
Simulated Bidirectional Texture Functions with Silhouette Details

Mohamed Yessine Yengui ∗ Pierre Poulin

LIGUM, Dept. I.R.O., Université de Montréal

ABSTRACT

The representation of material appearance requires an understand-
ing of the underlying structures of real surfaces, light-material inter-
action, and human visual system. The Bidirectional Texture Func-
tion (BTF) describes real-world materials as a spatial variation of
reflectance, which depends on view and light directions. Real BTFs
integrate all optical phenomena occurring in a complex material,
such as self-occlusions, interreflections, subsurface scattering, etc.,
independently of the mesoscopic surface geometry.

In this paper, we revisit BTF simulation to improve the modeling
of surface appearance. In the recent years, computer graphics has
achieved very good levels of image realism on geometrical appear-
ance of 3D scenes. It is therefore logical to think that using this
technology to simulate visual effects at the level of the mesoscopic
geometry should provide even more realistic simulated BTFs. Our
ultimate goal here is thus to produce material appearance as rich
and as similar as those in reality, but relying more on the intuition
and skills of artists, and on the rendering capacity of today’s com-
puter graphics.

We have designed a virtual parallel-projection / directional in-
cident illumination framework that exploits rendering coherency in
order to produce, in reasonable rendering times and with good com-
pression ratios, BTFs of complex mesoscopic geometry, and this,
even at grazing angles. Our current framework can simulate effi-
ciently local interreflections effects within mesoscopic structures,
as well as effects due to transparency, silhouettes, and surface cur-
vatures. Our general simulation framework should also prove ex-
tensible to several other visual phenomena.

Index Terms: BTF, BRDF, aBRDF, simulation, surface appear-
ance, compression, mesoscopic geometry, silhouette.

1 INTRODUCTION

The appearance of a surface is intricately related to how the sur-
face reflects incident light. For homogeneous opaque surfaces with-
out surface details that are individually visible, the bidirectional re-
flection distribution function (BRDF) encodes in a single 4D func-
tion the reflection at a given point for all combinations of direc-
tions of observation and incident illumination. For heterogeneous
surfaces, the BRDF varies over the surface. A basic bidirectional
texture function (BTF) encodes in 6D this spatial variation of sur-
face reflection into a 2D texture, i.e., one 2D texture for every
pair of observation and incident illumination directions (see Fig-
ure 2). A BTF thus captures all visual effects due to fine-scale
self-shadowing, self-occlusions, interreflections, subsurface scat-
tering, etc., that can affect or come from different points on the
surface. A 4D BRDF thus extracted from one BTF texel can violate
some BRDF properties, since light transfers can come from differ-
ent points on the surface. It is referred to as an apparent BRDF
(aBRDF) [27]. In this paper, we will refer to aBRDFs as BRDFs,
for simplicity.

∗e-mail: { yenguimy, poulin } @iro.umontreal.ca

Figure 1: A vase with a ceiling pattern BTF, with proper shading,
shadows, silhouettes, and light interreflections.

In spite of the capacity of a BTF to better reproduce the appear-
ance of heterogeneous surfaces, major difficulties impede its full
adoption by the graphics community. In fact, BTF acquisition is a
long and difficult process that results in especially large datasets.
It is therefore essential to optimize the acquisition process and to
develop strong compression schemes for the resulting data.

Real-world BTF acquisition constitutes a rather delicate oper-
ation that requires the respect of several constraints of measure.
The incident illumination must be uniform over the entire sample,
the camera image must be registered properly to its sample texel,
the measured surface properties must not change over time, etc.
Nevertheless, even though major improvements have contributed to
their technical quality, these physical measure devices often content
themselves with small textures taken at low sampling resolutions of
the light and view directions. They have also difficulties at graz-
ing angles to capture the reflectance properties of materials or to
guarantee uniform incident illumination.

On the synthetic front, computer graphics has greatly progressed
to render efficiently images of high realism. By integrating the con-
cept of hierarchies of models, computer graphics realizations can
thus be exploited to simulate sophisticated and realistic light trans-
port at the level of the surface details themselves, and use the re-
sults as higher-quality precomputed BTFs. Because we can control
much more the environment than in real capture systems, several
difficulties are therefore lifted or reduced. The benefits are that
artists can better exploit this traditional rendering pipeline, and thus
produce much more realistic surface details, tuned to their desires.
The artists will therefore model the meso-structure scene like they



Figure 2: The different variables involved in a BTF representation,
with its infinitely distant observation and illumination directions over
a 2D texture.

would do for regular 3D scene, except that no light sources will be
needed. The light source will come from the BTF simulation.

The general goal of our work is to conceive a framework for
efficient BTF simulation, that can support several illumination phe-
nomena, in order to create through simulation more realistic appear-
ances for complex meso-structures on surfaces. Within this frame-
work, this paper has three contributions that, although somewhat re-
lated to other work, are put together to allow us to achieve our goal.
First, key to our approach is the use of a virtual parallel-projection
camera / light simulation, thus enabling fine resolutions and reach-
ing more grazing angles without the need for special registration.
Second, to efficiently compute light interreflections, we propose a
network of points in order to reuse common precomputed paths to
evaluate the indirect illumination under a bidirectional path trac-
ing approach. This frees us from the very high computational costs
of entirely recomputing global illumination effects over a BTF. Fi-
nally, a BTF is always precomputed as a flat surface, but is often
mapped onto curved surfaces. Our third contribution takes into
account curvature, and adds very important transparency and sil-
houettes effects to the BTF-mapped surface with a companion 4D
visibility map function (V MF) for a given BTF.

