
  

Efficient Product Sampling using 
Hierarchical Thresholding

Luc Leblanc, Victor Ostromoukhov, Pierre Poulin
University of Montreal

Fabrice Rousselle
EPFL / University of Montreal

Petrik Clarberg
Lund University



  

Objective



  

Plan
1. Introduction
2. Description of Hierarchical Thresholding

• Basic algorithm (Ostromoukhov et al, Siggraph 2004)
• Our extensions

3. Application to direct illumination
4. Results
5. Conclusion and future work



  

Introduction
• Monte Carlo ray tracing

– Widely used in photo-realistic rendering
– Many samples are needed for noise-free results

• Importance sampling
– Offers significant noise reduction by concentrating the sampling 

to important regions
– Ideally, the importance function        should be proportional to 

the function sampled

hF i =
1

n

nX

i=1

f(xi)

p(xi)
; with

Z
p(x)dx = 1

p(x)

hF i =
1

n

nX

i=1

f(xi), with n the number of samples



  

Introduction
• Proposition: Hierarchical Thresholding (HT)

– A simple sampling scheme
– Applicable to products of multiple functions
– Can be easily integrated in a Monte Carlo ray tracer



  

HT: Basic Algorithm
• HT is a rejection sampling scheme

– Generate a uniform distribution
– Reject all points outside the integral volume
– The sample density is proportional to the function value
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• Samples are generated with low-discrepancy sequences

– Samples are iteratively added, while being uniformly distributed
– In practice, we use the Van der Corput sequence

VDC sequence in base 2
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HT: Basic Algorithm
• The number of candidate samples generated is: N = b L

– with b the base of the VDC sequence (2 in this example)
– with L the maximum level of subdivision (4 in this example)

• A sample value is i/N, with i its index in the sequence

Van der Corput sequence in base 2
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HT: Avoiding Bias
• Low discrepancy sequences are deterministic
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HT: Avoiding Bias
• Low discrepancy sequences are deterministic

– Randomize key steps of the processus (see paper for details)
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HT: Use of Max/Avg Tree
• Local maximum value

– Needed for pruning branches
• Local average value

– Predict the number of selected samples
– Speed up the rejection test (avoid BRDF evaluation)
– Perform further performance optimizations
– Yields a piecewise-constant importance function:

• The local maximum and average values are pre-
computed for all nodes of the hierarchy

h(x)



  

HT: Product of Functions
• Direct illumination: sampling a product of functions

– Environment only (works for diffuse surfaces)
– BRDF only (works for specular surfaces)
– Environment x BRDF (works well, but problematic occlusions)

Environment

Rendered using 16 samples

BRDF Env x BRDF
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HT: Product of Functions
• Our algorithm extends to the product of    functions:

• The local maximum is conservatively approximated:

• The local average is similarly approximated:

– The error of this approximation only affects the variance of the 
estimation, the estimator still convergences to the right result

f(x) =

nY

i=1

fi(x) (1)

n

avg f(x) ¼
nY

i=1

(avg fi(x)) ; x 2 [a; b] (3)

max f(x) ·
nY

i=1

(max fi(x)) ; x 2 [a; b] (2)



  

HT: Sampling in 3D
• Samples are positioned on a 2D plane

Sample indexing according to the VDC sequence in base 4



  

Application: Direct Illumination
• The mapping used: HEALPix

– hierarchical representation (needed for our algorithm)
– area preservation
– low distorsion (allows dynamic rotations)

• Each face is sampled individually
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HEALPix: Rotations
• Environment Map in world space
• BRDF in local space

– Fetching the BRDF value implies a rotation
– The max area is enlarged to remain conservative
– The avg is interpolated from the four neighbors



  

Application: Visibility Computation

• Computed from a simplified model using inner spheres
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Results
• Comparison with other product sampling methods
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Wavelet Importance Sampling

Clarberg et al. Siggraph 2005 - 16 samples



  

HT: no visibility

16 samples



  

Two Stage Importance Sampling

Cline et al. EGSR 2006 - 16 samples



  

HT: no visibility

16 samples



  

HT: with visibility

16 samples



  

Conclusion
• Positive

– Fast sample generation
– Simple (based on rejection sampling)
– Flexible (functions must only be bounded)
– Extendable to n functions

• Negative
– Relies on precomputed BRDFs

• Future work
– Compute the BRDF max on the fly

(removes precomputation and dynamic rotations)
– Smarter visibility computation



  

Rendering Times

• Core 2 Duo 2.4GHz (1 core)



  

Questions



  

Results
• Comparison with other state of the art methods



  

HT: Improving Performances
• Relies on a more agressive 

branch pruning: faster 
rendering

• Use the local average 
instead of computing the 
exact sample contribution: 
introduces a bias

