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Abstract We present an efficient method for impor-
tance sampling the product of multiple functions. Our al-
gorithm computes a quick approximation of the product
on-the-fly, based on hierarchical representations of the
local maxima and averages of the individual terms. Sam-
ples are generated by exploiting the hierarchical proper-
ties of many low-discrepancy sequences, and thresholded
against the estimated product. We evaluate direct illu-
mination by sampling the triple product of environment
map lighting, surface reflectance, and a visibility function
estimated per pixel. Our results show considerable noise
reduction compared to existing state-of-the-art methods
using only the product of lighting and BRDF.

Keywords Importance sampling · Rejection sampling ·
Multiple functions · Ray tracing · Visibility

1 Introduction

Monte Carlo methods are widely used in photo-realistic
rendering, but many samples are needed for noise-free
results. Importance sampling is a popular way to improve
the performance by concentrating the sampling efforts to
important regions. Ideally, the sampling density should
be proportional to the function itself, but this is hard to
achieve in practice. In this paper, we focus on integrating
the direct illumination under environment map lighting.
The problem involves a product of the lighting, surface
reflectance, and local visibility. This product has to be
computed on-the-fly for each pixel, as precomputation is
infeasible due to the large amounts of data.

We store hierarchical representations of the local max-
ima and averages of the involved functions. For any in-
terval, the product of the functions’ individual maxima
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Fig. 1 Our algorithm can sample the product of multiple
functions exhibiting a very wide range of frequencies. This im-
age results from sampling the triple product of environment
map lighting, surface reflectance, and estimated visibility.

is always a conservative estimate of the product’s local
maximum. This can be used for rejection sampling, but
many samples would be rejected in regions where the
maximum is overly conservative. Instead, we compute an
approximation of the product by hierarchically multiply-
ing the local averages. The estimation is then refined in
regions of potential high contribution, indicated by the
local maximum. Samples are generated by thresholding
against this approximated product, exploiting the hier-
archical properties of many low-discrepancy sequences.

Unlike many previous methods, we aim for quickly
generating samples approximately following the product
distribution. In terms of overall performance, this is bet-
ter than going through great effort to create a small set
of near optimal samples. This is particularly true today,
when ray tracing has reached interactive speeds. The
complexity of our product approximation grows only lin-
early with the number of terms. Hence, it is possible to
use more than two functions at a small extra cost. As a
proof of concept, we conservatively approximate the vis-
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ibility per pixel, and directly sample the triple product
of lighting, BRDF, and visibility.

2 Previous Work

In this paper, we concentrate on computing the direct
illumination using Monte Carlo integration. For a general
overview of Monte Carlo methods, we refer to [11,7].
In this context, the rendering equation [12] involves an
integral over the product of lighting, material reflectance,
and visibility. These are all potentially high-frequency,
which makes it expensive to compute their product. In
addition, the exact visibility is unknown, and must be
locally estimated.

Many techniques exist for importance sampling only
one of the three functions. Numerical BRDF models can
often be analytically inverted, e.g., [2,25], and measured
materials can be efficiently sampled [15,16]. Another ex-
ample is environment map sampling [1,14,19]. It is also
possible to draw samples from a weighted combination of
multiple functions [23]. However, none of these methods
take the product of the functions into account.

Talbot et al. [22] suggest importance resampling, where
an initial set of samples is first drawn from a simpler
distribution. Then, by giving the samples appropriate
weights and resampling the initial set, they obtain sam-
ples approximately following the product distribution.
Burke et al. [3] generate a large set of samples according
to one of the product’s individual terms, and use either
rejection sampling or resampling to pick out the most
important ones based on the remaining terms.

Other work has focused on explicitly estimating and
sampling the product. Clarberg et al. [4] precompute
wavelet representations of the lighting and materials.
These are multiplied on-the-fly, and uniform points are
warped into the desired distribution. Cline et al. [5] avoid
the precomputation by using a summed-area table for
the light source, which is hierarchically divided into smaller
regions based on peaks in the BRDF. A major advantage
is that spatially varying materials are supported.