The rest of the paper is organized as follows. In Section 2, we
present related work on BRDF/BTF measurements and simulations,
and on compression schemes for the huge associated datasets. In
Section 3, we detail each step of our algorithm, including the rep-
resentation of BTFs, the efficient rendering, and the compression.
Results are discussed in Section 4, before concluding.

2 PREVIOUS WORK

2.1 BRDF/BTF Measurement

A number of physical BTF measurement systems [18, 9, 3] have
been proposed with the aim to improve BTF measured quality. Dif-
ferences between these devices are related to the type of measuring
components and the degrees of freedom associated to each of these
components. For some systems, the camera moves and the light
source is fixed, whereas it is the opposite for others.

The technical improvement of BTF measurement systems still
attracts the interests of several researchers. Numerous problems
need to be resolved to reach this objective. They are mainly related
to four challenges: (1) The limited number of the measured mate-
rials. Some materials cannot be captured with the existing systems,
because they are too large, or too small. (2) The low resolution
of some BTF sampling, resulting in numerous optical phenomena
being under-sampled or simply missed. (3) The gigantic storage re-
quirements for the datasets. (4) The precision of the measures and
the stability of the systems still remain to be improved.

There have been huge advances in physical acquisition systems
during the past two decades, including the types of phenomena cap-
tured, the precision, the compression schemes, etc., but the larger
the data, the more anecdotal its availability.

To show the typical resolutions for current available BTF
databases, we have found 61 materials from CUReT [4] (205
view/light directions of image resolution less than 640× 480), six
materials from Bonn [26] (81× 81 view/light directions of image
resolution of 256 × 256), six materials from UTIA [8] (81 × 81
view/light directions of image resolution of 512×512), and ten ma-
terials from UIUC [12] (about 90×120 view/light directions of im-
age resolution of 480× 360). These databases provide interesting
data given the difficulties of scanning real materials, but for high-
quality BTFs, much higher resolutions are needed. This is one ad-
ditional reason why we opted for a synthetic framework to simulate
BTFs. Finally, because the goal of our method is not to improve
on the acquisition process, we do not discuss its related issues any
further.

2.2 BRDF/BTF Simulation

Cabral et al. [2] were the first ones to propose a BRDF simulation
technique. They approximate the BRDF over angular hemispheri-
cal bins by determining light reflected by each triangle from a meso-
scopic geometry defined as a height field. Horizon mapping [16] is
used to more efficiently approximate the proportion of light com-
ing from the incident direction that is reflected by the material in
the observed direction. The main drawback of this method is that
it considers only direct illumination, is limited to height-field sur-
faces, and could not really exploit GPU in these early days. This is
in fact partly what motivated us to look more into BTF simulations.

Westin et al. [33] simulate complete light reflection off the sur-
face of an arbitrary micro-geometry structure. It can handle most il-
lumination phenomena, since light transport is computed by Monte
Carlo Path Tracing (MCPT). Unfortunately, it requires huge simula-
tion times to sufficiently lower the inherent noise of the simulation,
since MCPT is not well adapted to exploit path coherency. This is
another aspect that we try to improve.

Suykens et al. [27] were the first ones to synthesize BTFs by
passing a modeled meso-structure through a global illumination
renderer (RenderPark). The synthesized BTFs (three models are
shown in the paper) are generated at a fairly low angular resolution
(e.g., 16×8).

Müller et al. [20] use a procedural method to define the material’s
micro-structure and then to enrich it with a BTF measured from
real materials. They use a meso-structure constrained synthesis to
combine the measured and the edited micro-geometries.

2.3 BTF/BRDF Compression

A BTF can be interpreted as a texture of BRDFs (actually aBRDFs).
It is therefore possible to use BRDF compression methods on each
BRDF. Some techniques [11, 17, 27, 13] have approximated the
BRDF with a finite product of lower-dimension functions. Thus,
a 4D BRDF can be approximated by a product of 2D or 1D func-
tions. These functions are discretized into 2D textures, allowing for
real-time illumination of a geometrical model, thanks to the GPU
support of textures.

Other methods [22, 7] suggest to adjust the measured BRDF
with an analytical model. This operation consists in determin-
ing the analytical model parameters in the least-squares sense.
Pacanowski et al. [23] propose a fitting method of a measured
BRDF material to the more general rational polynomials. Even
though these methods provide very good compression rates, they
require long computation times for the optimization operation to
convergence. Furthermore, BRDF models are specific to a certain
material type and are defined in a precise angular domain.



A third group of BRDF compression methods represents a BRDF
by means of linear combination of basis functions, such as wavelets
and spherical harmonics. Cabral et al. [2] and Westin at al. [33] use
spherical harmonics to encode their BRDF in the form of a matrix
of coefficients of its projection on a finite spherical harmonic basis
function.

Sattler et al. [26] subdivide the BTF images into separate subsets
based on the viewing direction, and then apply a principal compo-
nent analysis (PCA) method. Koudelka et al. [12] use the singular
value decomposition (SVD) technique; they determine k descrip-
tive BRDFs to be a new basis of the BTF data. Müller et al. [19]
observe that the BTF varies linearly in local zones and they com-
bine methods of vector quantization and PCA on these local zones.
Havran et al. [10] develop a method of BTF compression based
on the hierarchical vector quantization. Ruiters and Klein [25] ap-
ply sparse representation based on K-SVD to each dimension sep-
arately, allowing for improved compression ratios. More recently,
Tsai and Shih [28] bridge with K-CTA the gap between sparse rep-
resentation of K-SVD and clustered tensor approximation (CTA).
Their algorithm is quite flexible to represent high-dimensional
datasets, exploits inter-cluster coherence, and they demonstrate its
advantages on BTF data as well as view-dependent occlusion tex-
tures.

