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Sommaire

L’échantillonnage est un processus omniprésent dans le domaine de l’infographie. Notam-

ment, il joue un rôle central dans l’estimation d’intégrales servant à générer des images de

synthèse. Il peut aussi servir dans le rendu en demi-ton, en traitement d’images, ainsi qu’en

modélisation géométrique. Il n’existe pas de méthode définitive qui assure les meilleurs résul-

tats dans tous les cas ; l’utilisation d’un échantillonnage régulier s’avère inefficace et souvent

détrimental, car il peut introduire un biais dans la solution qui se manifeste par exemple en

aliassage. Un échantillonnage purement stochastique comporte aussi ses problèmes, notamment

dans la variance des résultats. Plusieurs chercheurs se sont donc penchés sur le sujet, et il existe

d’ailleurs une multitude de stratégies d’échantillonnage utilisées en infographie.

Nos travaux de recherche portent sur l’utilisation des tuiles de Penrose pour aborder le

problème de l’échantillonnage. Il s’avère que ce jeu de tuiles comporte certaines propriétés qui

peuvent être exploitées dans ce contexte. Ce mémoire présente deux articles qui sont les fruits

de cette recherche.

Le premier article présenté,Fast Hierarchical Importance Sampling with Blue Noise Pro-

perties, propose un système d’échantillonnage basé sur les tuiles de Penrose. À partir d’une

fonction de densité en deux dimensions, le système peut générer un ensemble de points d’échan-

tillonnage avec une bonne distribution spatiale. Notre méthode donne des résultats d’une très

bonne qualité tout en se classant parmi les plus rapides.

Le second article,Fast Triangulated Importance Sampled Point Sets, propose un système

qui permet de générer un jeu de points tel que dans l’article précédent, mais augmenté d’une

triangulation Delaunay de ces points. Notre méthode exploite certaines propriétés de l’échan-

tillonnage avec les tuiles de Penrose de façon à obtenir un temps de triangulation plus rapide

que les meilleures techniques existantes.

Mots Clés: Échantillonnage, Bruit bleu, Tuiles de Penrose, Numérotation de Fibonacci, Rendu,

Cartes d’environnement, Triangulation de Delaunay.
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Abstract

Sampling is a process that is omnipresent in computer graphics. Specifically, it plays an

important role in the estimation of integrals used in digital image synthesis. It is also used in

digital halftoning, image processing, as well as geometric modelling. There is no definitive

sampling strategy that can ensure the best results in all cases ; regular sampling proves to be

inefficient and often detrimental to the quality of the results, because it can introduce a bias that

can manifest itself as aliasing. Pure stochastic sampling also has its problems, notably due to

the variance in the results. Many researchers have thus studied this problem, and there are many

sampling strategies used in computer graphics.

Our research focuses on using the Penrose tiles to address the sampling problem. It so

happens that this set of tiles harbors certain properties that can be exploited in this context. This

thesis presents two contributions that stem from this research.

The first article presented,Fast Hierarchical Importance Sampling with Blue Noise Proper-

ties, proposes a sampling system based on Penrose tiles. Given an importance density function

in two dimensions, the system can generate a discrete sample distribution, in which the local

point density is proportional to the given function, with a local blue noise distribution. Our

technique is amongst the fastest, yet it is also amongst the best in terms of quality.

The second article presented,Fast Triangulated Importance Sampled Point Sets, proposes a

system that can not only generate point sets as in the prior system, but can also build a Delaunay

triangulation of these points. Our method exploits certain properties of sampling with Penrose

tiles in order to obtain an efficiency greater than all known Delaunay triangulation algorithms.

Keywords : Sampling, Blue noise, Penrose tiles, Fibonacci numbers, Rendering, Environment

mapping, Delaunay triangulations.
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Chapitre 1

Introduction

Introduction

Quand les pavages apériodiques de Penrose ont été introduits à la fin des années 1970, Roger

Penrose lui-même les catégorisait dans le domaine des ‘mathématiques récréatives’. À part le

fait que ses tuiles aient inspiré la découverte d’une nouvelle classe de cristaux, lesquasicristaux,

elles ont toujours été considérées comme des curiosités.

Toutefois, certains parallèles ont déjà été observés entre ce genre de pavage et la théorie de

l’échantillonnage, ce qui porte à croire qu’il pourrait y avoir des applications utiles aux tuiles

de Penrose, mais cette piste n’avait pas encore été explorée pleinement. Dans les travaux de re-

cherche présentés dans ce mémoire, nous avons entrepris de trouver et d’exploiter ces propriétés

des tuiles de Penrose, afin d’élaborer de nouveaux outils qui traitent de certains problèmes en

échantillonnage.

En infographie, on doit souvent faire appel à des techniques reliées à l’échantillonnage,

que ce soit en rendu, en traitement d’images, en traitement de géométrie, ou en vision. Il nous

semble donc clair que les méthodes qui sont présentées dans les articles suivants seront d’une

grande utilité pour le domaine de l’infographie.
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La science ne consiste pas seulement à savoir ce qu’on

doit ou peut faire, mais aussi à savoir ce qu’on pourrait

faire quand bien même on ne doit pas le faire.

