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Figure 1: Our method fits an initial volumetric template mesh to a surface mesh using higher-order finite elements. This figure
shows the evolution of the initial shape while adaptively increasing the order of each element. This adaptive mesh only stores
6% of all nodes that would be required by a full order-12 finite element mesh.

Abstract

We propose a method for mapping polynomial volumes. Given a closed surface and an initial template volume

grid, our method deforms the template grid by fitting its boundary to the input surface while minimizing a vol-

ume distortion criterion. The result is a point-to-point map distorting linear cells into curved ones. Our method

is based on several extensions of Voronoi Squared Distance Minimization (VSDM) combined with a higher-order

finite element formulation of the deformation energy. This allows us to globally optimize the mapping without

prior parameterization. The anisotropic VSDM formulation allows for sharp and semi-sharp features to be im-

plicitly preserved without tagging. We use a hierarchical finite element function basis that selectively adapts to

the geometric details. This makes both the method more efficient and the representation more compact. We ap-

ply our method to geometric modeling applications in computer-aided design and computer graphics, including

mixed-element meshing, mesh optimization, subdivision volume fitting, and shell meshing.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Physically based modeling

1. Introduction

Surface design is generally the first step in geometric mod-
eling for computer graphics and computer-aided design. For
some applications, such as physics simulation, volume ge-
ometry is required. Although a closed surface defines a vol-
ume, the surface geometry is often too complex to easily
represent volumetric information. Volume meshing is thus
required to achieve this goal.

One family of volume meshing techniques is based on cre-
ating an “easy-to-mesh” volumetric abstraction of the shape
using a topologically equivalent simpler geometry that is
fitted to the original surface to infer a volume mesh. This
family of techniques (see Section 2) generally requires a pa-
rameterization beforehand to guide the fitting process. Cur-
rent volume parameterization techniques first map the sur-
face, then optimize the volume given the locked surface map.
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While existing approaches can independently optimize each
step of the process, it does not lead to globally optimal maps.

We propose to perform the fitting process without a pa-
rameterization step, and we allow the boundary of the vol-
ume to “flow” on the prescribed surface. This additional de-
gree of freedom makes it possible to further optimize the
quality of the mesh elements. Given a target surface mesh
and its volumetric abstraction, we solve the variational prob-
lem of reproducing the target surface while preserving the
shape of its interior, as described in Section 3. The result is
a point-to-point map distorting linear cells into curved ones.

The surface fitting is accomplished with Voronoï Squared
Distance Minimization (VSDM) [NYL12]. This formulation
has the advantage of being implicitly feature-sensitive when
using normal anisotropy, and being able to work with both
polygon soups and noisy meshes with degenerated elements
(see Section 4).

The interior shape is preserved using a barrier metric in-
spired by large deformations mechanics that enforces bijec-
tivity of the map.

We discretize the problem using a hierarchical higher-
order finite element method that offers better approximation
properties than linear elements and offers easy control over
the order of individual elements, thus saving memory and
computation time where geometric precision is not needed.
We also introduce integrated Fourier series as a hierarchi-
cal basis for higher-order elements and present some of its
advantages over traditional bases used in the finite element
community.

2. Previous Work

We review the previous work on surface fitting (Section 2.1),
volume fitting (Section 2.2), and volume mesh optimization
(Section 2.3). Since a complete review of the previous work
would be well beyond the scope of this paper, we focus on
the methods that share some concepts with the one presented
herein.

2.1. Surface Fitting

Shrink wrapping [KVL99] is a two-step procedure where a
template mesh is successively projected on the surface and
relaxed using a regularization term. This method was im-
proved using Laplacian energy and the dual mesh to mini-
mize overlaps [YLSL11].

Manifold splines can be fitted to a mesh by first comput-
ing an initial parameterization, and then optimizing the lo-
cation of the control points so that the surface approximates
the target mesh while optimizing a regularization term to
avoid wiggles in the solution. The template control mesh can
be a base complex [EH96], a periodic global parameteriza-
tion [LRL06], or a polycube-map [WHL∗07].

To avoid the parameterization step, distance to the sur-
face can be approximated without requiring an initial point-
to-point correspondence. This procedure can be applied
to splines [PL03] and to subdivision surfaces [CWQ∗04,
CWQ∗07].