We will be using non-negative factorization from
Lawrence et al. [13], because it provides good compression
ratios, although not the current best ones, and it has other
advantages. We will discuss it in more details in Section 3.4.

For more details on the BRDF/BTF compression, we suggest to
visit the survey of Filip and Haindl [6].

2.4 Details at Silhouettes

Wang et al. [31] introduce a 5D structure called view-dependent
displacement mapping (VDM). The VDM depends on the texture
(u,v) resolution, the (θ ,φ) viewing direction, and the curvature
variation. The major drawback of this technique is that it can be
applied only for height-field surface geometry. Wang et al. [32]
propose a generalization of VDM, also as a 5D structure. It is
computed at points on a regular 3D grid of a given meso-structure.
It depends on position (x,y,z) and viewing direction (θ ,φ) of the
points. Wang et al. [30] have measured 4D structures to add sil-
houette details to a measured BTF-mapped surface. It is performed
by rendering the front surface and the corresponding back surfaces
and testing whether the distance between them is greater than the
sum of the precomputed displacement. The major drawback of this
method is that it neglects surface curvature variations.

Magda and Kriegman [15] separate shading from mesoscopic
geometry, and encode the BTF into a stack of layers to represent
the volumetric texture. They estimate from a captured real BTF a
normal, an attenuation factor, a diffuse contribution, and parame-
ters of a parametric reflectance model for each texel of each layer.
The representation is suitable for real-time GPU display, but silhou-
ettes may appear as superposed thin layers. While vertical panels
between layers are proposed to bound the occlusion due to each vol-
umetric texel, the modified shading on these panels is not discussed.
No light interreflections are also assumed.

3 OUR BTF SIMULATION APPROACH

If no storage is allowed, a very naive construction of a BTF at a
1◦ angular resolution would lead to (90×360) Z-buffer renderings
× (90×360) shadow maps resulting in 1,049,760,000 images, al-
most seven months at 60 fps (frames per second). This clearly calls
for optimizations and approximations. Fortunately, synthetic BTFs
are highly coherent.

In the case of BTF simulation, our goal is to achieve real-time
rendering in the presence of multiple optical phenomena. Conse-
quently, it remains necessary to precompute all possible common

treatments for different light/view configurations in one BTF. Fur-
thermore, it is compulsory to introduce some optimizations into the
visibility computation within the BTF geometry, as well as into the
mutual light transfers. With the aim of simplifying the problem, we
propose to share the same set of direction vectors for the camera
and for the light.

3.1 Parallel Camera / Directional Light

A standard physical camera used for the BTF capture operates an
optical system (e.g., a telephoto lens) to make all incoming image
rays parallel to each other. For various orientations of the camera
over the BTF to be measured, the size of this flat texture decreases
as a cosθ factor according to angle θ between the normal of the
texture plane and the view camera direction. Points at the center of
every pixel thus change with every camera position. It is therefore
necessary to suppose that locally, points around a certain zone ob-
served within a camera pixel are sufficiently homogeneous. In spite
of all these efforts, at oblique angles, this assumption does not hold
true.

To reduce some of the problems associated to a physical cam-
era, our capture system uses a virtual camera based on the parallel
projection. The principle of this camera consists in intersecting the
same positions of points located on the upper planar surface above
the BTF, and this, from any camera position. We name this upper
plane the reference plane; it is located horizontally, above the meso-
geometry, normally set at the meso-geometry maximal height. The
texels of the BTF are located on this plane.

Unlike the physical measurement system, our virtual device of
simulation does not require a post-treatment for mutual registra-
tion. This treatment is made implicitly. In fact, for a planar meso-
structure, points of direct intersections are identical for all the ob-
servation directions. They are different if the meso-geometry lies
underneath the reference plane.

3.2 Simulation Approach

This section describes BTF construction, using hardware rendering
for visibility determination, variance shadow maps for shadowing,
and an adaptation of bidirectional path tracing for global illumina-
tion effects.

In global illumination, each ray intersecting point x of the meso-
geometry has to evaluate the following equation:

L(x,θo,φo)=
∫

Ω+
fr(x,θi,φi,θo,φo)Li(x,θi,φi)V (x,θi,φi)cosθidωi

where (θo,φo) are the polar coordinates of the view direction,
(θi,φi) are those of the light direction, and fr is the BRDF, all eval-
uated at point x. This equation describes the proportion of radiance
reflected with respect to the flow of received radiance. Li is the in-
cident radiance from the ωi direction. The binary visibility function
V (x,θi,φi) is efficiently computed with a variance shadow map [5].
Thus, for each intersected point, we simply project it on the pre-
computed shadow map for the corresponding light direction.