Umberto Eco,Le nom de la Rose



Chapitre 2

Articles

Ce mémoire de maîtrise est présenté sous la formepar article, et est composé de deux

travaux : Le premier article,Fast Hierarchical Importance Sampling with Blue Noise Properties,

introduit un système d’échantillonnage original basé sur les tuiles de Penrose. Le second article,

Fast Triangulated Importance Sampled Point Sets, présente une extension au système précédent,

en s’attaquant au problème de la connectivité des échantillons, au sens de Delaunay.

Ces deux articles synthétisent bien l’axe principal de mes recherches avec le professeur

Ostromoukhov au long de ma maîtrise. Ces travaux sont le fruit d’un travail de longue haleine,

et nous espérons qu’ils seront bien reçus par la communauté scientifique en infographie.
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2.1 Fast Hierarchical Importance Sampling with Blue Noise Proper-

ties

Ce premier article a été publié dans ACM SIGGRAPH 2004, et ses auteurs sont Victor

Ostromoukhov, Charles Donohue et Pierre-Marc Jodoin.

Une séquence vidéo qui accompagne l’article peut être téléchargée à partir du site suivant :

http://www.iro.umontreal.ca/~ostrom/ImportanceSampling

2.1.1 Résumé

Cet article présente une nouvelle méthode pour générer efficacement une bonne distribution

d’échantillons à partir d’une fonction de densité d’importance sur un domaine à deux dimen-

sions. Un jeu de tuiles de Penrose est subdivisé hiérarchiquement de manière à générer un

nombre suffisamment important de points d’échantillonnage. Ces points sont comptés à l’aide

du système de numérotation de Fibonacci, et ces numéros servent à seuiller les échantillons

contre la valeur locale de la fonction de densité d’importance. Des vecteurs de correction pré-

calculés, obtenus par relaxation, sont utilisés afin d’améliorer le comportement spectral de la

distribution de points. La technique est déterministe et très rapide. Les temps d’échantillonnage

sont linéairement proportionnels au nombre d’échantillons exigés. Nous illustrons notre tech-

nique avec le cas de l’échantillonnage de cartes d’environnement pour l’illumination de scènes

synthétiques, mais la technique se prête bien à une grande variété d’applications en infographie,

comme par exemple le traitement de géométrie, le rendu en demi-tons, ainsi qu’une variété

d’autres problèmes de rendu.

Mots Clés : Échantillonnage d’importance, Bruit bleu, Tuiles de Penrose, Numérotation Fi-

bonacci, Rendu, Cartes d’environnement.
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2.1.2 L’Article

Fast Hierarchical Importance Sampling with Blue Noise Properties

Victor Ostromoukhov∗
University of Montreal

Charles Donohue †

University of Montreal
Pierre-Marc Jodoin ‡

University of Montreal

Figure 1: A high dynamic range 1024×512 environment map [Debevec 98] sampled with 3000 point lights. In this image, importance density
is represented by the lightness of the background. It took 0.064 seconds on a 2.6 GHz P4 to generate this point set. Similar results using
a hardware accelerated Lloyd relaxation [Hoff et al. 1999] required 1 second, while Structured Importance Sampling [Agarwal et al. 2003]
took 1393 seconds.

Abstract

This paper presents a novel method for efficiently generating a good
sampling pattern given an importance density over a 2D domain.
A Penrose tiling is hierarchically subdivided creating a sufficiently
large number of sample points. These points are numbered us-
ing the Fibonacci number system, and these numbers are used to
threshold the samples against the local value of the importance den-
sity. Pre-computed correction vectors, obtained using relaxation,
are used to improve the spectral characteristics of the sampling pat-
tern. The technique is deterministic and very fast; the sampling
time grows linearly with the required number of samples. We illus-
trate our technique with importance-based environment mapping,
but the technique is versatile enough to be used in a large variety
of computer graphics applications, such as light transport calcula-
tions, digital halftoning, geometry processing, and various render-
ing techniques.

CR Categories: I.3.3 [Picture/Image Generation]: Anti-aliasing;
I.3.m [Miscellaneous]: Sampling.

Keywords: Rendering, Importance Sampling, Deterministic Sam-
pling, Hierarchical Representation, Environment Mapping, Digital
Halftoning, Blue Noise, Lookup Table-based Techniques, Penrose
Tiling, Fibonacci Number System.

∗e-mail: ostrom@iro.umontreal.ca
†e-mail: donohuec@iro.umontreal.ca
‡e-mail: jodoinp@iro.umontreal.ca

1 Introduction

Sampling is ubiquitous in computer graphics. Many researchers
have studied how the properties of sampling may affect the qual-
ity of the achieved results in applications such as ray tracing,
Monte Carlo path tracing, motion blur, geometry processing, digi-
tal halftoning, etc. Nowadays, it is generally accepted that isotropic
two-dimensional sampling with blue noise Fourier spectrum is well
suited for a large range of applications – see [Cook 1986], [Ulich-
ney 1988], [Shirley 1991], [Mitchell 1991], [McCool and Fiume
1992], [Glassner 1995], [Hiller et al. 2001], [Kollig and Keller
2002], [Kollig and Keller 2003].

Often, these graphics applications need distributions of samples
proportional to an importance that results from a prior treatment
(e.g., BRDF of a surface, distribution of light energy, and geometri-
cal properties). The problem of 2D importance sampling with blue
noise can be stated as follows:

• Given the importance density I on a domain D, as an ana-
lytical function or in the form of an array of discrete values.
Without loss of generality, I can be normalized in such a way
that 0≤ I(x,y) ≤ 1 ∀(x,y) ∈ D.