We compute an approximation of the product by
hierarchically multiplying precomputed representations
of the maxima and averages of the individual terms.
The approximation is adaptively refined, and samples are
placed by hierarchical thresholding of low-discrepancy
sequences, similar to [19]. Quasi-random numbers [17]
are crucial for reducing the variance, and have a long
history in computer graphics [13]. Our simple approach
has a number of advantages. First, it gives a very fast al-
gorithm. Second, our method allows inexpensive on-the-
fly rotations of the involved functions (e.g., the BRDF),
which means we avoid storing redundant pre-rotated data,
and thus reduce memory requirements. Third, we can
include additional terms in the product at a small cost.
This opens up for novel sampling strategies.

q

Fig. 2 In rejection sampling, samples are first drawn from
a simpler envelope distribution, q(x), and then randomly
thresholded against the importance function p(x). This can
be illustrated as filling the space under q(x) with random
points, and then rejecting all points above p(x). The proba-
bility of accepting a sample, xi, is equal to p(xi)/q(xi).

As a proof of concept, we include a third importance
function, representing an estimation of the visibility. We
use a conservative approximation of the geometry with
inner spheres [24], and build a low resolution visibility
map per pixel. By including a visibility term, we effec-
tively avoid sampling in directions guaranteed to be oc-
cluded. Very few other techniques exist, which exploit
visibility to reduce the variance. Ghosh et al. [9] pro-
pose a two-pass method. First, they apply bidirectional
importance sampling [3] to compute an initial estimate
and to identify partially occluded pixels. Then, the noise
is reduced by redistributing the variance from nearby
pixels using Metropolis sampling.

3 Approximate Product Importance Sampling

Our sampling method is based on hierarchical threshold-
ing of candidate points against an estimate of the func-
tion to be sampled. The idea is to gradually fill the sam-
pling domain, and then perform a rejection test. Thresh-
olding, or rejection sampling (see Figure 2), is a classic
Monte Carlo technique for sampling an arbitrary func-
tion. First, we extend the method to efficiently handle
the product of multiple functions, by using a conserva-
tive estimate of the product’s maximum. Then, we in-
troduce a fast approximation of the product to avoid a
large number of slow evaluations of the individual func-
tions. We use 1D examples throughout for clarity, but
our method generalizes to any dimension.

3.1 Hierarchical Sample Generation

We generate candidate samples using low-discrepancy se-
quences that can be hierarchically constructed. By this
we mean any sequence where samples can be iteratively
added, while being uniformly distributed. One example
is the van der Corput (VDC) sequence [17,21]. Using a
VDC sequence in base b, a sample’s position, Xi, is de-
fined as the radical inverse of its index i. Any positive
integer i in base b can be expressed as a sequence of
digits dm . . . d2d1 uniquely defined by i =

∑m
j=1 djb

j−1.
The radical inverse is obtained by reflecting these dig-
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Fig. 3 Sample generation gradually filling the space using a
van der Corput sequence. Note that Yj > Yi for j > i.

its about the decimal point. For instance, if b = 2, the
radical inverse of 4 = (100)2 is (0.001)2 = 0.125.

This sequence can be constructed recursively, in which
case each subdivision multiplies the number of samples
by b. We set a maximum level of subdivision L, which
will generate N = bL samples, and define a sample’s
threshold value as Yi = i/N . Now, for f(x), such that
0≤f(x)<1, a sample is rejected if f(Xi) < Yi. This pro-
cess is illustrated in Figure 3. Note that our definition of
threshold values assures that, as samples are generated,
their threshold values are strictly increasing. This is a
key point that will be exploited in the following section.

3.2 Sampling using Max-trees

The efficiency of rejection sampling relies on how well the
envelope function approximates the desired importance
function. A bad fit means more tested samples, many of
which will be discarded. Consider the case of sampling a
product with multiple terms:

f(x) =
∏

i

fi(x). (1)

The construction of a good envelope function for Equa-
tion 1 can be a difficult problem. For example, in the
case of direct illumination, the individual terms repre-
sent lighting, BRDF, and visibility.

We propose to precompute a hierarchical representa-
tion of the maximum for each individual term, which we
call the max-tree. The max-tree is created by recursively
subdividing the domain, storing the maximum over each
child in a tree structure. For discrete functions, e.g., en-
vironment maps, finding the maximum over a region is
straightforward. For analytical functions, such as many
BRDFs, it is in some cases possible to derive an expres-
sion for the maximum. However, to remain general, we
rely on point sampling of the function, and use extensive
oversampling to reduce the risk of missing peaks. This

Fig. 4 Using the local maximum (solid black line), we can
prune branches where all subsequent samples will be rejected
(orange boxes), and thereby reduce the rejection rate.

assumes the function is reasonably smooth, but it gives
no guarantee of finding the true maximum.

