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Abstract
This paper presents a new method of precomputing high-
quality soft shadows that can be cast on a static scene
as well as on dynamic objects added to that scene. The
method efficiently merges the visibility computed from
many shadow maps into a penumbra deep shadow map
(PDSM) structure. The resulting structure effectively
captures the changes of attenuation in each PDSM pixel,
and therefore constitutes an accurate representation of
light attenuation. By taking advantage of the visibility co-
herence, the method is able to store a compact represen-
tation of the visibility for every location within the field
of view of the PDSM. Modern programmable graphics
hardware technology is used by the method to cast real-
time complex soft shadows.

Key words: Rendering, illumination, graphics hardware,
visibility, shadow, compression.

1 Introduction

Shadows provide important cues to understand spatial
relationships between lights and objects. Soft shadows
are even more desirable as they add a great deal of re-
alism to synthetic images. However, because comput-
ing soft shadows can be very computationally intensive,
generating them has traditionally been an off-line (non-
interactive) process.

Recent advances in computer graphics hardware make
it possible to generate soft shadows in real time, at the ex-
pense of trading quality for speed. While these methods
produce good results, they lack the very high quality of
off-line methods.

Therefore, this paper proposes a method to generate
soft shadows, based on the deep shadow map (DSM)
structure [13], to bridge the gap between off-line and real-
time methods. The major contributions of our method
can be summarized as: (1) high-quality precomputed soft
shadows, which can be rendered using modern graphics
hardware, and thus can be integrated to any graphics en-
gine ; (2) seamless integration of dynamic objects to the
scene,after precomputation of shadows. Furthermore,
unlike many other real-time soft shadow methods, our

method gracefully handles small to large extended light
sources, inner and outer penumbrae, and any object that
can be rendered with the z-buffer algorithm.

With the PDSM, the attenuation function can be
queried for any location in the field of view of the light,
which allows the correct shadowing of dynamic objects
after the high-quality shadow precomputation. Since the
precomputed PDSM does not include shadow informa-
tion for the dynamic objects, the shadow of these objects
must be computed with a standard shadow map or one of
the methods discussed in Section 2.1. This approach is
justified since studies [19] have shown that lower quality
shadows for moving objects are acceptable.

2 Previous Work

While shadow determination is closely related to visibil-
ity determination [7], a problem so ubiquitous in com-
puter graphics, it has its particularities, which lead to the
development of numerous algorithms and structures ded-
icated to resolving the shadowing problem. Most meth-
ods are covered in surveys and books [3, 10, 22] and this
section concentrates on the methods most relevant to the
PDSM technique.

2.1 Real-Time Methods
Algorithms appropriate for real-time computation of
shadows can be roughly divided in two classes: (1) meth-
ods based on shadow maps [20] that create depth images
to store the closest visible point as seen from the light
source; and (2) methods based on shadow volumes [8]
that create invisible 3D shadow polygons to answer the
point-in-shadow-volume request.

Shadow map algorithms have always been very popu-
lar: they have early on been integrated in graphics hard-
ware pipelines [16]; they have been transformed to better
fit perspective views of a 3D scene [14, 18, 21]; they have
been adaptively refined for efficiency and quality [9, 17].
Some extensions of the shadow map algorithm also apply
to the determination of soft shadows.

Percentage closer filtering [15] projects the 3D point
to be shadowed in a standard shadow map, but instead of
determining the visibility against a single pixel, it tests



with respect to a finite kernel of pixels, thus blurring the
shadow borders. Although it was primarily applied to an-
tialias shadows, it can be used to approximate soft shad-
ows. The size of the created penumbra is incorrect since it
does not take into account occluder-occludee relative dis-
tance. Creating large penumbrae also results in a large in-
crease in computation time because of the increased size
of the kernel.

Smoothies [6] extend silhouette edges into a set of
joined rectangles (smoothies) parallel to the shadow map.
A clever function using the projection of the 3D point
on the smoothie, the distance to its smoothie edges, and
the depth to the 3D smoothie provides a reasonable ap-
proximation of penumbra. In the work of Wyman and
Hansen [23], a similar method replaces the smoothies by
3D slanted shadow rectangles and cones, rendered into a
penumbra map. Both of these methods achieve real-time
soft shadows, but the umbra region does not shrink as it
should when the light source increases in size. They base
the computation of the umbra region on the shadow map
computation and add the penumbra region outside of the
shadow map umbra, thus capturing only half of the ef-
fects of extended light sources.