• Find a set of discrete samples, whose local density of sam-
ples (the number of samples per unit area, calculated locally)
is proportional to the importance density I, and whose Fourier
spectrum exhibits the following properties: (a) low angular
anisotropy, and (b) characteristic blue noise profile of the ra-
dial component, i.e., a low-magnitude disk around the DC
term, a high-magnitude annulus that corresponds to the mean
distance between the samples, and a surrounding medium-
magnitude background exterior to the annulus (see more de-
tails in [Ulichney 1987], [Hiller et al. 2001]).

Many different techniques have been developed in order to solve
this problem. Some of them, known as relaxation techniques, can
produce solutions of remarkable quality. In particular, Lloyd’s re-
laxation [Lloyd 1983] and its variants lead to centroidal Voronoi
tessellations [Du et al. 1999]. Unfortunately, the price paid for this
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quality is high: relaxation techniques are fundamentally slow be-
cause they have to solve, often iteratively, the problem of neighbor-
hood determination of each point with respect to all others. Even
the most advanced and optimized implementations remain slow.
The hardware-assisted implementation of Lloyd’s relaxation [Hoff
et al. 1999] is faster but is limited by the resolution of the frame
buffer. Some techniques use a form of stochastic sampling (dart
throwing), such as the method proposed in [McCool and Fiume
1992], where random points are added or rejected according to the
proximity to previous points. Due to the low convergence rate of
these methods, their running times are at best in the same order as
Lloyd’s. These methods are strictly descending and can be very
sensitive to the initial point set.

Other approaches employed in digital halftoning, known as error-
diffusion techniques (see [Ulichney 1987], [Ostromoukhov 2001],
[Zhou and Fang 2003]), are considerably faster because only a very
limited neighborhood of each point is examined. An example of ef-
ficient usage of error-diffusion in geometry processing has been ex-
ploited in [Alliez et al. 2002]. The main drawback of error-diffusion
is the discrete nature of the elements on which it operates: they must
be rectangular tiles with fixed spatial resolution. This limits con-
siderably the use of error-diffusion as a general-purpose sampling
technique for computer graphics, where multi-resolution sampling
is often needed. This drawback has been explicitly mentioned in
[Surazhsky et al. 2003] where Lloyd’s relaxation was preferred to
error-diffusion.

Another fast sampling technique that could compare to ours in
terms of running times would be to use a cumulative density func-
tion (CDF), generated from the probability density, and to sample
it with a stratified Monte-Carlo technique. Although such an ap-
proach can generate points that reflect the required local density,
they do not follow the desired blue-noise distribution, as shown in
Figure 13. Recently, [Secord et al. 2002] have used a similar ap-
proach, using some well-known low-discrepancy sequences such
as Halton and Sobol sequences (see [Niederreiter 1992] combined
with CDF, in order to distribute graphics primitives at interactive
rates, in an NPR context. Although this deterministic approach is
very promising, the convincing multi-purpose results have yet to be
seen (see Figure 13).

In this paper, we introduce a novel Penrose tiling-based importance
sampling technique that presents certain advantages over existing
techniques. It belongs to the family of point sampling, that is, each
point is processed independently of other points. The treatment
for each point is simple and computationally inexpensive, which
guarantees the very high speed of our algorithm. Moreover, thanks
to off-line optimization and to a specially designed lookup table,
the quality of the sampling is high, approaching the quality of cen-
troidal Voronoi tessellations. The size of the lookup table is reason-
ably small (typically, less than 1K of data). No data-dependent pre-
calculation is needed. Our technique is multi-resolution and can be
successfully applied on high dynamic range images (we illustrate
this in Section 5).

The rest of the paper is organized as follows. In Section 2, we recall
some historical facts and properties of Penrose tiling. In Section 3
we describe the core of our sampling system. In Section 4, we en-
rich the basic technique with an advanced relaxation that produces
an almost perfect blue noise Fourier spectrum at all importance lev-
els. In Section 5, we apply, as a case study, the proposed technique
to importance-based environment mapping. Finally, in Sections 6
and 7, we discuss future work and draw some conclusions.

2 Penrose Tiling
The history of Penrose tiling is fascinating. It goes back to the work
of Johannes Kepler, a 17th-century astronomer and mathematician.

Figure 2: Left: Kepler’s drawing fromHarmonice Mundi published
in 1619. This tiling inspired Roger Penrose to discover his ape-
riodic tiling composed of two marked rhombs (top right). Tiles
from his original 1979 article contain arrows as matching rules that
force the aperiodicity of the tiling. Bottom right: Optical Fourier
transform of the vertices of Penrose tiling obtained in 1982 by Alan
Mackay.

Figure 3: Left: Original Penrose tiling with two kinds of rhombs.
Right: An alternative representation of the same tiling, where the
rhombs are split in two halves, and the pentagons of two kinds are
placed at the vertices of the original tiling.

In his book Harmonice Mundi, he published an atlas of various
tilings with regular polygons. One of them, shown in Figure 2
(left), excited the imagination of many mathematicians over a long
period. Is it possible to tile the plane only with regular pentagons,
decagons, and five-pointed stars? According to Kepler’s drawing,
it was possible if one permitted also strange peanut-shaped figures
(“monsters”), such as the one visible underneath the label “Aa”.