• Seamlessy blend to exact 
sample contribution if the 
local average resolution is 
too coarse

unbiased
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Objective

The objective of our work is to produce photo-realistic renderings such as this 
one using a wide range of surface reflectances going from the very diffuse 
(such as the ground) to the highly specular (such as the mirror ball in the front 
row), while lighting the scene with HDR environment maps. This map has a 
dynamic range of ~1:10^6.
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Introduction
• Monte Carlo ray tracing

– Widely used in photo-realistic rendering
– Many samples are needed for noise-free results

• Importance sampling
– Offers significant noise reduction by concentrating the sampling 

to important regions
– Ideally, the importance function        should be proportional to 

the function sampled

hF i =
1

n

nX

i=1

f(xi)

p(xi)
; with

Z
p(x)dx = 1

p(x)

hF i =
1

n

nX

i=1

f(xi), with n the number of samples

Standard Monte Carlo methods use random sampling, while importance 
sampling uses samples drawn from an importance function. Our method 
addresses the question of defining the importance function and drawing samples 
from it.
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Introduction
• Proposition: Hierarchical Thresholding (HT)

– A simple sampling scheme
– Applicable to products of multiple functions
– Can be easily integrated in a Monte Carlo ray tracer
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– Reject all points outside the integral volume
– The sample density is proportional to the function value



  7

HT: Basic Algorithm
• HT is a rejection sampling scheme

– Generate a uniform distribution
– Reject all points outside the integral volume
– The sample density is proportional to the function value



  8

HT: Basic Algorithm
• HT is a rejection sampling scheme

– Generate a uniform distribution
– Reject all points outside the integral volume
– The sample density is proportional to the function value



  9

HT: Basic Algorithm
• HT is a rejection sampling scheme

– Generate a uniform distribution
– Reject all points outside the integral volume
– The sample density is proportional to the function value



  10

HT: Basic Algorithm
• HT is a rejection sampling scheme

– Generate a uniform distribution
– Reject all points outside the integral volume
– The sample density is proportional to the function value



  11

HT: Basic Algorithm
• Samples are generated with low-discrepancy sequences

– Samples are iteratively added, while being uniformly distributed
– In practice, we use the Van der Corput sequence

VDC sequence in base 2

Here, only the first 8 points of the sequence are shown. We seen that, as 
samples are added, the distribution remains relatively uniform.
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HT: Basic Algorithm
• The number of candidate samples generated is: N = b L

– with b the base of the VDC sequence (2 in this example)
– with L the maximum level of subdivision (4 in this example)

• A sample value is i/N, with i its index in the sequence

Van der Corput sequence in base 2

The VDC sequence generates points in 1D, we need to project them in 2D. As 
the projection uses the sample index as its value, we end up progressively 
filling the sampling domain, from the bottom to the top. This property is key 
and will be exploited to improve the efficiency of the algorithm.
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HT: Basic Algorithm
• Exploiting the hierarchy

– Prune a branch when it reaches the local maximum
– Less candidate samples implies a lower rejection rate

Van der Corput sequence in base 2

We add a constraint to the algorithm: we subdivide nodes until we reach the 
maximum level of subdivision (4 in this example) or the local maximum value.
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HT: Basic Algorithm
• Exploiting the hierarchy

– Prune a branch when it reaches the local maximum
– Less candidate samples implies a lower rejection rate

Van der Corput sequence in base 2

Here we see that the last node (on the right) has reached the local maximum. 
This node sample will necessarily be rejected and, as we progressively fill the 
domain, all subsequent samples would be placed « higher » and therefore be 
necessarily rejected. We therefore prune that branch (ie. we won't subdivide it 
anymore).
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HT: Basic Algorithm
• Exploiting the hierarchy

– Prune a branch when it reaches the local maximum
– Less candidate samples implies a lower rejection rate

Van der Corput sequence in base 2

In this example, we ended up with 11 instead of 16 candidate samples
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HT: Avoiding Bias
• Low discrepancy sequences are deterministic
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Sample distribution is deterministic. This induces a local coherence in the 
image, which creates a bias. Shown here: the visual difference between an 
image rendered using 16 and 64 samples. The bias in sample placement 
yields a color shift (blue in the top right and yellow in the middle).
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HT: Avoiding Bias
• Low discrepancy sequences are deterministic

– Randomize key steps of the processus (see paper for details)
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By randomizing some key steps of the algorithm, the distribution is effectively 
randomized, yielding an unbiased distribution. The visual difference is now 
« white noise » illustrating the unbiased estimation. The randomizing does not 
affect the uniformity of sample distribution and the fact that it progressively fills 
the domain.
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HT: Use of Max/Avg Tree
• Local maximum value