Extensions of shadow volume algorithms, such as the
penumbra wedges [2, 4], produce quality soft shadows in
real time, but they suffer from high fill-rate requirements.
As an object-space method, its cost also increases rapidly
with scene complexity.

2.2 Multiple Shadow Maps

To compute the shadowing from an extended light source
at a given 3D point, the fraction of the light reach-
ing this point is needed. Brotman and Badler [5] keep
many shadow maps generated from point light sources
randomly positioned on the extended light source. Un-
fortunately, memory consumption quickly becomes pro-
hibitively large as the number of shadow maps increases
to improve the quality of the shadows. Yet, much of the
information is inherently coherent. Agrawalaet al. [1]
group the shadow maps in a singlelayered attenuation
map. They warp every shadow map to the layered atten-
uation map, which has two main disadvantages: (1) as
the light source becomes larger, splatting is required to
prevent holes from appearing; (2) it provides no informa-
tion where there are no receiving surfaces in the original
scene. To cast soft shadows on dynamic objects added to
the scene the method of Agrawalaet al. thus requires the
recomputation of the layered attenuation map for every
frame of an animation.

2.3 Deep Shadow Maps

With the DSM, Lokovic and Veach [13] introduce a visi-
bility structure to capture partial occlusion due to the cu-

mulative occlusion by tiny or semi-transparent objects. A
function storing the increase in attenuation is constructed
and stored for each pixel of a shadow map. Kim and Neu-
mann [11] efficiently construct this structure using graph-
ics hardware.

The standard DSM from a point light source contains
for each pixel the attenuation as a function of depth. Each
DSM pixel is constructed from many shadow map pixels
with jittered positions (or simply sub-pixels). For exam-
ple, a single DSM pixel can typically correspond to 256
shadow map sub-pixels.

3 Penumbra Deep Shadow Maps

This section presents the adaptation of the DSM structure
to capture the attenuation from an extended light source,
in an approach similar to that of Agrawalaet al. [1]. The
PDSM method stores the attenuation function for every
3D location in the PDSM field of view. New objects can
then be added in the scene with high-quality soft shad-
ows cast on them without recomputing the PDSM. The
PDSM also has advantages compared to approaches such
as lightmaps since it does not require any surface parame-
terization of the objects. As can be seen in Figure 8 (g), it
can even be cast on objects that do not have any surface,
such as fog.

3.1 Construction
The fraction of the light source visible is needed when
rendering a 3D point. The PDSM encodes this informa-
tion as the attenuation of light for every 3D location in its
field of view. Each pixel in the PDSM corresponds to a
3D ray from the PDSM center of projection through the
center of the pixel. A PDSM pixel captures the attenua-
tion of light along this ray.

Algorithm 1 : PDSM construction.

Generatek random sample points on the light source.1

foreachsample pointdo
Compute a shadow map (SM).2

// Merge the SM information to the PDSM.
foreachPDSM pixeldo

Compute the associated 3D PDSM ray.3

Project this PDSM ray in the SM.4

foreachSM pixel traversed by the raydo
if visibility changedthen5

Insert an event into the PDSM.6

The pseudo-code for the construction of the PDSM
is presented in Algorithm 1. The attenuation factor is
computed by first randomly distributing a set ofsample
point light sources over the extended light source (step 1).
When distributing thek sample points on the light, strati-



fied sampling is used to ensure lower variance; other dis-
tributions could be used, as well as different importance
functions. A shadow map (a standard shadow depth map)
is then computed from each of these sample points (step
2). Since there arek shadow maps, each shadow map
contributes for1/k of the attenuation function.

To compute the attenuation contributed by one shadow
map, each 3D PDSM ray is projected into the shadow
map (steps 3 and 4) to compute the sections of the ray that
are in shadow (step 5). These sections correspond toentry
andexit events which are then inserted with the events of
the other shadow maps in the PDSM pixel of the current
ray (step 6). Steps 5 and 6 are illustrated in Figures 1
and 2. Step 2 is computed using graphics hardware, while
steps 3 to 6 are computed in software.
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Figure 1: A PDSM ray corresponding to a single PDSM
pixel. The PDSM ray is used to gather attenuation infor-
mation as computed from the shadow map (SM).