In the early 1970s, a modern physicist and mathematician, Roger
Penrose, was mesmerized by Kepler’s drawing. He modified it in
such a way that he was able to tile the plane non-periodically with
a similar set of tiles. And he did much more: he found that intro-
ducing special matching rules such as marks on the edges of the
tiles will preclude any periodic arrangements of the tiles. Still, the
tiling shows a clearly identifiable local order. This tiling belongs
to the family of aperiodic structures, i.e., structures whose non-
periodicity is forced by the matching rules. Penrose published a
first account of his discovery in [Penrose 1974]. Later, Penrose
published a paper where he presented three different but tightly re-
lated aperiodic tiling systems with matching rules [Penrose 1979].
One of them, shown in Figure 2 (top right), has only two extremely
simple shapes, two different rhombs with matching rules. In 1977,
Martin Gardner published in his column in Scientific American, an
enthusiastic account of Penrose’s discovery [Gardner 1977]. After
Gardner’s publication, Penrose tiling became well-known to a large
number of mathematicians, physicists, and chemists.

The Penrose tiling with rhombs shown in Figure 2 (top right) and in
Figure 3 (left) has attracted special attention, due to its simplicity.
In the early 1980s, Alan Mackay generalized the Penrose tiling to
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Figure 4: Subdivision rules for modified Penrose tiling, as shown
in Figure 3 (right). The Golden Ratio φ = 1+

√
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2 ≈ 1.61803. Pairs
of orthogonal vectors form the basis for each tile.

three dimensions. He also performed an optical Fourier transform
of the pattern of holes perforated at the vertices of Penrose tiling
(see Figure 2 (bottom right), reproduced from [Mackay 1982]).
This picture caused a sensation. In fact, it looks like a Bragg diffrac-
tion pattern, but it clearly violates a well-established principle, the
so-called crystallographic restriction, which states that a diffraction
pattern of a crystal may have only a two-, three-, four-, or six-fold
rotational symmetry. The pattern obtained by Mackay in fact had
ten-fold rotational symmetry! A new science of quasicrystallogra-
phy was born. In 1984, Shechtman and his colleagues synthesized
a new matter, a quasicrystal, that had a diffraction pattern close to
that predicted by Mackay. It was the first time in human history
that a new kind of matter was predicted and analyzed before being
physically synthesized in the laboratory. Since then, hundreds of
papers on quasicrystals have been published. A corpus of funda-
mental papers on the physics and mathematics of quasicrystals can
be found in [Steinhardt and Ostlund 1987]. Grünbaum and Shep-
hard, in their theory of tiling bible [Grünbaum and Shephard 1986],
devote a whole section to Penrose tiling, where they provide a de-
tailed analysis.

Alternatively, Penrose tiling with rhombs can be represented as a
tiling with six shapes: both “fat” and “thin” rhombs are split into
two triangular halves, as shown in Figure 3 (right). In addition, reg-
ular pentagons of two kinds, which we also call “sampling tiles”
are placed at each vertex of the original Penrose rhombs. The pen-
tagons play the role of matching rules that enforce aperiodicity. The
tiling can be achieved by applying on each tile the subdivision pro-
cess as shown in Figure 4 (Grünbaum and Shephard call this sub-
division “inflations”). Geometrical proportions for all sides during
the subdivision process are shown in Figure 4. Note that the size of
the pentagons with respect to the triangles does not matter. Without
loss of generality the pentagons can be taken to be infinitesimal,
and the half-rhombs are triangular. The positions and orientations
of tiles, schematically represented in Figure 4 by pairs of orthogo-
nal vectors that form the basis for each tile, are important for our
construction.

Penrose tiling has attracted our attention for several reasons. First,
it is obvious from a glance at Mackay’s optical Fourier transform

shown in Figure 2 (bottom right) that it is surprisingly close to the
blue noise spectrum, a goal we fixed for our sampling system. In
fact, annuli of spectral peaks around the DC term are clearly visible.
Second, it can be easily observed that the pentagons obtained at one
level of subdivision are enriched by the pentagons of the next level,
which are placed between the pentagons of the previous level (see
Figure 5).
Although another famous aperiodic tiling, Wang tiling, has recently
been successfully exploited in computer graphics for the generation
of Poisson distributions of points [Hiller et al. 2001], [Cohen et al.
2003], Penrose tiling has been used only in the context of visualiza-
tion of decorative properties of the tiling (see for example [Glassner
1998]).

Level n Level n+1Levels n & n+1
Superimposed

Figure 5: Two consecutive subdivision levels of Penrose tiling. Red
dots mark sampling tiles of level n, blue dots – that of level n+1.