By multiplying together the individual maxima, we
get an upper bound for the product. More formally, for
any region [a, b] in the function domain, the following
holds true:

max
x∈[a,b]

f(x) ≤
∏

i

(
max

x∈[a,b]
fi(x)

)
. (2)

Note that this upper bound gives a tighter fit at finer
subdivisions. We generate samples by recursively subdi-
viding the domain, while evaluating Equation 2 at each
level. Since samples are hierarchically generated and have
ever increasing threshold values, we can safely stop the
recursion as soon as a sample threshold value is larger
than the local maximum, as illustrated in Figure 4. This
effectively limits the number of generated samples.

3.3 Product Approximation

To speed up the sampling, we compute an approxima-
tion of the product, against which potential samples are
thresholded. Hence, we avoid the expensive evaluation
of the involved functions (e.g., environment map and
BRDF) for each candidate point. On the negative side,
we get samples only approximately following the target
distribution, which increases the variance. However, in
our application, faster sampling more than enough makes
up for this, in terms of overall quality vs time.

Previous work on importance sampling for direct il-
lumination has used product approximations based on,
e.g., wavelets [4] and summed-area tables [5]. We take a
simpler approach, and multiply the local averages of the
individual terms. Looking at an interval [a, b], we use:

1
b− a

∫ b

a

∏
i

fi(x)dx ≈
∏

i

(
1

b− a

∫ b

a

fi(x)dx

)
, (3)
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Fig. 5 Two non-overlapping peaks present a challenging
case. Our product approximation (red) fails at coarse lev-
els, as seen on the left. However, the large maximum (blue)
around the left peak, will trigger further subdivision until the
missing peaks are found, as shown on the right.

where the individual local averages,
∫ b

a
fi(x)dx/(b − a),

are precomputed and stored in an average-tree, similar
to our max-tree. We denote the piecewise constant im-
portance function obtained this way by h(x).

Equation 3 is clearly a crude approximation to the
product, especially at coarse levels in the hierarchy. How-
ever, it converges towards the correct result at finer sub-
divisions. Note that, by construction, we adaptively re-
fine the approximation where the function maximum is
large, thereby minimizing the approximation error in re-
gions having a significant contribution to the integral.
This is a key point of our method. A challenging exam-
ple is shown in Figure 5.

3.4 Avoiding Bias

The deterministic nature of low-discrepancy sequences
implies a fixed distribution of sample positions. To avoid
bias, we use scrambling [20,8] and randomly permute
the assignment of sample positions when subdividing.
The discretization of threshold values is another source
of bias, which we address by adding a random offset in
the range [0, 1/N) to each threshold value. This is a well-
known technique [11], which ensures that, on average, the
correct number of samples is selected.

The use of a low-discrepancy sequence based on the
radical inverse yields samples at fixed positions, aligned
on a grid defined by the level of subdivision. As the sam-
ples only cover a subset of the domain, the solution will
be biased. To address this fact, all results in this paper
were generated using the VDC-sequence with jittering
on sample positions. However, it is possible (but more
costly) to achieve better blue noise properties by tak-
ing the local neighborhood into account using structural
indices, as in, e.g., Polyomino-based sampling [18].

3.5 Sample Count

As mentioned in Section 3.1, the number of candidate
samples is N =bL, where b is the subdivision factor and L
is the maximum level of subdivision. Since candidates are
uniformly distributed, the average number of accepted
samples n̄ is equal to N scaled by the integral of the
importance function, H =

∫
h(x)dx, as follows:

n̄ = H × bL. (4)

To obtain n samples on average, we scale h by a factor c,
which is given by:

c =
n

H × bL
. (5)

It is essential that c · h(x) remains in [0, 1) for our rejec-
tion test to be valid. This is ensured by increasing L up
to the point where c · h(x) < 1. Note that c varies per
pixel and cannot be precomputed.