For several types of meso-geometry, global illumination effects
can alter significantly the appearance of surfaces from different di-
rections of viewing and lighting. However computing global illu-
mination for any type of reflection under many light/view directions
can prove a major undertaking. We have chosen to adapt the Bidi-
rectional Path Tracing algorithm [29], and the rendering equation
resolution is performed in two passes. First we generate points over
the meso-geometry, and build an interconnection network between
mutually visible points. For every camera direction, we ray-cast the
meso-geometry, and store the direct hit points. Then, we connect
the direct hit points to the network of points. The first connection
gives the first bounce in the precomputed path. The next bounces
are implicitly encoded in the network. Visibility/shadow map is
computed from the direct intersection points. A visibility factor



(some form of ambient occlusion) is estimated for every point (di-
rect point or network point), by shooting rays from its position. It
is used to weight the reflected radiance L evaluated at a point. In
the second pass, we evaluate the reflected radiance L for the pre-
computed paths. For each point (direct hit or network), light source
visibility is determined using the corresponding variance shadow
map. Russian roulette is used to determine whether the radiance
ray evaluation is stopped before reaching a maximum number of
bounces. The next section gives more details about our rendering
algorithm.

3.2.1 Precomputations

Meso-geometry Sampling: We sample the 3D meso-
geometry with a method proposed by Nehab and Shilane [21]. First
a kd-tree bounding the meso-geometry is built. The resolution of
the kd-tree controls the number of points to distribute over the sur-
face, with one point per leaf node. The position of a sample point
inside every leaf node of the kd-tree is refined, such that it lies on
the meso-geometry and remains closer to the center of the node.
Finally a minimal distance between points is enforced by deleting
points too close to each other. In our description, we refer to the set
of these points as the network points.

Network Interconnections: We use a standard ray tracer to in-
terconnect the mutually visible network points. For every network
point, we link it to at most one mutually visible network point. This
is accomplished by sampling directions, finding nearby network
points in this direction, and selecting one network point accord-
ing to an importance sampling based on their form factors (normals
and distance). The selected network point is retested for visibil-
ity. The links are naturally enclosed within the convex hull of the
meso-geometry. They can interconnect network of points that lies
in cavities. Several sets of connected points can result from this
algorithm, the sets being disconnected from each other.

In this step, we also compute a visibility factor α for each net-
work point x, as

α(x) =
∫

Ω+
V (x,ω)dω (1)

where V (x,ω) is a binary function that equals 1 if x is occluded in
direction ω , and 0 otherwise. It will be used later in the render-
ing pass to weight the radiance L evaluated on this network point.
Typically, we use 256 directions.

Precomputing Paths for Each Sampling Direction and the
Variance Shadow Map: Both the camera and the light source
use parallel rays (parallel projection camera and directional light);
they can therefore share the same structure. In this preprocessing
step, we compute the direct hit points for each (θ ,φ) direction. For
each point, we store its triangle index and barycentric coordinates,
as well as its material index. The barycentric coordinates are used
to retrieve the local reference frame (normal and tangent vectors).
Furthermore, in this step, a variance shadow map [5] is computed
for each direction. The shadow value for a given image pixel is
defined as the distance between the primary hit point (point p in
Figure 3) and its projection on the reference plane (point q).

Light source visibility for each point of the meso-structure can be
approximated by projecting it in the corresponding variance shadow
map.

For every direct hit point, we link it to N1 visible network points.
We use N1 = 4 or 6 in our simulations. A visibility factor α is also
computed for every direct hit point.

In this phase, we precompute the described visibility data for a
dense sampling of directions.

3.2.2 Rendering Pass

Visibility Query: The visibility test (Figure 4) is made as fol-
lows. A precomputed hit point p is viewed from direction ωo. To

Figure 3: The precomputed data consist of primary hit points, a net-
work of points with links to the direct points, and a variance shadow
map.

determine if it is in shadow, its depth value in the associated light
direction shadow map is computed. The corresponding pixel posi-
tion r and the depth value q have been precomputed. p is visible if
its distance to r is smaller than the distance of q to r. The variance
shadow map reduces aliasing problems related to shadow map dis-
cretization. This method improves the standard shadow scheme by
representing a distribution of depths at each texel. For details, we
invite the readers to see the original variance shadow map paper [5].

Figure 4: Visibility test.

For each pixel, the radiance is estimated using the precomputed
paths in the network of points. These paths are implicitly initiated
by linking the primary hit points to N1 micro-geometry network
points. Multi-bounce light interreflections are possible, consider-
ing each set of connected points can have several points. The light
reflection at a contact point depends on the proprieties of the un-
derlying material. The visibility of the light source from a point
in the scene is determined by using the procedure described in the
previous paragraph.

Global illumination is developed as follows, where index i− 1
corresponds to the number of interreflections, and −−−→yi−1yi corre-
sponds to the material reflection between two successive points
(yi−1,yi) in one connected set of a network of points:

L = Ldir +Lind

Lind = Lind1
+Lind2

+ · · ·+Lindi

Lind1
=

α1

N1

N1

∑
i=1

ρ(−→ωo,−→xy1)L1(y1)

Lind2
=

α1 ×α2

N1

N1

∑
i=1

ρ(−→ωo,−→xy1)ρ(−→xy1,−−→y1y2)L2(y2)

Lindi
=

α1 ×·· ·×αi

N1

N1

∑
i=1

ρ(−→ωo,−→xy1) · · ·ρ(−−−−−→yi−2yi−1,−−−→yi−1yi)Li(yi).



Typically, we use paths of lengths 2 to 4, although longer paths are
possible for meso-geometry prone to many interreflections.

Figure 5 shows changes of ceiling appearance for different
view/light directions, computed with our proposed algorithm.

Figure 5: A few images used to construct the ceiling BTF, taken from
different (top) light directions and (bottom) view directions.