VSDM [NYL12] uses a Voronoï diagram of a sampling
of the optimized surface to partition the target mesh to min-
imize a functional problem over the patches of the partition.
A careful choice of the sampling distribution and of the func-
tional energy leads to an implicitly feature-sensitive method,
which we target in our work.

2.2. Volume Fitting

Volume fitting borrows concepts from surface fitting and ex-
tends them to volumes.

As with surfaces, some techniques use an initial pa-
rameterization and then optimize the control points of
a template spline to fit their corresponding target mesh
points defined by the parameterization. The template con-
trol mesh can be cylindrical [MCK09] or a generalized
polycube-map [LLWQ10, WLL∗12]. The quality of fitting
results are highly dependent on this volume parameter-
ization pre-processing. Existing volume parameterization
methods [WGY03, LGW∗09, MC10, XHY∗10, PP12a] are
highly constrained by the surface parameterization, which
has to be precomputed, hence letting few degrees of freedom
to optimize the volume. Our method avoids computing a pa-
rameterization by optimizing the shape of elements during
the fitting stage to obtain globally optimal shape preserva-
tion.

When the target is a tetrahedral mesh, one can avoid the
parameterization stage by directly considering the tetrahedra
as the control mesh [HHQ05]. This corresponds to a change
of interpolation function where the piecewise linear function
extending the function in the volume is replaced by a spline
function without altering the topology. This constraint re-
stricts its application to arbitrary volume fitting.

Volume mesh fitting can also be achieved by computing a
signed distance field to the target mesh, and moving surface
vertices along the gradient of the distance field while opti-
mizing the shape of the elements using a linear [CS09] or
nonlinear [NS10] elasticity formulation. However, the elas-
ticity models used in these methods are not barrier metrics,
which means that elements can be inverted if the deforma-
tion is too large. Moreover, the surface fitting can get stuck
in a local minimum if all vertices lie on a subset of the tar-
get surface. We avoid these two problems by using a barrier
metric that enforces bijectivity of the map and a symmetric
formulation of surface-to-surface distance.

2.3. Volume Mesh Optimization

Volume mesh optimization plays an important role in finite
element analysis since poor meshing can lead to erroneous

c© 2013 The Author(s)
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Figure 2: A initial embedding (left) is freely optimized (i.e.,
no surface constraints) using a rigid metric (center) and a
conformal metric (right) using higher-order elements. The
conformal metric tends to shrink or expand the volume
around singularities.

results and instabilities. In this section, we concentrate on
vertex relocation techniques where the topology is preserved
during the optimization.

To optimize the shape of the elements, these methods
rely on metrics that measure a distance between the de-
formed element and an ideal shape. This notion of distance
is dependent on the metric used. We refer the reader to
Knupp [Knu00] for a review of the different metrics used
in the meshing community.

We highlight two of the most popular metrics, namely
the condition number [FK99] and the mean ratio [TRBS98].
They are barrier metrics, which means that a valid mesh will
stay valid during the optimization thanks to the infinite en-
ergy of an element passing from valid state to degenerate
one. These metrics optimize conformality of the transforma-
tion but tend to create large and counterintuitive deforma-
tions in the vicinity of singularities as shown in Figure 2.

Some shape matching techniques [MHTG05, BDS∗12]
use only vertex differences to compute the distance to the
ideal shape. A similar approach is the combinatorial Lapla-
cian discretization, which tries to relocate each vertex in the
center of its one-ring. These techniques have the advantage
of being easy to implement and fast to compute, but they can
generate inverted elements. We conjecture that every metric
that has a finite energy for degenerate element configurations
is not guaranteed to give valid meshes in output.

The metric presented in this paper is a barrier metric
inspired from large deformation mechanics that optimizes
rigid transformation, and that behaves well in the vicinity of
singularities.

3. Volume Shape Fitting

Volume shape fitting aims at deforming a shape in such a
way that its boundary matches the boundary of a target shape
while preserving the smoothness of the mapping. To achieve
this, we define an energy functional from these two goals
and solve it with a variational finite element method.

Given a parameterization domain Ω, a piecewise differ-
entiable embedding f : Ω → R

3, and a target surface T , we
define the fitting energy functional as

(a) (b) (c) (d)

Figure 3: A 2D example of (a) a parameterization domain
Ω, (b) an initial embedding f0(Ω), (c) the target surface, and
(d) the final map f (Ω).