3 Two-dimensional Penrose-based Hierar-
chical Importance Sampling

Let us consider the Penrose subdivision process shown in Figure 4
as a recursive subdivision process. A special binary code called
F-code is assigned to each tile. This subdivision process can be
described by the following production rules:

PPenrose :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a∗ �→ {b00∗}
b∗ �→ {a00∗}
c∗ �→ { f00∗,c10∗,a10∗}
d∗ �→ {e00∗,d10∗}
e∗ �→ { f00∗,c10∗,e01∗,a10∗}
f∗ �→ {e00∗,d10∗, f01∗,a01∗},

(1)

where xy means a tile of type x having F-code y. The symbol ‘∗’
replaces the F-code of a tile before subdivision. Each subdivision
left-concatenates two symbols to the current F-code. Thus, after
n subdivisions, the F-code will have the length of 2n symbols. F-
codes can be interpreted as integer numbers in the Fibonacci num-
ber system as described in [Knuth 1997] and [Graham et al. 1994].
Appendix B provides some basic facts about the Fibonacci number
system, together with the pseudo-code of the routine FIBOTODEC-
IMAL that converts F-codes to the conventional decimal representa-
tion.
Figure 6 shows the first three subdivisions applied to a pair of tiles
of type ‘e’ and ‘f’ (top left).

Three important observations can be made:
• Decimal numbers that correspond to F-codes assigned to pen-
tagonal sampling tiles of type ‘a’ and ‘b’ are all in the range
[1..(F2(n+1)−1)], where n is the subdivision level of the initial
tiles, and Fi are the Fibonacci numbers.

• Successive subdivisions enrich sampling points obtained with
the previous subdivisions, putting new sampling points in be-
tween
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Figure 6: Three subdivisions according to the production rules (1).
Only the F-codes of pentagonal sampling tiles are shown (in red),
together with corresponding decimal values (in black).

• Decimal numbers already assigned at a subdivision level n
will remain at the same positions during all further subdivi-
sions. The principle of this distribution is similar to that of
Bayer’s dispersed-dot dither [Bayer 1973], [Foley et al. 1990]
or that of rotated dispersed-dot dither [Ostromoukhov et al.
1994].

This allows us to build an adaptive importance sampling sys-
tem based on the Penrose subdivision system with the production
rules (1). Our adaptive importance sampling system is simple.
First, we cover the area of interest, where the importance is defined,
with a pair of tiles of type ‘e’ and ‘f’, as shown in Figure 6 (top left).
Then, we apply the recursive subdivision process according to the
production rules (1). We stop subdividing when the required local
subdivision level κ is reached. In this case, we output the center of
the ‘a’ and ‘b’ type tiles, if the local importance is greater than the
decimal value of the F-code of the current tile. Pseudo-code for this
algorithm is shown in Appendix A.
Importance density may be scaled by a factor mag, constant for
the entire importance density image, in order to obtain the desired
number of points. This effect is illustrated in the companion video1.
The required local level of subdivision κ can be determined as

κ = �logφ 2maxtile
(mag · I(x,y))�, (2)

where � � is the usual notation for ceiling, I(x,y) is the importance
value at position (x,y), and φ = 1+

√
5

2 is the Golden Ratio. The fac-
tor logφ 2 can be explained as the factor of self-similarity of Penrose
tiling. In fact, from one level of subdivision to the next, the area of
Penrose tiles diminishes by factor φ 2. The value maxtile(·) can be
achieved with standard scan-conversion on the triangle, for tiles of
type ‘c’, ‘d’, ‘e’, and ‘f’ (no scan-conversion is needed for tiles of
type ‘a’ and ‘b’ that are supposed to be infinitesimal). This scan-
conversion is opened to possible optimization. If less precision is
required but speed is capital, the importance can be tested only at a
few points within the tile.

4 Lookup Table-based Relaxation

To improve the spatial distribution of the sampling points, we create
a table of corrective vectors, which is used at run-time to relocate
the sampling points. These corrective vectors, expressed in terms of

1Siggraph 2004 Full Conference DVD-ROM; also available on the web
site of the first author: www.iro.umontreal.ca/ ˜ostrom/ImportanceSampling

Before Relaxation After RelaxationCorrections

Figure 7: Lloyd’s relaxation applied on sampling point set of con-
stant importance, produced with our Penrose tiling-based system.
Small corrections are shown as yellow lines connecting the centers
of uncorrected (blue) and corrected (red) sampling points.
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Figure 8: Structural indices is obtained by converting the 6 most
significant bits of the F-code assigned to each tile to the conven-
tional decimal representation. Only sampling (pentagonal) tiles are
considered. In this figure, we use identical colors for tiles of type
‘b’ and ‘c’, ‘d’ and ‘e’, to better visually identify the structure. No-
tice how the local neighborhoods around tiles with the same la-
bel are similar, after rotation. Highlighted are the neighborhoods
around pentagons labeled with is = 5.

orthogonal basis proper to each tile, will have the effect of “relax-
ing” the point distribution. See Figure 7 and the companion video1.
Unfortunately, even though there are only two different sampling
tiles, the fact that Penrose tiles fill the plane aperiodically makes
it impossible to account for every possible correction vector. Nev-
ertheless, the self-similar nature of the tiling can be harnessed to
obtain a limited number of corrective vectors. To accomplish this,
we relabel the sampling tiles with what we call a “structural index”,
is, which is calculated from the first six bits of their F-code (see Fig-
ure 8). This gives a total of 21 different labels (the maximum value
encoded with the F-system over 6 bits). Each of these 21 labels has
a corresponding corrective vector. This six-bit structural indexing
has been found experimentally.
Because these corrective vectors have to be representative of any
importance density function, we must optimize them with regards
to different importance values. We chose to optimize the vectors
over n importance values that are represented by what we call the
“importance index”, iv which is calculated as follows:

iv = �n ·ψ(mag · I(x,y))�, (3)

where � � is the usual notation for the floor, I(x,y) is the importance
value at position (x,y) andψ(·)maps a real number onto the interval
[0..1]. We found that with n = 8 we get rather smooth gradations
across importance values.
The resulting corrective vectors optimized over each importance
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Importance Levels of Subdivision

Resulting Sampling Points

10
9

8
7

6

Figure 9: A typical importance map sampled with our system. Blue
dots indicate the centers of the sampling tiles. Yellow lines show
lookup table-based corrections applied on sampling points. Red
dots show the corrected sampling points. Please note seamless tran-
sitions between zones of different levels of subdivision.

value are stored in a 8× 21 lookup table where the first index is
addressed by the importance index iv and the second dimension is
addressed by the structural index is.