3.3 Adding Silhouettes to BTF Rendering

Rendering a BTF mapped to any surface provides richer visual
effects than standard texture mapping, because it can include ef-
fects such as self-shadowing, interreflections, mutual occlusions,
etc. However, it does not reproduce detailed displaced silhouettes
nor does it take into account occlusions due to curvature variations.
This is because a BTF is an image-based technique without geom-
etry. It encodes all the effects caused by the meso-structure without
explicitly modeling the underlying geometry.

To solve this problem, we augment the BTF with a 4D visibility
map function (V MF). This function is none other than our precom-
puted variance shadow map. It is defined as V MF(u,v,θ ,φ), where
(u,v) are the texture coordinates and (θ ,φ) the spherical coordi-
nates of the view direction. It corresponds to the distance from p to
q in Figure 3.

Computing the Texture Coordinates and View Direction:
We begin by extruding the basis mesh of the surface, on which
the BTF is mapped. Each triangle vertex is extruded along its in-
terpolated surface normal direction to generate a volumetric mesh
(defined by triangle slabs, forming a one-layer mesh). We try to
avoid self-intersecting extrusions, but this remains an open prob-
lem for complex intertwined geometry. To render each image pixel,
we need to ray march through the extruded meso-structure until we
identify an intersection with the surface details or reach its base
(if it is opaque). The marching proceeds simultaneously in object
space and texture space. However, one needs to remember that we
do not have access anymore to the meso-geometry in a BTF.

An example of the process is illustrated in Figure 6. For the pixel
ray, we determine its entry point p1 in the volumetric mesh and its
corresponding texture coordinates t1, as well as its exit points p2

and t2 of this extruded triangle slab in both spaces. The segment
(t1, t2) gives the view direction V (θ ,φ) in texture space. On the
reference plane, the entry point t1 is identical to the view direction
t0, which encodes the V MF distance V MF(t0,θ ,φ), defining the
sampled shortest distance to the (now absent) meso-geometry. As
V MF(t0,θ ,φ) > (t2 − t0), we assume there are no intersections in
this extruded triangle slab, and the ray continues to the next tri-
angle slab, i.e., here defined as segments (p2, p3) and (t2, t3). In
texture space, (t2, t3) has its V MF entry located on the reference

Figure 6: Top: Ray intersection with the extruded surface in object
space. Bottom: The corresponding ray segments in volumetric tex-
ture space. Note that the surface in light blue is given as an indica-
tion, as no meso-geometry is present at this stage in the BTF repre-
sentation.

plane in the new coordinates t0, where it is accessed. Here again,
no intersections are found as V MF(t0,θ ,φ) > (t3 − t0), so the ray
continues. Finally for segments (p3, p4) and (t3, t4), and their asso-
ciated new t0, V MF(t0,θ ,φ)≤ (t4− t0) and we consider there is an
intersection with the meso-geometry.

Computing the Light Direction: Up to now, we have de-
termined texture coordinates (u,v), view direction ωo(θ ,φ) =
V (θ ,φ), and intersection distance from the V MF associated data.
We can transfer the associated intersection point in object space
(and world space) to find out the light direction from this intersec-
tion. To compute the light direction ωi(θ ,φ) in texture space, we
trace in object space a ray from the intersection point up to the light
direction, until we escape the volumetric mesh. The same segments
in object space can be recomputed in texture space as with the view
segments of the previous paragraph. If no segments are occluded,
we use the corresponding ωi from the slab where the view inter-
section occurred. This is our default light direction. Otherwise, we
update the light direction from the slab where an intersection oc-
curs, going from inside to outside. Finally, the shading value of the
current ray is given directly from the BT F(u,v,ωo,ωi).

3.4 BTF Compression

We need to compress the huge amount of data resulting from
the BTF rendering step, in the order of GBs, to a much smaller
size, in the order of MBs, which can be efficiently used later in
a rendering application. We apply the factorization method from
Lawrence et al. [13] to each individual texel (aBRDF) computed by
our BTF simulation. The method has the advantage to be applica-
ble on any BRDF parameterization, and thanks to its non-negative
factors, the method can provide an importance sampling function
for the factored BRDFs, which is very useful when integrated in a
rendering system based on sampling.

Recall the following from the original method. Non-Negative
Matrix Factorization (NMF) as proposed by Lee and Seung [14]
decomposes the matrix of the BRDF parameterized in the (−→ωo, −→ωi)
basis, ensuring that no entries result in negative values. The fac-
torization problem can be mathematically formulated as follows:
Given a data matrix Vn,m of dimensions (n,m), with every matrix
element V [i, j] ≥ 0, and a positive integer k ≤ min(n,m), we com-
pute two data matrices Wn,k and Hk,m such that V ≈ WH with the
goal of minimizing the difference between V and WH.

The proposed factorization is quite similar to the one from
Lawrence et al. [13], with the difference that we use the Singu-
lar Value Decomposition (SVD) method to automatically determine
the value for k. Mathematically, the formula used is the following:



Meso- Direction Texture Samples Shadow map Number of Precomputation Rendering
geometry resolution resolution per texel resolution network points time (in mins) time (in mins)

ceiling (900k) 16 × 32 128 × 128 6 × 6 768 × 768 2,521,853 70 min 130 min

braiding (200k) 16 × 32 64 × 64 6 × 6 384 × 384 3,623,758 13 min 36 min

colored bump (350k) 20 × 40 32 × 32 8 × 8 256 × 256 2,855,710 15 min 45 min

leather (820k) 16 × 32 128 × 128 6 × 6 768 × 768 2,043,534 56 min 145 min

brick (860k) 16 × 32 128 × 128 6 × 6 768 × 768 1,933,122 58 min 142 min

Table 1: Statistics to build a BTF and its precomputed data: Number of directions (view or light), BTF texture resolution in the number of BRDFs
(texels), samples ray traced per texel, shadow map resolution, and timings for precomputation and rendering stages.