E( f ,T ) = ES( f ,T )+λEΩ( f ) (1)

where S = f (∂Ω) is the surface of the volume to be fitted,
ES is the surface energy functional (see Section 3.3), EΩ is
the volume energy functional (see Section 3.1), and λ is a
regularization factor.

The parameterization domain is never computed and is
only used as a reference for the definition of f . An initial
embedding is always given as a starting point of our opti-
mization (see Figure 3).

3.1. Volume Energy Functional

The purpose of the volume energy functional is to keep f

smooth and bijective without requiring any knowledge of the
target surface. In other words, this functional measures, at
each point of Ω, how far the Jacobian matrix J f is from an
ideal transformation.

Let |Ω| be the volume of Ω and ε(J f ) a potential energy
density that measures the distortion of the mapping. The po-
tential energy ε(J f ) will be explicited later. We define the
volume energy functional as

EΩ( f ) =
1
|Ω|

∫
Ω

ε(J f )dΩ. (2)

The potential energy density should penalize degenerate
Jacobian matrices such that it is impossible to create inver-
sions in the process. Using a physical analogy, this corre-
sponds to requiring an infinite amount of energy to com-
press an object such that its volume vanishes. We take this
analogy literally by borrowing the concept of Hencky strain,
or true strain, for large deformations in continuum mechan-
ics [XC02]. The true strain matrix H is defined as

H =
1
2

ln(JT
f J f )

where the logarithm of a symmetric matrix S is computed
using its diagonalization ln(S) = ln(QDQT ) = Q ln(D)QT ,
and where the logarithm of a diagonal matrix is computed
component-wise.

c© 2013 The Author(s)
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Given this strain measure, we can infer a potential energy
density

ε(J f ) =
1
2
‖H‖2.

The geometrical interpretation of this potential energy
density can be made using the Lie group of symmetric
positive-definite (SPD) matrices [Moa05]. From the point of
view of Lie groups, the norm of the logarithm of a SPD ma-
trix is the geodesic distance to the identity matrix. In our
context, the norm represents the geodesic distance to the
nearest rigid transformation.

Volume Energy First Variation

A local minimum of a functional is found by looking at its
first variation, which is the variational equivalent of the first
derivative in differential calculus. The first variation is com-
puted by adding a test function g in the manner of a direc-
tional derivative [EPT∗07]. If the first variation vanishes in
all directions, i.e., for all g, then f is a minimum of the en-
ergy functional. It is noted δgEΩ( f ) = 0 and computed as

δgEΩ( f ) =
d

dτ
EΩ( f + τg)|τ=0

=
1
|Ω|

∫
Ω

d

dτ
ε(J f + τJg)

∣

∣

τ=0 dΩ

=
1
|Ω|

∫
Ω

〈

dε

dJ f
,Jg

〉

dΩ (3)

where we use the matrix chain rule [PP12b] with the notation
〈A,B〉 = tr(ABT ) and the potential energy density gradient
is

dε

dJ f
= J

−T
f H.

Details of these derivations can be found in Appendix A.

We do not need the second variation since we use a Quasi-
Newton method for the optimization, that only needs first
order derivatives (see Section 3.4). Saddle points and local
maxima are avoided by enforcing Wolfe conditions [LN89,
NW06].

3.2. Finite Element Formulation

We formulate the solution of this variational problem with a
hierarchical higher-order element method. The domain is de-
composed in a set of vertices V , edges E , facets F , and cells
C, while the mapping f is defined with a set of nodes N that
are the degrees of freedom of f . On linear elements, nodes
are located at vertices and represent the value of f sam-
pled at each vertex. On higher-order elements, more nodes
are added on edges, faces, and inside the volume, and these

+ + =

Figure 4: A high-order mapping f of a hexahedron using a
linear map defined by the vertex nodes and some additional
displacements defined by edge and facet nodes.

nodes represent additional displacements as illustrated in
Figure 4.

Each type of element is described by a canonical geom-
etry that facilitates computations, a reference geometry that
represents the ideal shape of the element, an interpolation
function that extends the node function values to the interior
of the canonical volume, and some quadrature rule to accu-
rately evaluate the integral on the domain of the element.

The canonical geometry of the hexahedron, the prism,
and the tetrahedron are respectively defined by [0,1]3,
{(u,v,w) ∈ [0,1]3|u+v ≤ 1}, and {(u,v,w) ∈ [0,1]3|u+v+
w ≤ 1}. The transformation from the canonical element to
the reference element is expressed by a matrix A defined by

Ahex = I

Aprism =







1 1
2 0

0
√

3
2 0

0 0 1






(4)

Atet =







1 1
2

1
2

0
√

3
2

√
3

6

0 0
√

2√
3






.