As h(x) is defined through the sampling process, its
integral H is initially unknown. In order to estimate the
number of samples that will be generated, we approxi-
mate H by performing two subdivisions and then com-
puting the average of h(x) at that level. If the final num-
ber of samples widely differs from n, we refine c and
repeat the process. In our application, using a 20% tol-
erance, the average number of sampling iterations rarely
exceeds 1.3.

3.6 Unbiased Monte Carlo Integration

In importance sampling, the probability density function
does, by definition, integrate to 1. We draw samples from
the scaled product approximation, c · h(x), which must
be divided by its integral, c · H, in order to meet this
criteria. Since h(x) is piecewise constant, its integral can
easily be computed by summing the contribution of all
leaf nodes during the sampling process:

H =
1
bL

m∑
i=1

hi × bL−li , (6)

where hi is the value of h(x) over the i th node, and
li ∈ [0, L] is the node’s level in the hierarchy. The size of
the i th node with respect to the maximum level of subdi-
vision, L, is equal to bL−li . The resulting unbiased Monte
Carlo estimator, 〈F 〉, for the integral F =

∫
f(x)dx is:

〈F 〉 =
H

n

n∑
i=1

f(xi)
h(xi)

, (7)

where H is computed using Equation 6. Note that the
term H plays the same role as Lns (i.e., “exitant radiance
in the absence of shadows”) used in [3,4].

4 Application – Direct Illumination

The computation of direct illumination from distant HDR
environment map lighting [6] is a problem that has gen-
erated considerable interest in recent years. The outgoing
radiance is given by [12]:

Lo(x→ωo)=
∫

Ω

L(x←ωi)ρ(ωi↔ωo)V (ωi) dω, (8)

where the lighting (L), reflectance (ρ), and visibility (V ),
are integrated over the hemisphere. We define ρ as the
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BRDF weighted by the cosine of the incident angle, i.e.,
ρ = fr(ωi↔ωo)(ωi ·N), as commonly done.

Our algorithm can be used to efficiently sample the
product L · ρ. We also show that an approximated visi-
bility term, Ṽ , can be included. By sampling according
to the triple product L · ρ · Ṽ , we further reduce noise in
regions with large occlusion. Results with and without
the visibility term are presented in Section 5.

4.1 HEALPix Mapping

All involved functions are defined over the (hemi)sphere,
while our algorithm depends on hierarchical subdivision
of the domain into quads. We use the HEALPix (Hierar-
chical Equal Area isoLatitude Pixelization) mapping [10],
and divide the sphere into 12 faces (see Figure 6), as
described by Gorski et al. [10]. Each face is a curvi-
linear quad, which can be recursively subdivided into
2×2 smaller quads of equal area. We apply our sampling
scheme on each face separately.

The HEALPix mapping has a number of desirable
properties: (1) hierarchical representation, (2) area preser-
vation, and (3) low distortion. The preservation of area
simplifies our implementation, as we do not have to com-
pute form factors. Low distortion is important when ro-
tating between different domains (see Section 4.3).

4.2 BRDF Representation

A general BRDF is a 4D function parameterized over
incident and outgoing directions, (θi, φi) and (θo, φo) re-
spectively. Isotropic BRDFs, currently implemented in
our system, are reduced to 3D functions depending only
on θi, θo, and |φi − φo|. We store isotropic materials as
2D slices, i.e., one 2D reflectance map (θi, |φi − φo|) for
each θo. Each slice is first encoded as a mipmap image,
and then mapped to the HEALPix representation. Only
the data for the upper hemisphere is stored.

All materials in the scene are resampled into this rep-
resentation as a precomputation step. To avoid missing
features, we use oversampling and assume the BRDF is
reasonably smooth. This approach is taken by most al-
gorithms using tabulated materials, and rarely presents
a problem. The reflectance maps (as well as the envi-
ronment map) are stored in RGB color, and the local
maxima and averages are computed per channel. Dur-
ing sampling, we threshold against the luminance, Y ,
computed using the perceptual weighting: Y =0.299R+
0.587G+0.114B.

4.3 Rotations

In our application, the lighting is given by a 2D environ-
ment map in world space, while material reflectance is
defined in the local surface frame. Hence, a rotation be-
tween the two domains must be performed. This can be

precomputed as in [4], but the increased memory require-
ments would limit us to low-resolution representations.
Instead, our algorithm was designed to support fast on-
the-fly rotation of the importance functions.