ρ(ωo,ωi) =
J

∑
j=1

Fj(ωo)G j(ωi). (2)

Intuitively, BRDFs that exhibit high variations over the
light/view directions need more factors than low-variation BRDF
data. Using the SVD, we compute the singular value
{λi}i=1,...,min(n,m) of matrix Vn,m. Parameter k is defined as the

smallest integer value that satisfies the following inequality:

(

k

∑
i=1

λi

)

/

(

min(n,m)

∑
i=1

λi

)

≥ β , for β ∈ [0,1]. (3)

We have used Vn,m singular vectors to initialize the Wn,k and Hk,m
matrices for the factorization algorithm, as described in [1].

At this point, suppose that every BRDF (texel of a BTF) is fac-
torized into k factors depending on (θo, φo), called H factor, and k
factors depending on (θi, φi), called W factor. To exploit the repet-
itive feature of the underlying BRDFs that could come from very
similar texels of a BTF, and therefore, their H and W factors, we
simply apply the standard PCA algorithm on each of the factor sets.

4 RESULTS AND DISCUSSIONS

We analyze in this section the computational behavior of our BTF
simulation application. Performance measurements were computed
on an Intel i7 920 2.80 GHz with 12 GB of CPU memory and an
Nvidia GTX 480 GPU.

Figure 7: A pillow with a leather BTF.

We use the Nvidia GPU’s Optix library for all precomputed data
and for the proposed rendering algorithm. Table 1 gives the di-

rection sampling rate of the meso-structure upper hemisphere, the
resolution of each BTF, precomputing times, and data sizes for con-
structing our BTFs. Precomputations include meso-geometry sam-
pling, visibility factors, point network interconnections, and path
connections. Renderings in precomputations include producing
each BTF image, including global illumination effects. Note that
final rendering in the 3D scene is performed from within seconds
(for quality rendering) to multiple times per second (for interactive
rendering with ray tracing on GPU).

We have noticed that computing times depend basically on the
number of polygons in the meso-geometry and on the interreflec-
tions simulated on the meso-structure surface. Whereas, data sizes
depend only on the parameters resolution.

All V MF data are sampled under 16×32 viewing directions with
a texture of resolution (128×128). The complete size of the V MF
structure is about 16 MB. Given this smaller data size, we have not
compressed it, even though this would be quite easy to do.

Compression takes about 3 hours for a BTF with a texture of
resolution 64 × 64, and 12 hours for 128 × 128. In our simu-
lated BTFs, parameter β ranges between 0.7 and 0.8. With our
BTF simulation application, we are able to synthesize our own
BTFs with finer sampling directions resolution (16 × 32 = 512,
20× 40 = 800 directions) compared to the Bonn University [18]
real measurement system (81 directions) and the simulated ap-
proach of Suykens et al. [27] (50 directions, up to 128). Note that
it is still possible to increase our BTF resolutions, but we have to
invest more time, especially in the compression stages.

Meso-geometry Data orig.:compress. Ratio RMSE

ceiling (900k) 48.4 GB 147 MB 1:330 0.073

braiding (200k) 12.1 GB 50 MB 1:240 0.062

colored bump (350k) 7.5 GB 40 MB 1:190 0.068

brick (860k)
(direct illumination)

48.4 GB 130 MB 1:372 0.071

brick (860k)
(global illumination)

48.4 GB 108 MB 1:448 0.065

leather (820k) 48.4 GB 150 MB 1:323 0.076

Table 2: Simulated BTFs and achieved compression ratios.

All our BTF-mapped surfaces are rendered with PBRT [24]
(physically-based rendering) ray tracer, with 16 rays per pixel. As
image rendering time is concerned, the pillow with braiding (Fig-
ure 12) with 1 ray per pixel takes less than 2 seconds. This scales
representatively for the rendering of all our images. While not yet
completed, we believe that an efficient hardware rendering imple-
mentation should result in real-time display of a surface with one
BTF.

A vase with BTF taken from a ceiling pattern is shown in Fig-
ure 1, and a leather has been applied on a pillow (Figure 7) and
a chair (Figure 8). These images show correct direct illumination
and shadows, silhouettes, and interreflections under different light-
ing and view directions.



Figure 8: A chair with a leather BTF.

Figure 9 compares the effect of adding indirect illumination on
the BTF appearance of bricks. It appears mainly between the bricks,
where the interreflections of light “soften” the shadows. Figure 12
shows that using our V MF structure, we are also able to simulate
BTFs that exhibit transparency effects, without the need of an extra
alpha channel in the BTF data.

Figure 9: A surface with a BTF made of bricks. Left: under local
illumination. Right: under global illumination. The space between
bricks appears brighter.

We compare in Figure 10 a compressed BTF of colored bumps
to an uncompressed version of the same BTF. We can notice that
distortions are more visible at the shadows, especially at grazing
angles due to high discontinuity at these angles. The softer shadows
however tend to be visually less objectionable.