An interpolation function h(u) is defined for each element
in its canonical space using the values of its nodes {ni}. For
a hexahedron of order p, we decompose h into a linear in-
terpolation using vertex nodes {vi}, extended with nodes on
edges {ei j}, facets {fi jk}, and cells {ci jk}

h(u) =
(p+1)3

∑
i=1

niNi(u) (5)

h(u) =
8

∑
i=1

viVi(u)+
12

∑
i=1

p−1

∑
j=1

ei jEi j(u)

+
6

∑
i=1

p−1

∑
j=1

p−1

∑
k=1

fi jkFi jk(u)+
p−1

∑
i=1

p−1

∑
j=1

p−1

∑
k=1

ci jkCi jk(u)

where {ni} = {vi}∪ {ei j}∪ {fi jk}∪ {ci jk}, Vi is the usual
linear bases, and Ei j , Fi jk, and Ci jk are higher-order nodes.
Edge, facet, and cell bases vanish on borders of the sub-
element on which they are defined. For example, we have

c© 2013 The Author(s)
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Figure 5: Effects of non-uniformity of integrated Legendre
polynomials compared to integrated Fourier polynomials for
the tooth model using elements of order 6, along with the
plot of their respective sixth order polynomial. Note the ir-
regularity in the mesh near edges (top) and vertices (bottom)
for the integrated Legendre basis (left).

E1 j(u,v,w) = (1−u)(1− v)φ j(w)

F1 jk(u,v,w) = (1−u)φ j(v)φk(w)

Ci jk(u,v,w) = φi(u)φ j(v)φk(w)

where {φi} is a hierarchical functional basis. At this point,
we choose i as the representative index for {φ∗}. In this pa-
per, we use the modified Fourier series [IN08] instead of
the classical Fourier series, because they avoid the Gibbs
phenomenon at the endpoints and exhibit better conver-
gence properties for nonperiodic functions as demonstrated
in [IN08]. Over the range [0,1], the basis is defined as
{1,

√
2cos(iπx)} for i ≥ 1. We integrate this set in order to

to obtain a linear function along with higher-order modes
vanishing at x = 0 and x = 1,

φi(x) =

√
2sin(iπx)

iπ
.

We could have also used the integrated Legendre polyno-
mials, which are often used by the finite element commu-
nity [SB11]. However, we found that the nonuniformity of
the oscillations of these polynomials can sometimes be ob-
served in the final geometry (see Figure 5).

Note that nodes are shared between adjacent elements. For
this reason, one needs to carefully (i.e., coherently) define
the orientation of each sub-element such that interpolation
functions are conformal across elements.

Let x be a point in the reference element. We define the
volumetric deformation f as a function of the element map-
ping matrix A (Equation (4)) and the nodal interpolation
function h (Equation (5)) as

f (x) = h(A−1
x)

and its Jacobian matrix J f is then given by

J f = JhA
−T .

Volume Energy Integral Approximation

The finite element formulation permits to evaluate the en-
ergy integral on a per-element basis. We approximate the in-
tegral over an element using a quadrature rule that samples
the integration domain given a set of position/weight pairs
{pi,wi}. Each type of element of each order has its own
quadrature rule. Over a domain D, an integral is approxi-
mated by

∫
D

f (x)dx ≈ ∑
i

f (pi)wi. (6)

Choosing a quadrature rule also depends on the functional
basis used. For trigonometric polynomials, the trapezoidal
rule is a simple choice and can be easily computed for ev-
ery type of element. We use 2p− 1 samples per dimension
for order p > 1, and 2 samples per dimension for linear ele-
ments. In Figure 5 (left), where integrated Legendre polyno-
mials are used, a Gauss-Lobatto quadrature [SB11] is a more
appropriate choice.

We now have all the ingredients that we need to discretize
Equation (3). For an element t ∈ C, we have

EΩ,t =
∫

t
ε(J f )dx

≈ ∑
i

ε(Jh|pi A
−T )wi|A| (7)

where position/weight pairs {pi,wi} are relative to the
canonical element.