The procedure used to generate the lookup table is the following.

First, we initialize the lookup table with zero vectors. Then, for
each importance index, iv, we apply the following process.

1. With our sampling system, create a large patch of sampling
points that correspond to the current importance, using the
latest version of the lookup table for corrections as will be
explained below.

2. Apply Lloyd’s relaxation on this set. Be careful to make pe-
ripheral points immovable. This is needed because the patch
is finite. See Figure 7.

3. For each sampling point, calculate the difference between the
uncorrected position and the relaxed position.

4. Calculate the mean value of correction vectors, for all sam-
pling tiles with the same structural index is. Store the results
in the table at position (iv, is).

5. Repeat steps (1)-(4) until convergence is attained (typically 5
to 10 iterations).

Considering the lookup table as a vector field, a low-pass filter is
then applied to the vectors across importance indices. Then, the
whole process is repeated until convergence is attained (typically 5
to 10 iterations). Thus, relaxation and low-pass filtering are applied
alternatively.

At the end of the optimization, the corrected points closely match
those obtained by true Lloyd relaxation, for all importance levels.
The low-pass filtering between each iteration ensures that the points
will be distributed adequately over gradients in non-constant impor-
tance density functions.

Figures 9, 13 (top), 10, and 11 (top right) illustrate the results
achieved with our system. Please note how our technique captures
nuances of importance in all subranges of the dynamic range.

Fourier Transform

Angular Anisotropy

Radial ComponentImportance

Figure 10: Fourier amplitude spectrum (DFT) of a smooth impor-
tance density image sampled with 2600 points, together with its the
radial component and angular anisotropy of the spectrum. Please
notice the typical blue noise profile of the radial component.

Several examples of lookup tables of various sizes can be found
on1. Please notice that the lookup table of size 8×21 described here
is compact, yet still gives satisfactory results. Larger size lookup
tables are applicable as well.

5 Case Study: Environment Map Sampling

One of many applications of our technique in computer graphics
is the sampling of HDR environment maps. The idea is to reduce
the environment map to a relatively small number of point light
sources, thus speeding up the integration of the incoming illumi-
nation. We compare our sampling system with those used in re-
cent incarnations of the above idea, notably Structured Importance
Sampling [Agarwal et al. 2003] and LightGen [Cohen and Debevec
2001]. See the companion video 1.
This problem essentially reduces to the k-centers problem, to which
there is no known polynomial-time solution. To achieve a fast so-
lution, an approximation must be used. [Agarwal et al. 2003] use
the Hochbaum-Shmoys algorithm, and [Cohen and Debevec 2001]
use k-means clustering; both are iterative searches. In [Kollig and
Keller 2003], a modifed Lloyd’s relaxation scheme is used to dis-
tribute the sampling points, which is also an iterative process. In our
system, the sampling points are deterministic and the lookup table
is pre-calculated; only a thresholding operation must be performed
during the sampling. Thus, we can obtain an empirical linear time
approximation (time on a 2.6 GHz P4 processor):

No. of points 236 343 455 690 930 1847 3006
Time in ms 6 9 12 17 22 42 64

The resulting sample distribution compares well with the other
techniques. The running times, though, are several orders of mag-
nitude lower. In order to obtain running times similar to our system,

1Siggraph 2004 Full Conference DVD-ROM; also available on the web
site of the first author: www.iro.umontreal.ca/ ˜ostrom/ImportanceSampling
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Figure 11: Galileo’s Tomb environment map, sampled with left: LightGen, center: Structured Importance Sampling, and right: our system.
The map size is 1024×512, the number of samples is 300. On a 2.6 GHz P4, sampling times were: left: 45 minutes, center: 25 seconds,
right: 8 milliseconds.

one could use the cumulative importance density function sampled
with a stratified Monte-Carlo sampling pattern or low-discrepancy
sequences, as shown in Figure 13. As mentioned before, the result-
ing sample points do not exhibit a blue-noise distribution. Whether
a blue-noise distribution of the lights is better in this context can be
debated, but that is beyond the scope of this paper.
With the relative speed of our system, the bottleneck quickly be-
comes the rendering process. With a rendering system that could
handle a few hundred lights in real time, it would be possible to sim-
ulate distant illumination with dynamic maps at interactive frame-
rates, using our sampling system.
See Figures 1 and 11 and the companion video.