– Needed for pruning branches
• Local average value

– Predict the number of selected samples
– Speed up the rejection test (avoid BRDF evaluation)
– Perform further performance optimizations
– Yields a piecewise-constant importance function:

• The local maximum and average values are pre-
computed for all nodes of the hierarchy

h(x)
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HT: Product of Functions
• Direct illumination: sampling a product of functions

– Environment only (works for diffuse surfaces)
– BRDF only (works for specular surfaces)
– Environment x BRDF (works well, but problematic occlusions)

Environment

Rendered using 16 samples

BRDF Env x BRDF

The point of this slide is to illustrate what can be gained by sampling the product 
of functions.
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HT: Product of Functions
• Our algorithm extends to the product of    functions:

• The local maximum is conservatively approximated:

• The local average is similarly approximated:

– The error of this approximation only affects the variance of the 
estimation, the estimator still convergences to the right result

f(x) =

nY

i=1

fi(x) (1)

n

avg f(x) ¼
nY

i=1

(avg fi(x)) ; x 2 [a; b] (3)

max f(x) ·
nY

i=1

(max fi(x)) ; x 2 [a; b] (2)
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HT: Sampling in 3D
• Samples are positioned on a 2D plane

Sample indexing according to the VDC sequence in base 4
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Application: Direct Illumination
• The mapping used: HEALPix

– hierarchical representation (needed for our algorithm)
– area preservation
– low distorsion (allows dynamic rotations)

• Each face is sampled individually
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Application: Direct Illumination
• The mapping used: HEALPix
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HEALPix: Rotations
• Environment Map in world space
• BRDF in local space

– Fetching the BRDF value implies a rotation
– The max area is enlarged to remain conservative
– The avg is interpolated from the four neighbors
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Application: Visibility Computation

• Computed from a simplified model using inner spheres
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Application: Visibility Computation

• Computed from a simplified model using inner spheres

The inner sphere model gives a conservative estimate of the real model shadow.
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Application: Visibility Computation
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• Computed from a simplified model using inner spheres

Noise level in the shadow is increased: samples are drawn to the sun which is 
occluded by the happy buddha. This shows in the color coded image at the 
bottom (the darker the image, the higher the percentage of occluded rays).
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Application: Visibility Computation

no visibility with visibility
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• Computed from a simplified model using inner spheres

Using the occlusion information of the spheres, we can significantly reduce the 
percentage of occluded rays. As we use a conservative estimate, we cannot 
improve the behavior at the edges of the shadow or in between the feet of the 
buddha.
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Results
• Comparison with other product sampling methods
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WIS biased TSIS unbiased HT no visibility HT with visibility

Just show the 4 usefull ones
If the previous slide is removed, biased results should also be removed from 
this comparison
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Wavelet Importance Sampling

Clarberg et al. Siggraph 2005 - 16 samples

WIS relies on relatively low-resolution environment maps, resulting in a less 
accurate importance function and therefore higher level of noise.
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HT: no visibility

16 samples
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Two Stage Importance Sampling

Cline et al. EGSR 2006 - 16 samples

While TSIS uses high resolution environment maps (which allow for high quality 
rendering of the plane) its refining approach does not work well for highly 
specular surfaces when using a small number of samples.
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HT: no visibility

16 samples
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HT: with visibility

16 samples

This is the ideal case for our method: the visibility can be accurately computed 
as we have only an analytical sphere on an infinite plane. As such this 
represents the extend to which the visibility could improve the estimation.
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Conclusion
• Positive

– Fast sample generation
– Simple (based on rejection sampling)
– Flexible (functions must only be bounded)
– Extendable to n functions

• Negative
– Relies on precomputed BRDFs

• Future work
– Compute the BRDF max on the fly

(removes precomputation and dynamic rotations)
– Smarter visibility computation
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Rendering Times

• Core 2 Duo 2.4GHz (1 core)

All methods have comparable speeds. The « HT biased » method is detailed in 
the paper and illustrated at the end of the presentation.
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Questions
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Results
• Comparison with other state of the art methods

Shown here for WIS is the biased rendering only which does not converge to the 
right value. The unbiased version would have higher variance than all methods 
shown here.
This graph also illustrates the seemless blend from biased to unbiased values for 
our biased implementation, ensuring that we converge to the same value.
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HT: Improving Performances
• Relies on a more agressive 

branch pruning: faster 
rendering

• Use the local average 
instead of computing the 
exact sample contribution: 
introduces a bias

• Seamlessy blend to exact 
sample contribution if the 
local average resolution is 
too coarse

unbiased
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