To further validate our results, we have implemented a Monte
Carlo Path Tracer to render ground-truth images with the meso-
geometry itself. We can see in Figure 11, with the ground truth on
the left column and our BTF mapping method on the center column,
that our BTFs can efficiently approximate the ground-truth solution.
The distortion in the surface appearance is mainly related to effects
due to compression and BTF discretization. The difference in the
computing times between the ground truth and our method is about
a factor of 8 to 12 times. Rendering a BTF mapped over a surface
takes about 30 to 60 seconds (using PBRT), compared to 300 to
700 seconds required for rendering the actual instantiated meso-

Figure 10: BTF of colored bumps that are (left) compressed and
(right) not compressed.

geometry (our ground truth) to get a similar high-quality image. In
Figure 11 (right), we show how different the shading appears when
the light direction in the BTF is not traversed across all deformed
texels, but computed directly where the the view ray intersects the
surface geometry (slab).

Figure 13 depicts an example of a BTF that cannot be reduced
to a height field. The underlying meso-geometry is composed of an
array of spheres, with red spheres located at a height of twice their
radius, and green spheres at three times their radius. We have sim-
ulated the BTF with global illumination. The BTF and the meso-
geometry are both applied over a section of a large cylinder, to ex-
hibit effects due to slight curvature and silhouettes. For the BTFs in
the left column, we used diffuse and specular coefficients of 0.7 and
0.3, respectively. For the third BTF, we switched them to 0.3 and
0.7, respectively. Our simulated BTFs are compared with ground
truths in Figure 13 right. We are able to effectively generate cor-
rect silhouettes, highlights, self-shadows, and subtle indirect illu-
mination effects. Some small artifacts are basically related to the
VMF/BTF discretization and compression. Some differences are
also due to our improper tone mapping.

5 CONCLUSION

In this paper, we have introduced a pipeline to simulate complex
material appearance described with a 6D bidirectional texture func-
tion (BTF). The artist only needs to generate a meso-geometry, like
he would do to model normal 3D scenes. The simulated BTF can
then be applied on any parameterized surface in a 3D scene, and the
BTF provides the resulting complex surface appearance. We have
decomposed our application in three principal parts:

1. Precomputations: We precompute all possible common treat-
ments between BTF images. This includes an interconnection
network for light transfer within the BTF meso-geometry that
is used by all the possible view/light directions. Other than
determining the direct hit points, we precompute a variance
shadow map for each sampled direction to approximate the
light source visibility in the rendering step.



2. Rendering: Using the precomputed data, we approximate
global illumination with an adaptation of bidirectional path
tracing. Although our solution is biased, we obtain good re-
sults that simulate several visual phenomena.

3. Silhouettes: Using a precomputed visibility map function
(V MF), we render proper shaded silhouettes with BTF-
mapped surfaces and can take into account curvature surface
variations.

The results correspond to our expectations for efficient construc-
tion of high-quality BTFs that can then be rendered in high-quality
images or in interactive applications. This gives more flexibility to
artists to increase the quality of their realistic surfaces.

With this first step achieved, we believe that there are other dif-
ficulties that need to be resolved. Our quality BTFs are still mea-
sured in tens to a few hundreds of MB, but we believe other BRDF
compression schemes could be used, e.g., [23], which should prove
stronger, but at the cost of longer compression times. A frame-
work for automatically dividing the BTF in subspaces manageable
in memory should also alleviate the current maxima limits for cer-
tain BTF dimensions. Finally, other simulation dimensions, includ-
ing time variations and subsurface scattering, should be analyzed to
benefit from their own high coherencies.

Just like BRDFs, which are becoming more and more frequent in
today’s applications, BTFs form a powerful and flexible description
of material appearance. We believe they will become more popular
as their difficulties are pushed further away.

ACKNOWLEDGEMENTS

The authors thank the anonymous reviewers for their constructive
comments. Mohamed Yessine Yengui acknowledges a fellowship
from the government of Tunisia. This work was partly supported
by NSERC.

REFERENCES

[1] C. Boutsidis and E. Gallopoulos. SVD based initialization: A

head start for nonnegative matrix factorization. Pattern Recogn.,

41(4):1350–1362, Apr. 2008.

[2] B. Cabral, N. Max, and R. Springmeyer. Bidirectional reflection func-

tions from surface bump maps. In Proc. SIGGRAPH ’87, pages 273–

281, 1987.

[3] K. J. Dana. BRDF/BTF measurement device. In IEEE Intl. Conf. on

Computer Vision, volume 2, pages 460–466, 2001.

[4] K. J. Dana, B. van Ginneken, S. K. Nayar, and J. J. Koenderink. Re-

flectance and texture of real-world surfaces. ACM Trans. Graph.,

18(1):1–34, 1999.

[5] W. Donnelly and A. Lauritzen. Variance shadow maps. In Proc. Sym-

posium on Interactive 3D Graphics and Games, pages 161–165, 2006.

[6] J. Filip and M. Haindl. Bidirectional texture function modeling: A

state of the art survey. IEEE Trans. Pattern Anal. Mach. Intell.,

31(11):1921–1940, 2009.

[7] A. Forés, S. N. Pattanaik, C. Bosch, and X. Pueyo. BRDFLab: A

general system for designing BRDFs. In Proceedings CEIG’09. Eu-

rographics, 2009.

[8] M. Haindl, J. Filip, and R. Vacra. Digital material appearance: the

curse of tera-bytes. ERCIM News, 90:49–50, 2012.