6 Discussion and Future Work

Several important notions are given in this paper without formal
proof. For example, the property of uniformity of point distribution
introduced in Section 3 must be thoroughly studied and adequately
presented. This is a considerable work that goes far beyond the
scope of this paper. Adequate mathematical tools for this study
should be developed.
As we mentioned in Section 2, three-dimensional extension of Pen-
rose tiling was proposed by Mackay more than twenty years ago;
it played an important role in the discovery of quasicrystals. Con-
sequently, one may expect to build a 3D construction, similar to
our construction in Section 3, which would result in isotropic 3D
point distribution, modulated by 3D importance density functions.

Such hierarchical constructions would be useful in various com-
puter graphics applications. Moreover, a multi-dimensional vari-
ant of our construction may exist as well. It would be helpful in
various light transport calculations where multi-dimensional impor-
tance density functions must be sampled (see also [Veach 1997],
[Kollig and Keller 2001], [Kollig and Keller 2002]).
Sampling point sets produced with our method are not perfectly
isotropic. One possible way to improve our results would be study-
ing different available aperiodic tilings with the methodology intro-
duced in this paper. Among the known aperiodic tilings that share
various properties with Penrose tiling, we are considering Am-
mann’s octagonal tiling [Grünbaum and Shephard 1986], Socolar’s
dodecagonal tiling [Socolar 1989], and Wang tiling [Grünbaum
and Shephard 1986], [Hiller et al. 2001], [Cohen et al. 2003].

Another way to improve isotropy would be to use our method as
a starting point for some other methods, such as weighted Lloyd’s
relaxation, which will then converge in much fewer iterations.

7 Conclusions

Let us summarize the contributions of this paper.
First, we have proposed an original method for sequentially num-
bering all vertices of Penrose tiling, based on the Fibonacci number
system. The Penrose tiling is used as an underlying structure for
a recursive subdivision. The numbers associated with the tiles are
used as thresholds in the sampling process.
Second, we improve the above system with corrective vectors to en-
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sure blue noise properties of the sampling point distribution. This
is achieved through an off-line Lloyd relaxation scheme. The cor-
rective vectors obtained in the optimization are stored in a two-
dimensional lookup table.
Our technique is very fast because the required processing per sam-
pling point is simple. The processing time grows linearly with the
number of sampling points. Typical processing time for sampling
a scene with thousands of sampling points can be measured in mil-
liseconds. Because each tile is processed independently, the pro-
posed system is parallelizable and therefore can be efficiently im-
plemented with hardware.
Because of its speed, simplicity, and multi-resolution properties
combined with good quality of point distribution, our importance
sampling technique may be applied in a large variety of graphical
applications.
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APPENDIX A: Pseudo-code of the Adaptive
Subdivision and Sampling

ADAPTIVESAMP(t o f type tile)
1 � Structure tile contains the fields:
2 � type: [‘a’..‘f’]
3 � LOS: Level of Subdivision
4 � vertices: center if ‘a’ or ‘b’, triangle otherwise
5 � Fcode
6 � mag and importance are global variables
7 local LOS← GETMAXLOSWITHINTILE(t)
8 if t.LOS≥ local LOS
9 then � Terminal: don’t need more subdivisions
10 local importance← mag ·GETLOCALIMPORTANCE(t)
11 if t.type= (‘c’ or ‘d’ or ‘e’ or ‘f’)
12 then return � Not a ”sampling tile”: do nothing
13 if local importance≥ FIBOTODECIMAL(t.Fcode)
14 then OUTPUTSAMPLE(t.center)
15 return
16 else � Need more subdivisions
17 {t1, .., tn}← SUBDIVIDEUSINGPRODUCTIONRULES(t)
18 return {ADAPTIVESAMP(t1), ..,ADAPTIVESAMP(tn)}
It is worth mentioning that the routines GETMAXLOSWITHIN-
TILE(t) and GETLOCALIMPORTANCE(t) play a very important,
even crucial role in the algorithm. If, for any reason (e.g., because
of a singularity in the importance density), they fail to evaluate the
local importance/max importance, it may result in locally erroneous
sampling density.

APPENDIX B: φ - and F- Number Systems

Details about φ - and F- (Fibonacci) number systems can be found
in [Knuth 1997] and [Graham et al. 1994].

The φ -system is a positional number system in base φ , where
φ = 1+

√
5

2 is the Golden Ratio. Any rational number x can be ex-
pressed in this system exactly as in our conventional binary or dec-
imal systems, except that instead of using powers of two or ten, this
system employs powers of φ . For example, the number (101.001)φ
in base φ is

(101.001)φ = φ2+φ0+φ−3 ≈ 3.854110
The φ -system is closely related to the F-system (the abbreviation
for Fibonacci system). The F-system is also a positional sys-
tem. Any integer n can be presented in the F-system as a sum of
Fibonacci numbers Fj multiplied by their positional coefficients,
which may be 0’s or 1’s. Thus, a number n can be expressed by its
F-code (bmbm−1 . . .b3b2)F :

n= (bmbm−1 . . .b3b2)F ⇐⇒ n=
m

∑
j=2
b jFj. (4)

The first index in the summation is j = 2 because of the convention
used for Fibonacci numbers Fj:

F0 = 0, F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 = 8,F7 = 13, . . .