Determination of the shadowed portions of a projected
PDSM ray is obtained by software scan-converting the
ray into the shadow map (Figure 3). The algorithm then
keeps track of which parts of the PDSM ray fail the stan-
dard shadow map test. As mentioned previously, this in-
formation is kept in entry (attenuation+1/k) and exit (at-
tenuation−1/k) events of each shadowed interval. Once
a pixel is identified as containing a visibility event, the
depth along the PDSM ray where this event occurred
must be determined. Both the shadow map and the ray
scan-conversion provide information about this. Figure 4
illustrates (a) when to use the shadow map depth infor-
mation, (b) when to use the PDSM ray scan-conversion
depth information, and (c) how to compute the depth of
exit events. Care must be taken during this step, because
while the shadow map is usually the most accurate source
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Figure 2: (a) Attenuation along a PDSM ray for one
shadow map. (b) The final attenuation function along
the PDSM ray as the sum of the contributions of all the
shadow maps.
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Figure 3: The 3D PDSM ray is projected in the shadow
map (SM) and the pixels used to determine the visibility
of the ray are identified by software scan-converting the
ray using the mid-point algorithm.

of depth information, it can also provide some erroneous
data and as such must always be validated with the scan-
conversion information. PDSM rays that project in a sin-
gle pixel are handled as a special case and only add an
entry event.

When adding the shadow map information in the
PDSM, depths in the shadow map must be transformed
to depths in the PDSM for insertion. This computation
can be optimized if the light source is planar and if the
PDSM and the shadow maps are parallel to each other
and parallel to the light source plane [1]. In this context,
a depth in the shadow map is exactly the same depth in
the PDSM, thus requiring no transformation.

Because of the finite depth resolution of the shadow
map, many events from different shadow maps can occur
at the same depth or be very close to each other. Events
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Figure 4: Shadow map (SM) pixels extend as vertical regions i-2, i-1, i, etc. Pixel i is under examination. Points
represent the depth information at the center of shadow map pixels (ZSM). The PDSM ray traverses the shadow maps
along increasing depth. The selection between the PDSM ray depth (Zray) and the shadow map depth (ZSM) is based
on the comparison between these two depths: (a) shadow map depth is appropriate, (b) shadow map depth is wrong
thus Zray must be used. Finally, (c) illustrates that the exit eventuses the depth of the previous pixel.

occurring in a depth range close to the resolution of the
shadow map are simply merged together during step 6 of
the construction algorithm.

The constructed PDSM is composed of a series of
events with depth and attenuation values for each PDSM
pixel. One such attenuation function is illustrated in Fig-
ure 2 (b). It should be noted that if no dynamic objects are
to be added to the scene, only a subset of all the events are
needed. As Agrawalaet al. [1], the PDSM method could
keep only the attenuation values where there are surfaces,
thus greatly reducing the number of events and required
storage.

3.2 Compression
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Figure 5: The depth events (a) of the PDSM are com-
pressed in a piecewise linear approximation (b) that re-
spects the error bounds.

Because the number of events in the attenuation func-
tions can be very high, it needs to be compressed, espe-
cially if the PDSM is to be stored on graphics hardware.
This is accomplished by using the compression technique
described in the original DSM paper [13]. The basic idea
is that at each step, the algorithm draws the longest pos-
sible segment, while staying within the confines of the
pre-defined error bounds. Figure 5 illustrates the tech-
nique. As will be seen in the next section, compressing
the number of events is important to reduce both memory
consumption and rendering time.

4 Rendering

Rendering shadows with the PDSM is described in Algo-
rithm 2. This algorithm can be used in software rendering
engines, but can also be implemented on programmable
graphics hardware (details of our hardware implementa-
tion follow in Section 4.1). The 3D point to be shaded is
projected in the PDSM (step 2), the attenuation is com-
puted from the function stored in the PDSM (steps 3 and
4), and the shading is multiplied by this attenuation factor
(step 5).