Inside an element t ∈ C, the first variation is computed
by differentiating by the kth component of each node f j of
element t

∂EΩ,t

∂ f jk

≈ ∑
i

〈

dε

dJ f
,

∂Jh

∂ f jk

A
−T

〉

wi|A|. (8)

3.3. Surface Energy Functional

The surface energy functional measures how close the vol-
ume surface S is from the target surface T , regardless of the
smoothness of f . We usually measure this distance by inte-
grating the square of the normal distance of every point from
S to the nearest point ΠT (x) on T

FT →S =
∫
S
‖nT (x) · (x−ΠT (x))‖2

dx

where nT (x) is the normal at ΠT (x).

This formulation has the disadvantage of vanishing when-
ever S matches a subset of T . To correct this situation,

c© 2013 The Author(s)
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we use a symmetrized version as proposed by Nivoliers et
al. [NYL12]. We also add a normalization factor to render
the functional dimensionless

ES( f ,T ) =
1

AL2 (FS→T +FT →S) (9)

where A and V are respectively the area of T and the vol-
ume enclosed by T , and L =V/A is an approximation of the
average local feature size of T .

The differences between methods minimizing this func-
tional is the way it is discretized. For FT →S , VSDM does
sample S and partition T using the restricted Voronoï dia-
gram [ES94] induced by this sampling. For each restricted
cell, we integrate the squared distance from the surface to
the sample associated to the cell. This ensures that the mini-
mization is performed over the entire surface. FS→T is dis-
cretized the same way, although the sampling pattern and the
gradient computation differ. We refer the reader to Nivoliers
et al. [NYL12] for implementation details.

While no specific sampling prescription is given in the
original article about VSDM, we found that best results are
obtained when placing a sample at the barycenter of each
facet of T , and using the sampling of S naturally induced
by the quadrature rule of Equation (6) when restricted to the
surface.

3.4. Optimization

The fitting process works as follows. The user gives a tar-
get surface, represented by a triangle mesh, and an initial
embedding of the parameterization domain, represented by
a mixed finite element mesh containing hexahedra, prisms
and tetrahedra. Given a regularization factor, the total en-
ergy functional of Equation (2) is minimized using a quasi-
Newton method, namely L-BFGS [LN89, NW06]. The reg-
ularization factor plays an important role in the conditioning
of the system. We use λ = 50 for an initial embedding far
from the target geometry, and λ = 0.05 for the final close fit-
ting. Smaller incremental steps can be taken when the tem-
plate is not close to the target shape (e.g., for the King Kong
and Hanger models). For higher-order fitting, the shape is
first roughly fitted using linear elements only, and gradually
enhanced with higher-order nodes (see Algorithm 1).

Algorithm 1 Incremental fitting

Input: 1) A closed surface T
2) An initial template volumetric mesh M

Output: M fitted to S
Fit T to M with λ = 50 (see Algo. 2) ⊲ Far-fitting phase
while true do ⊲ Close-fitting phase

Increase finite element order of M
Fit T to M with λ = 0.05 (see Algo.2)

Model Order |C| Time SJ
Pensatore 16 7 76.03 0.955
Sculpture 4 30 0.44 0.990
Block 4 50 0.39 0.980
Tooth 8 68 11.21 0.976
Bone 4 79 0.66 0.959
Double torus 4 113 1.23 0.967
Hanger 2 212 0.72 0.983
Hand 4 230 1.26 0.957
Joint 2 302 0.52 0.993
Mudface 12 643 67.72 0.980
King Kong 12 2492 187.54 0.963

Table 1: Results for some models shown in Figures 6 and 7.
The table shows the element order, the number of elements,
optimization time in minutes, and the statistics of the volume
mapping with the scaled Jacobian (SJ).

For each iteration of the minimization process, the func-
tional of Equation (2) and its gradient need to be evaluated.
Integrating the surface part of the function is described in
Nivoliers et al. [NYL12]. The volumetric part is computed
using Equations (7) and (8). The optimization stops when
the norm of the gradient is below a threshold. We use 10−8

in our implementation. For stability purpose, we define the
energy to be infinite and its gradient to be 0 when |J f | < 0.
This prevents L-BFGS from overshooting vertices. The pro-
cess is illustrated in Algorithm 2.