The estimations of a quad’s maximum and average
(Equations 2 and 3) are both local operators, depending
only on the values of the corresponding nodes in each
term. Hence, we can simply rotate the coordinates used
for locating a quad in the hierarchical representation.
However, after rotation, a quad usually covers multi-
ple quads at the destination. The low distortion in the
HEALPix mapping helps reduce the overlap, but spe-
cial care has to be taken to ensure that our estimation
of the maximum remains conservative. We proceed as
illustrated in Figure 6.

Fig. 6 After a rotation in the HEALPix mapping, the source
quad usually overlaps a number of quads at the destination.
The precomputed average at the red dot is linearly inter-
polated from the nearest neighbors, marked with blue dots.
Similarly, we ensure that the local maximum is conservative
by implicitly considering all quads marked dark gray.

4.4 Visibility Approximation

One of the advantages of our method is that we can
inexpensively include additional terms in the product. A
natural extension is to use an estimated visibility map
to steer samples away from occluded directions.

We use a visibility estimation inspired by [24]. Each
object in the scene is approximated by a set of inner
spheres. These spheres are aggregated into a hierarchy,
but only leaves act as occluders (to preserve inner con-
servativity). To create a visibility map, we traverse the
sphere hierarchy and the HEALPix hierarchy in parallel.
If the cone enclosing a quad of the HEALPix mapping is
completely occluded by a leaf sphere, the quad is marked
as occluded (zero visibility). Other quads are set to fully
visible (one). Then, we propagate these values upwards
and store their maxima and averages.

The cost of building the visibility approximation is
independent of the number of samples. Hence, the amor-
tized cost is smaller for high-quality rendering, where
more samples are used. In our implementation, a visibil-
ity map is built per pixel, which is expensive with many
occluders. Another approach is to re-use the visibility es-
timate over several pixels, or use adaptive updates. We
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have saved this for future work. Other occluder primi-
tives can also be added. In addition to spheres, our im-
plementation supports infinite planes.

The visibility term gives a large variance reduction
where the information is accurate. In other parts, e.g,
along shadow edges, the effect is smaller. To handle such
regions, we have experimented with adaptive sampling.
We increase the number of samples for each pixel where
the number of occluded visibility rays is above a certain
threshold, e.g., 50%, and repeat the sampling process.

4.5 Early Termination and Biased Evaluation

In our algorithm presented in Section 3, samples are al-
ways placed in leaf nodes at the maximum level of sub-
division. This gives an importance function that is accu-
rate, but at a higher cost. Here, we present two optional
extensions for increasing the performance.

First, we propose to terminate the recursion as early
as possible. For this, we identify branches with at most
one sample. Our sample threshold values are, by defi-
nition, strictly increasing. Thus, when we reach a point
where the next threshold value is larger than the local
maximum, only the current sample can possibly be ac-
cepted. Instead of traversing the hierarchy up to the leaf
level, we place the sample in the current node and ter-
minate. This gives a faster algorithm, but at the expense
of a small increase in variance.

Second, we propose a biased version of our algorithm.
Instead of point sampling the exact L and ρ in evaluat-
ing the rendering equation, we use the local averages as
sample values for samples placed in large nodes. To avoid
visual artifacts, e.g., with highly specular materials, we
combine unbiased and biased evaluations. This is best
explained with an example. Consider the case where the
BRDF and the environment map are precomputed up to
levels 5 and 8 respectively. If a sample is placed in a node
at level 7, we compute the exact BRDF value, but use the
precomputed average of the environment over the node.
The sample is then assigned the product of these values.
Note that this approach, although biased, is consistent,
i.e., it converges towards the correct solution.

We have found the combination of these two exten-
sions to be extremely useful. When a sample is placed at
lower levels in the hierarchy (large nodes), the average-
tree approximately gives us the integral over the node,
instead of a single point-sampled value. This significantly
reduces the variance. In Section 5, we present results us-
ing both the unbiased and the biased versions.

5 Results

All results were obtained on a MacBook Pro with an
Intel Core 2 Duo 2.4GHz (using 1 core), and all func-
tions were stored uncompressed in quadtrees of different
depths. At depth n, each of the HEALPix mapping’s 12

faces contains 2n×2n quads. In all images, the environ-
ment map was stored at depth 8, and occupies 24 MB.
For a 4k×4k angular map, the setup time was 1.46 s.