Algorithm 2 : Rendering.

foreach3D point to shadedo1
// 3D point(x, y, z)world → (x, y, z)PDSM

Project in the PDSM.2

// (x, y)PDSM → f( )
Retrieve the appropriate attenuation function.3

// f((z)PDSM )→ attenuation
Retrieve the attenuation value.4

// attenuation→ pixel color
Modulate the shading by this attenuation.5



The preprocessing phase computes depth images from
the light source and constructs a PDSM that contains at-
tenuation functions for every location in its field of view.
The attenuation functions are stored in each PDSM pixel
as a list of events (depth and attenuation values). As can
be seen in Figure 5, an attenuation function is a piecewise
linear function, interpolating the attenuation between ad-
jacent events.

When rendering, shaded images are computed from the
view of the camera. Computing the pixel colors of an
image requires the shading of the 3D points correspond-
ing to the pixels of the image (step 1). A 3D point to
shade is projected in the PDSM image to determine the
PDSM pixel that contains the relevant attenuation func-
tion (step 2 and 3). To evaluate the piecewise linear atten-
uation function, the algorithm searches for the two events
between which the 3D point to shade is located. The
list of events is sequentially visited and the attenuation
values are linearly interpolated to obtain the attenuation
value at the depth of the 3D point to shade (step 4). Com-
pressed functions (Section 3.2) are used in the examples
presented in this paper since it reduces the length of the
lists of events and thus reduces both memory consump-
tion and rendering time.

As in many other image-based approaches, instead of
evaluating the attenuation value from a single PDSM
pixel, the PDSM pixels around the projected 3D point
can be considered and the attenuation values filtered. Fil-
ters of various widths can be applied by evaluating the
attenuation functions and weighting the results. The ex-
amples presented in this paper use bilinear filtering since
it provides a nice balance between quality and cost.

4.1 Hardware Rendering
To take advantage of the processing power of pro-
grammable graphics hardware, the whole PDSM render-
ing algorithm can be implemented in hardware using a
fragment shader. Because the PDSM structure is usu-
ally very sparse, encoding it efficiently in graphics hard-
ware texture memory is important. Encoding the PDSM
in a 3D data structure potentially wastes huge amounts
of memory, which is why we encode it into two 2D tex-
tures: anindex textureand adata texture. The data tex-
ture contains all the PDSM functions encoded sequen-
tially (Figure 6 (b) and (c)) and the index texture simply
provides information on where a specific PDSM function
is located in the data texture, and how many texels it oc-
cupies (Figure 6 (a)).

Every step of Algorithm 2 is mappable to graphics
hardware. Using regular projective texturing for the in-
dex texture gives the address and length of the PDSM
function to evaluate (steps 2 and 3). This evaluation is
done at the fragment level, where the fragment program

function address (x,y)

function length

0 0 4 4 0 2

index texture

function at (0,0)

function at (4,0)

data texture

16-bit depth 8-bit attenuation

(a) (b)

event

(c)

Figure 6: Texture encoding on the graphics hardware.

fetches the function data, finds the needed events, and in-
terpolates the attenuation values (step 4). Because PDSM
compression greatly reduces both average and maximum
function lengths, this evaluation can be done very effi-
ciently, allowing the rendering of high-quality soft shad-
ows in real time. When dynamic branching is available
at the fragment shader level, this method of encoding
also allows for arbitrary length attenuation functions and
early-exit when searching through the attenuation func-
tion.

5 Results

The images in Figure 8 show common setups to illus-
trate soft shadows. The method generates smooth transi-
tions from hard to soft shadows as can be seen in Figure 8
(a) and (b). The method also handles the smooth merg-
ing of soft shadows, as well as penumbra sizes according
to the relative occluder-occludee distances (Figure 8 (c)).
Various soft/hard shadows cast by a single complex ob-
ject (Figure 8 (d)), or by a complex scene (Figure 8 (e)
and (f)), are automatically treated, improving the realism
of shadows. The volumetric shadow information of the
PDSM allows to handle shadows within smoke and fog
(Figure 8 (g)).

Figure 7 shows the linearity of various construction pa-
rameters. Fork shadow maps of resolutionm × m en-
coded in a PDSM of resolutionn × n, the complexity
of the construction isO(k m n2). This means that the
resolution of the PDSM should be kept relatively low, but
that the accuracy of the shadow maps can be increased by
a factor of four with an increase in computation time of
only a factor of two. Finally, since the construction time
is linear in the number of shadow maps, this gives a good
trade-off between accuracy and precomputation time.