Algorithm 2 Fitting process

Input: 1) A closed surface T
2) An initial template volumetric mesh M
3) A regularization factor λ

Output: M fitted to S
for each iterate x(k) of L-BFGS do

// Compute E = ES +λEΩ and ∇E (Eq. (1))
Compute EΩ( f )(x(k)) and ∇EΩ (Eqs. (7), (8))
Compute ES( f ,T )(x(k)) and ∇ES (Eq. (9), [NYL12])
Assemble E and ∇E and return them to L-BFGS

The method is implemented in C++ in the Graphite soft-
ware [Gra13] and all tests were conducted on a Intel R©

Core
TM

i7 930 processor with 12GB of memory and with-
out any GPU acceleration. We took advantage of the multi-
threading capacity on the multi-core architecture using
OpenMP. The optimization time depends on the complex-
ity of the target mesh and the parameterization domain, and
on the order the finite element formulation. See Table 1 for
more details.

4. Results

We now present results of some polynomial volume fitting
applications in geometry processing.

c© 2013 The Author(s)
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Figure 6: Higher-order finite element meshes (center) gener-
ated by our method, along with their initial templates (left)
and a cutaway view of each mesh (right). The Mudface
model (top) uses the same color scheme as the King Kong
model in Figure 1. See Table 1 for statistics.

4.1. Mixed-element Meshing

Mixed-element meshing of the volume enclosed by the tar-
get is a natural consequence of the fitting process (see Fig-
ures 6 and 7). All-hex meshes are created by restricting the
base mesh to contain hexahedral elements only. Experimen-
tal evidence of energy convergence is shown in Figure 8 for
two representative models.

VSDM is implicitly feature-sensitive, thanks to the nor-
mal distance minimization, which prevents the user from
having to explicitly tag features. Our method can also fit vol-
ume meshes to surface meshes with noisy data, disconnected
triangles, and degenerated triangles (see Figure 9). It is also
possible to mesh a point cloud (see Figure 10) using inverse
fitting only, taking the point cloud as a sampling of the target
surface.

While the bijectivity of the map is enforced by the bar-
rier metric that we use, it is not guaranteed with the higher-
order function basis and quadratures that we use: while the
Jacobian is guaranteed to be positive at the quadrature sam-
ples, it is still an open problem to prove that it is positive
everywhere. Johnen et al. [JRG13] show that it is possible
to define bounds on the Jacobian for standard polynomial el-
ements, changing the element basis to Bézier interpolation,
but this technique does not directly apply to trigonometric
polynomials. Nevertheless, we did not find any inverted el-
ement, i.e., with negative Jacobian, in our empirical results

Figure 7: More results from Table 1. Most of the meshes
benefit from the implicit feature-preservation property of the
anisotropic VSDM formulation.

Figure 8: Energy evolution of the close-fitting phase for two
models. Discontinuities in the plots are caused by hierarchi-
cal function refinement.

Figure 9: Our method can handle degenerated meshes issued
from noisy data, polygon soups, and flipped triangles. We
show the target mesh (left) and the fitted volumetric mesh
(right) using elements of order 8. Note the smoothness of
the result despite the asymmetric degeneracies.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.
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Figure 10: The abstraction (left), taken from Gregson et
al. [GSZ11], fits a point cloud (middle) using elements of
order 2 (right) with inverse fitting.

Figure 11: Template creation from a uniform grid using sim-
ple mesh interactive operations.

shown in Figures 6 and 7 for a dense set of randomly chosen
samples inside each element.

Template meshes were created manually using a com-
bination of simple mesh editing operations: uniform grid
creation, pillowing, edge collapse, extrusion, and carving
(see Figure 11). Mesh pillowing and edge collapsing are
especially useful for pushing singularities inside the vol-
ume when approximating curved geometry. Extrusion can
also be performed from a surface mesh. For example, the
template of the Block model (see Figure 7) is created by
extruding a surface mesh followed by carving. Automatic
polycube creation techniques could also be used for this
task [LJFW08, WJH∗08, HWFQ09, GSZ11].

4.2. Mesh Optimization

The fitting process can also be used to optimize existing vol-
ume mesh (see Figure 12). We first extract the boundary of
the volume mesh, then perform the fitting procedure of the

Figure 12: The original tetrahedral mesh of the bunny (left)
contains inverted and degenerated elements. After optimiza-
tion (right), the mesh does not contain any degeneracy.

volume over its own boundary. This will allow the volume
energy functional to optimize elements while the surface en-
ergy functional preserves the overall boundary shape.

The input mesh can be any valid mesh, and to some extent,
even an invalid mesh. Experiments have shown that inverted
elements can be rectified by the L-BFGS line search when
an element is near validity (see Figure 12).

