polycube| 0.19 | 2.829| 3.526 | 0.87 | 2.660 3.447
Foot 20k 89k | Polycube| 0.19 | 2.441| 2.455 | 0.98 | 2.372 2.384
Pensatore 30k 150k Box 0.47 | 2.554| 2.488 | 2.03 | 2.441 2.288
Lion Vase 40k 163k | Polycube | 0.44 | 3.324| 3.229 | 2.09 | 2.869 3.216
Grog 46k 197k | Polycube | 0.51 | 3.521| 3.600 | 2.30 | 3.174 3.461

Sphere | 2.08 | 2.003| 2.011 | 5.45 | 2.003 2.007
Bumpy Sphere | 66k | 307k g 501 [ 2.283| 2.126 | 653 | 2.252| 2077
Alien Shark 185k | 850k | Polycube| 5.16 | 2.697| 2.783 | 17.48 | 2.538 2.568
Human Elder 188k | 877k | Polycube | 5.68 | 2.598| 2.417 | 30.59 | 2.524 2.298
Bimba Con Nastring 203k | 969k | Polycube | 6.36 | 2.825| 5.912 | 23.14 | 2.486 5.443
Chinese Lion 273k | 1203k | Polycube| 9.37 | 2.964| 3.105 | 34.71 | 2.636 3.079

Kitten 342k | 1968k | Polycube | 23.72| 2.668| 4.073 | 74.57 | 2.530 3.655
Human Torso 389k | 1863k | Polycube | 16.33| 3.056| 3.910 | 53.91 | 2.571 3.569
Mudface 1183k | 5569k | Polycube | 48.12| 2.634 | 3.178 | 154.52| 2.469 2.802

—

§34 080020700

Table 1: Quantitative results forférent meshes. Timings are in seconds and the optimal minaha for both energy measures is 2.

will eventually invert it. For this reason, codomains shiblbé

Eangle = % Z Vi ( Ttmin (Tt—max) chosen carefully. While polycubes in this paper are builbma
g \Itmax  Ctmin ally, Gregson et al. [20] provide an automatic geometrgridly
1 1 polycube construction method that could be used to minimize
Evolume = Z Vi (‘Tt’lm»zm»3 * W) element inversion.

teT

whereV is the total volume of the mesky;; are the singular 4.1. Alternative Metrics

values of the Jacobian matrix of the tetrahedra transfoomat ~ Other metrics can also optimize conformality in higher di-
and o min and o max are respectively the minimum and maxi- mensions. Because the Jacobian matrix of a conformal map

mum singular values. should be a scaled rotation, the following energy functiona

These measures can be numerically unstable near singulafiould be used
ties. For this reason, we decided that energy values higher t E, = }f”J — RI2dV;
a fixed threshold should be ignored, due to the bias that they 2
introduce. Even though ignoring values also introducesg, bi
the result is still much more representative of the totargye
than incorporating unstable data. These extremal valyge+e
sent generally less than3¥ of the total volume, which renders
the bias negligible when computing global map energies.
From these measures, we can see an improvement on b
angle and volume global energies for all tested meshespas su

wheres = |J|%.
We found that the results with this metric are better than har
monic maps, but not better than ACAP maps, as shown in Ta-
ble 2. An average of four iterations are needed to convenge fo
tﬁﬁted meshes.

The metric developed by Gregson et al. [20] could also be

marized in Table 1. Although not shown in the table, energ)fons'dered
variance is also significantly decreased on both measuigs. F 1 1 (R + R;
ure 5 shows a color-coded energy distribution of a planar cut N Z N Z( 2 ) (Vi —vy)
through the Chinese Lion model along with a histogram of this
distribution for the entire tetrahedral mesh. whereN = |[N(v;)| andV; is the mapped vertex position.
Note that bijectivity is not garanteed for large deformatio Unfortunately, this operator is highly dependent on theloc

In fact, linear constraints do not generally lead to bamiet-  topology of the vertex and less on the geometry of the volume,
rics, which means that applying enough force on an elemerih the same vein as mass-spring systems.