Figure 7 (d) shows how PDSM size can increase
rapidly when sampling the light more finely and how the
compression of the PDSM functions provides satisfying
results with a fairly stable memory usage. Compression
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Figure 7: Various statistics computed for the Stanford Dragon scene. The construction time is directly proportional
to (a) the number of shadow maps and to (b) the number of pixels of the PDSM. PDSM of (b) were constructed from
4, 16, 36, 64, and 256 shadow maps. It is also quite proportional to the size of the shadow maps (c) (resolutions of
128×128 up to 2048×2048). Finally, (d) presents the compression of the PDSM attenuation functions for a 512×512
PDSM with different numbers of shadow maps.

results in an important reduction of the number of events.
As a result of the compression on the scene with the most
complex soft shadows (the park scene), the average num-
ber of events per pixel goes down from 63 to 5 and the
maximal number of events per pixel goes from 482 to 40.

The table below gives statistics about both PDSM con-
struction and rendering for the scenes in Figure 8.

Cylinder Quads Dragon Park

Res. PDSM/SM 5122 5122 5122 10242

Num. Samples 64 144 64 64
Construction (sec.) 30 67 33 161

Rendering (fps) 1150 840 80 40

All the results presented in this section were computed
on an AMD Athlon 64 3500+ with 2GB of memory and
a GeForce 6800 GT.

As previously mentioned, because the PDSM can be
evaluated at any location in 3D space, shadows are cast
not only on the static parts of the scene that were used to
precompute the shadows, but also on any dynamic object
that might have been added to the scene afterward. This
is illustrated in the accompanying video [12].

When adding dynamic objects, information about how
they should cast shadows is not present in the precom-

puted PDSM. While nothing prevents the recomputation
of the PDSM with the new positions of these dynamic
objects, or even to incrementally add the contributions
of two PDSM (one static and one dynamic), the time re-
quired to compute the new PDSM is significant compared
to rendering time (several seconds, depending on PDSM
resolution and the number of shadow maps, see Figure 7).
In our current implementation, we simply used shadow
mapping with percentage closer filtering [15].

6 Conclusion

This paper presents an efficient construction algorithm of
DSM for extended light sources represented by a distri-
bution of sample point light sources. Each PDSM ray is
software scan-converted in each shadow map to accumu-
late the distribution of total incoming light along the ray.
The resulting PDSM structure captures quality (hard and
soft) shadows for light sources ranging from point light to
large extended sources. When compressing this attenua-
tion function, modern graphics hardware can be exploited
for the real-time display of static shadows. The PDSM
structure is well adapted to real-time interactive applica-
tions where complex shadows can be cast over animated
characters. A complementary real-time adapted shadow
algorithm can be applied on these animated characters to



ensure their shadows are properly cast within the scene.
There are many interesting directions to improve the

PDSM method. The scan-conversion of PDSM rays into
each shadow map should exploit more of the inherent co-
herence of this structure, such as scan-converting “slices”
of the PDSM view pyramid rather than individual rays.
The compression of the attenuation function is also per-
formed on a single PDSM ray, where adjacency informa-
tion and more perception-based compression would be
preferable. Exploiting recent adaptive shadow map ex-
tensions [9, 17, 18] and developing a better sampling of
the extended light sources according to the shadow re-
gions should also improve the quality of the constructed
PDSM.
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Figure 8: Examples of soft shadows computed with the PDSM. From top to bottom, left to right: (a) A narrower
penumbra behind a cylinder extends as (b) the light source is enlarged. (c) Different sizes of penumbrae according
to the relative distances between blockers/receivers. (d) Complex self-shadowing effects on the Stanford Dragon.
(e) Park scene with complex geometry and shadows. (f) Complex shadows cast in real time on a car inserted in the
precomputed shadows; the shadows cast by the car are computed with percentage closer filtering [15]. (g) Fog lighted
with the PDSM, showing how the attenuation can be evaluated everywhere in the scene. No special treatment is
needed, the PDSM shader is simply added to the regular fog shader.
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