4.3. Subdivision Volumes

Fitting subdivision volumes is also a natural extension of our
method. We first note that vertices Vc of the control mesh
are related to the vertices Vs of the subdivided mesh by a
subdivision matrix S of dimensions |Vs|× |Vc|

Vs = SVc. (10)

The optimization process works as follows. The vertices
of the control mesh are given to L-BFGS as the degrees of
freedom. For each iteration, we recover the subdivided ver-
tex positions by applying Equation (10). We then compute
the total energy functional and its gradient Gs using the sub-
divided mesh. Finally, we recover the control mesh gradient
Gc that is given back to L-BFGS with

Gc = S
T

Gs.

In our implementation, we use the multi-linear averaging
approximation scheme [BSWX02]. This scheme preserves
features during the subdivision process by modifying S to
apply averaging using only vertices that are on the sub-
manifold of a feature.

For the example (see Figure 13 (left)), we started with a
control mesh with tagged sharp edges (in blue), and applied
the optimization on this control mesh using the first subdivi-
sion as the finite element mesh. We then recursively applied
the same procedure to the resulting subdivided mesh, until
we achieved desired accuracy (4th subdivision for this ex-
ample).

c© 2013 The Author(s)
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Figure 13: Some extensions of our technique for fitting sub-
division volumes (left) and creating shell meshes (right).
Note that the apparent jagginess in the planar cut view of the
shell mesh (white zone) is a visual artifact caused by sudden
changes in rows of cells being displayed.

4.4. Shell Meshes

We can use our volume energy optimization to create a shell
mesh of a given surface mesh.

Given a number of layers l, we first create a tiny shell
around the surface by simple extrusion about the normal of
each vertex, avoiding self-intersection. Then, given an offset
distance d, we optimize each element such that its thickness
along its surface normal is equal to d/l and its tangential
shape is equal to the polygon that it belongs to. This optimal
shape is specified using the reference geometry matrix A.

Figure 13 (right) shows an example of a shell mesh cre-
ated by extruding the surface both inside and outside, each
using two layers of elements.

5. Discussion and Conclusion

We presented a method for fitting higher-order finite ele-
ment meshes given a target surface mesh. Sharp and semi-
sharp features are implicitly respected given the VSDM
anisotropic formulation. Our logarithmic metric enforces bi-
jectivity of the resulting elements. Integrated Fourier series
for hierarchical finite element basis offer good convergence
properties while maintaining uniformity of the map.

Some limitations are subject to future work. The nonlin-
ear behavior of the higher-order elements makes it very hard
to ensure bijectivity. While we have guarantees for a dis-
crete set of samples, it remains an open problem to create bi-
jective elements for arbitrary functional bases. Our method
is subject to the same failure cases than surface VSDM
(see [NYL12]). Features that are too close to each other can
lead to errors in the surface fitting when the sampling is not
dense enough. These errors can prevent global bijectivity of
the surface map, which in turn prevent volume global bijec-
tivity.

The given volumetric abstraction is currently taken as is,

without questioning its geometrical and topological validity.
For abstractions very different from the actual surface geom-
etry, large distortions can appear in the result. Incompatible
topologies are also problematic since the mapping is theoret-
ically impossible without topology modifications. Future re-
search could alleviate these restrictions by dynamically cre-
ating, removing, or modifying elements of the abstraction.

Our implementation does not support nonconformal
meshes. It could be interesting to support T-meshes using a
Mortar element method [MMP89]. It could also be interest-
ing to test the finite element basis and the logarithmic metric
in the context of nonphysically-based computer animations.

Acknowledgements

Gilles-Philippe Paillé acknowledges financial support from
FQRNT, and Pierre Poulin, from NSERC and GRAND.
Bruno Lévy is partly supported by the European Research
Council (GOODSHAPE ERC-StG-205693) and the ANR
(MORPHO and BECASIM).

Appendix A: Logarithmic energy gradient

Let ε = 1
2‖H‖2, H = 1

2 ln(U), and U = JT J. Using trace
identities [PP12b] and the symmetry of H, we have

∂ε = tr(H∂H) = tr

(

1
2

HU
−1∂U

)

= tr
(

HU
−1

J
T ∂J

)

∂ε

∂J
=

(

H(JT
J)−1

J
T
)T

= J
−T

H.
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