Isotropic BRDFs are represented with 50 slices com-
puted for outgoing angles uniformly distributed in [0, π/2].
The only user set parameter is the BRDF resolution. In
practice, we use depth 5 for most materials, while dif-
fuse materials (e.g., the ground in Figure 1) are stored at
depth 4, and highly specular materials (e.g., the sphere
in Figure 8) are stored at depth 6. The precomputation
times for measured materials [16] are:

Depth n Memory Precomputation
4 2.55 MB 0.36 s
5 9.78 MB 1.35 s
6 38.45 MB 5.31 s

The estimated visibility function is computed at depth
4 and occupies 8 KB. Figure 7 illustrates a practical sit-
uation where a Buddha is approximated by 110 inner
spheres. It should be noted that the cost of estimat-
ing visibility is independent of the number of samples,
and the cost of including a third term in the product is
marginal. For this scene, adding visibility increases the
rendering time by about 14 seconds. The rendering times
for the left image in Figure 7, at resolution 256 × 256,
were:

Number of Non-adaptive Adaptive
Samples No Visibility Visibility Visibility

16 4.1 s 17.8 s 18.3 s
128 14.7 s 28.5 s 33.0 s
512 49.8 s 64.0 s 81.0 s

Figure 8 shows a comparison against several recent
techniques. Results with sampling of only the BRDF or
the environment map are also included. The material is
a normalized Phong with diffuse and specular lobes. The
shininess coefficient is 5000 for the sphere and 10 for the
plane. These values were chosen to illustrate a full range
of frequencies. Strong light blocked by occlusion results
in a high noise level with algorithms sampling only the
product of lighting and BRDF. This effect is diminished
by taking visibility into account.

This scene presents an extremely easy case for our
visibility estimation, only increasing the rendering time
by 11% (with 64 samples). This is not representative for
the general case, but it shows, as a proof of concept,
that including a visibility approximation can dramati-
cally lower the noise. More sophisticated algorithms for
estimating the visibility term have been left for future
work. The images also show that our biased extension
gives strong noise reduction, while being consistently
closer to the reference. The rendering times were: 1

#Samples 4 16 64 256
HT unbiased 5.1 s 7.3 s 10.0 s 20.4 s
HT biased 2.3 s 3.2 s 4.8 s 9.9 s

HT+Vis biased 2.8 s 3.7 s 5.3 s 10.3 s
WIS [4] 6.4 s 6.7 s 7.8 s 11.3 s

Two-stage [5] 0.8 s 1.8 s 5.8 s 19.3 s

1 Note that the timings are not directly comparable as the
algorithms were implemented in different ray tracers. How-
ever, all systems show a performance similar to pbrt [21].
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No Visibility Visibility Visibility and Adaptive

Fig. 7 Images illustrating the impact of adding visibility information and adaptive sampling, using 16 samples per pixel and
biased rendering. The two gray scale images (bottom row) show the percentage of occluded rays, where black is 100% and
white 0%. The bottom right image shows the sphere approximation used for the Buddha. The leftmost image is a reference.

Figure 1 illustrates the robustness of our method and
its applicability to a wide range of materials, ranging
from diffuse to highly specular, in a lighting environment
with an extreme dynamic range.

6 Discussion and Future Work

Our sampling scheme is based on hierarchical threshold-
ing against an approximated importance function. The
approximation is computed from hierarchical representa-
tions of the local maxima and averages, and enables sev-
eral important features. First, we can sample products of
multiple functions, including rotations between different
domains. Second, many useful optimizations are possible,
e.g., early termination and biased integration, which im-
prove speed and reduce noise. Although our method re-
quires the involved functions to be smooth and bounded,
we have found it to be very robust.

For estimating the direct illumination, our results
compare favorably to existing state-of-the-art methods.
As a proof of concept, we include a visibility term esti-
mated per pixel, and show that it is possible to signifi-
cantly reduce the noise due to occlusion. Exploiting visi-
bility information to speed up the computation of direct
illumination is an interesting direction of research. We
would also like to remove some of the limitations of our
algorithm, most importantly the precomputation step.
One possibility could be to compute the necessary data
on-the-fly directly from analytical or factorized BRDFs.
This would allow spatially varying materials, which is
important in a number of applications.
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