5
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4.2. Uniform Scaling

We can also introduce a parameter to operddoto add a

- degree of freedom to the results. A logical parameterinatio
would be to separate the uniform scaling constraint from the
orthogonality constraint using a weighting factore [0, 1],
notingw = 1 — w. Explaining only for the discrete case, we
redefine the matrix of Equation (2) to be

0 Wiy —whj z

0 Bni,z Bni,y

wn; x 0 —whj z
Diw=2|-0 on

,,,,,,,,,,,,,,,,,,, e wn; z 0 N x
(c) Harmonic (d) ACAP wNix —whiy 0
whiy  wNjx 0

Figure 5: Angle energy measure for the Chinese Lion mappagtdycube. A

planar cut with color-coded energy and the associated mhefiion distribution

for (left) the harmonic map and (right) the as-conformapassible map. Note
that 86% of the volume has an energy value below 3 for our magpeced to

76% for the harmonic map.

while all other equations remain the same.

From experiments, we found that € [0.3,0.7] gives best
results,w = 0.5 being the original operator. Extremal values
of w must be avoided because singularities of the surface map
may cause degeneracies in the volumetric map. Figure 6 shows

Li et al. [26] developed a metric trying to improve orthogo- mappings computed for fierent values ob.
nality, but it has a preferred direction. While it is appriape
for their application, it is an unwanted behavior for geheod
umetric mappings.

Cage-based deformations could also be considered as po-we introduced an operator that minimizes a 3D conformal
tential mapping metrics. The surface map acting as the cagénergy similar to the Cauchy-Riemann equations in 2D. We
deformation, interior points are moved accordingly to tbe f  showed that this operator can be parameterized such that uni
mulation of the method. Green coordinates [27], being not inform scaling and orthogonality constraints can be weiglaed
terpolatory, lead to highly distorted elements near botirda desired. In fact, any system of constraints using only firsier
since vertices can stand outside the cage after deformat@n  derivatives can be used with the same derivations. The gener
monic maps being uniquely defined by their boundary valueszation in any dimension is also trivial.

Harmonic coordinates [33] were not considered here. Binall  The derivations are based on a mathematically sound ap-

Mean value coordinates (MVC) [34] gave slightly better tesu  proach. Although the results might not always visually apgpe

than harmonic maps regarding energy measures on the testggnificantly improved, they are consistently better thanurs-

meshes, as shown in Table 2. However, the computation time jig our metric, and at a cost of less than 1% of the total com-

prohibitive for large meshes and the negative value prgért putations. Like most other methods, we rely on a conformal

MVC can lead to high distortion in concave parts. surface map. Our polycube map helps to obtain better results
but as shown in Figure 7, simple polycubes provéicient to

5. Conclusion and Future Work

SRJ | [GSZ11] | [LLT11] | MVC achieve reasonable surface map.
Sphere | 2.242| 2.258 2.234 | 2.245 Several methods could benefit from our work. Indeed, most
Pensatore | 2.493| 2.560 2.638 | 2.442 papers that use volumetric harmonic maps as a central tech-
Alien Shark | 2.637| 2.584 2.746 | 2.585 nique can be adapted without muclfidiulty to our maps. This

is due to the fact that the core concepts of the mapping re-

Table 2: Angle energy measures of alternative metrics feetmeshes. Similar
results were obtained with all tested meshes and the volueasmneE, ojume
Compared metrics are the scaled rotated Jacobian matri} (8 metric from
Gregson et al. [20], the metric from Li et al. [26], and Mearueacoordi-
nates [34].

main unchanged, while adding more generality and flexjbilit
to these methods.

Our operator shares the same limitations than the Laplace
operator, i.e., that the one-to-one mapping and the coanesy
are not guaranteed for meshes that lead to ill-conditioimeet
systems.
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Figure 7: As-conformal-as-possible maps of (a) Foot, (k§tBfc) Pensatore, and (d) Human Torso. (€) Codomains of@gehbt.

In the future, we will look for a rotational-invariant op¢og,
hopefully linear, thus eliminating the need for harmonicpma
pre-processing. We also aim at letting the boundary evotve o
the codomain surface as the interior is optimized. Such ateth [14)
would give more room for optimization and could lead to a
much better energy minimization. However, this generéitira
is not straightforward and would need nonlinear optimizati [15]

As parameterization can be seen as a deformation of a shapes
we believe that the presented method can have several applic
tions in animation, notably for cage-based, skeleton-dhaesed
point-based deformations.

(13]

(17]
(18]
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