[9] J. Y. Han and K. Perlin. Measuring bidirectional texture reflectance

with a kaleidoscope. In SIGGRAPH ’03, pages 741–748, 2003.

[10] V. Havran, J. Filip, and K. Myszkowski. Bidirectional texture func-

tion compression based on multi-level vector quantization. Computer

Graphics Forum, 29(1):175–190, Jan. 2010.

[11] J. Kautz and M. D. McCool. Interactive rendering with arbitrary

BRDFs using separable approximations. In Proc. Eurographics Work-

shop on Rendering ’99, pages 247–260, 1999.

[12] M. L. Koudelka, S. Magda, P. N. Belhumeur, and D. J. Kriegman.

Acquisition, compression, and synthesis of bidirectional texture func-

tions. In ICCV ’03 Workshop on Texture Analysis and Synthesis, pages

59–64, 2003.

[13] J. Lawrence, S. Rusinkiewicz, and R. Ramamoorthi. Efficient BRDF

importance sampling using a factored representation. In Proc. SIG-

GRAPH ’04, pages 496–505, 2004.

[14] D. D. Lee and H. S. Seung. Algorithms for non-negative matrix fac-

torization. In NIPS, pages 556–562. MIT Press, 2000.

[15] S. Magda and D. Kriegman. Reconstruction of volumetric surface

textures for real-time rendering. In Eurographics Symposium on Ren-

dering, pages 19–29, 2006.

[16] N. L. Max. Horizon mapping: shadows for bump-mapped surfaces.

The Visual Computer, 4(2):109–117, 1988.

[17] M. D. McCool, J. Ang, and A. Ahmad. Homomorphic factorization

of BRDFs for high-performance rendering. In Proc. SIGGRAPH ’01,

pages 171–178, 2001.

[18] G. Müller, G. H. Bendels, and R. Klein. Rapid synchronous acquisi-

tion of geometry and BTF for cultural heritage artefacts. In Interna-

tional Symposium on Virtual Reality, Archaeology and Cultural Her-

itage (VAST), pages 13–20, Nov. 2005.

[19] G. Müller, J. Meseth, and R. Klein. Compression and real-time ren-

dering of measured BTFs using local PCA. In Vision, Modeling and

Visualisation, pages 271–280, Nov. 2003.

[20] G. Müller, R. Sarlette, and R. Klein. Procedural editing of bidirec-

tional texture functions. In Eurographics Symposium on Rendering

2007, June 2007.

[21] D. Nehab and P. Shilane. Stratified point sampling of 3D models.

In Eurographics Symposium on Point-based Graphics, pages 49–56,

June 2004.

[22] A. Ngan, F. Durand, and W. Matusik. Experimental analysis of BRDF

models. In Proc. Eurographics Symposium on Rendering, pages 117–

226, 2005.

[23] R. Pacanowski, O. S. Celis, C. Schlick, X. Granier, P. Poulin, and

A. A. M. Cuyt. Rational BRDF. IEEE Trans. Vis. Comput. Graph.,

18(11):1824–1835, 2012.

[24] M. Pharr and G. Humphreys. Physically Based Rendering: From The-

ory to Implementation. Morgan Kaufmann, 2004.

[25] R. Ruiters and R. Klein. BTF compression via sparse tensor decompo-

sition. In Eurographics Symposium on Rendering 2009, pages 1181–

1188, 2009.

[26] M. Sattler, R. Sarlette, and R. Klein. Efficient and realistic visualiza-

tion of cloth. In Eurographics Symposium on Rendering, June 2003.

[27] F. Suykens, K. V. Berge, A. Lagae, and P. Dutré. Interactive rendering

with bidirectional texture functions. Computer Graphics Forum (Proc.

Eurographics), 22(3):463–472, 2003.

[28] Y.-T. Tsai and Z.-C. Shih. K-clustered tensor approximation: A

sparse multilinear model for real-time rendring. ACM Trans. Graph.,

31(3):19:1–17, 2012.

[29] E. Veach and L. J. Guibas. Optimally combining sampling techniques

for monte carlo rendering. In Proc. SIGGRAPH ’95, pages 419–428,

1995.

[30] J. Wang, X. Tong, J. Snyder, Y. Chen, B. Guo, and H.-Y. Shum. Cap-

turing and rendering geometry details for BTF mapped surfaces. The

Visual Computer, 21(8-10):559–568, 2005.

[31] L. Wang, X. Wang, X. Tong, S. Lin, S. Hu, B. Guo, and H.-Y.

Shum. View-dependent displacement mapping. ACM Trans. Graph.,

22(3):334–339, July 2003.

[32] X. Wang, X. Tong, S. Lin, S. Hu, B. Guo, and H.-Y. Shum. Gen-

eralized displacement maps. In Proc. Eurographics Symposium on

Rendering, pages 227–233, 2004.

[33] S. H. Westin, J. R. Arvo, and K. E. Torrance. Predicting reflectance

functions from complex surfaces. In Proc. SIGGRAPH ’92, pages

255–264, 1992.



Figure 11: Our BTF mapping method closely matches ground truth
computed with Monte Carlo Path Tracing. Left: ground truth. Center:
BTF. Right: BTF without deformed texel traversal.

Figure 12: Pillow with a BTF made of braids. Note how transparency
is properly simulated, given the pillow is empty and backface culling
is enabled, in order to increase transparency effects.

Figure 13: A slightly curved surface with a BTF made of an array of
spheres. Left: BTF under global illumination. Right: Ground truth.
Bottom: BTF and ground truth with higher specular reflection.