The representation of numbers is not unique in the F-system, but
it becomes unique if the rule of normal form is imposed: two ad-
jacent 1’s are not permitted. The procedure of conversion from an
arbitrary sequence of 0’s and 1’s to the normal form, along with
many other technical details, can be found in [Graham et al. 1994].
Here are the first twelve integers expressed in the F-system in nor-
mal form:

3 8 13 21 34 55 89 144

0.2

0.4

0.6

0.8

1

Figure 12: Function Ψ(x). Note that Ψ(x) “jumps” every F2 j

Figure 13: A ramp importance density image sampled with (top)
our system and the cumulative importance density function sampled
with (middle) a stratified Monte-Carlo pattern, or (bottom) Sobol
low-discrepancy sequence.

1= (00001)F , 2= (00010)F , 3= (00100)F ,
4= (00101)F , 5= (01000)F , 6= (01001)F ,
7= (01010)F , 8= (10000)F , 9= (10001)F ,
10= (10010)F , 11= (10100)F , 12= (10101)F .

More examples of interpretation of such sequences of 0’s and 1’s,
which we shall call F-codes, as integer numbers, are shown in Fig-
ure 6.

The routine FIBOTODECIMAL converts F-codes to the conven-
tional decimal representation.

FIBOTODECIMAL(Fcode)
1 accumulator← 0
2 for i← 0 to LENGTH(Fcode)−1
3 do
4 accumulator← accumulator+Fcode[i] ·Fi+2
5 return accumulator

Function Ψ(x) that maps a real positive x onto interval [0..1], as
shown in Figure 12, is defined as follows:

Ψ(x) = (logφ 2
√
5 · x)mod 1.

It can be easily derived from the well-known Binet’s formula

Fn = [φn/
√
5],

where [ ] is the usual notation for the nint (Nearest Integer) function.
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2.1.3 Discussion

Dans cet article, nous avons présenté une nouvelle technique d’échantillonnage basée sur

les tuiles de Penrose. Pour arriver à cette fin, nous avons trouvé une méthode nouvelle de numé-

rotation séquentielle de tous les sommets du jeu de tuiles de Penrose, qui se base sur le système

de numérotation de Fibonacci. Les tuiles servent de structure sous-jacente à une subdivision

récursive, et les numéros aux sommets servent de seuils dans le processus d’échantillonnage.

De plus, nous avons introduit une technique pour améliorer la distribution des points d’échan-

tillonnage, qui utilise un jeu de vecteurs de correction pré-calculés, et stockés dans une table.

Comme le procédé de traitement pour chaque échantillon est très simple, notre technique est

très rapide. Les temps de calcul augmentent linéairement avec le nombre de points. Les temps

d’exécution sur une fonction typique pour des milliers de points se compte en millisecondes.

De plus, comme le traitement de chaque point est indépendant de ses voisins, notre système se

paralléliserait bien, et se porterait bien à une implémentation matérielle.

Grâce à sa vitesse, sa simplicité, ses propriétés multi-résolution, ainsi qu’à la bonne qualité

de la distribution résultante, notre méthode d’échantillonnage pourrait ouvrir la porte à une

grande variété d’applications en infographie.

2.1.4 Contribution Personnelle

Les idées génératrices qui ont menées aux découvertes exposées dans cet article proviennent

de mon directeur, Victor Ostromoukhov. Elles sont le fruit d’une réflexion approfondie qui

s’étale sur plus de dix ans. Mon rôle principal dans ce travail, qui a occupé une proportion consi-

dérable des deux années de ma maîtrise, a été d’assister mon directeur dans ses recherches. Mon

assistance a consisté en recensement de littérature, en exploration d’applications potentielles,

dans l’implémentation d’outils de recherche, et peut-être même au niveau du support moral.

Au niveau de l’article lui-même, j’ai implémenté l’algorithme de manière efficace, de façon

à en faire des analyses de performance. Il me revient l’élaboration de l’étude de cas qui a servi

à illustrer le potentiel du système d’échantillonnage, ainsi que la rédaction de la section de

l’article qui y est dédiée. J’ai aussi monté la vidéo qui y est mentionnée, et qui a fait partie

intégrante de la soumission. Finalement, j’ai eu l’honneur de présenter ce travail à SIGGRAPH

2004.
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2.1.5 Droits de publication

Par leur signature ci-dessous, chaque coauteur de la publication ci-jointe,Fast Hierarchical

Importance Sampling with Blue Noise Properties[ODJ04], accorde sa permission explicite pour

que l’article soit inclu tel quel dans le présent mémoire. Aussi, il atteste que ma contribution à

l’article est effectivement telle que décrite dans le présent mémoire.

Victor Ostromoukhov

Pierre-Marc Jodoin

Selon l’article 2.5 de la politique de droits d’auteurs de l’ACM, l’oeuvre en question peut

être inclue dans le présent mémoire, à condition que la notice suivante soit affichée :

“SIGGRAPH ACM, 2004. This is the author’s version of the work. It is posted here by

permission of ACM for your personal use. Not for redistribution. The definitive version

was published in Proc. SIGGRAPH, Vol. 23, no. 3, 2004”

(http://www.acm.org/pubs/copyright_policy)
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2.2 Fast Triangulated Importance Sampled Point Sets

Ce deuxième article n’a pas encore été soumis pour publication. Les auteurs sont Charles

Donohue et Victor Ostromoukhov. L’article représente une continuation logique du premier ar-

ticle, dans laquelle la problématique est étendue pour inclure la connectivité des points d’échan-

tillonnage, au sens de la triangulation de Delaunay.

2.2.1 Résumé

Cet article présente une extension au système d’échantillonnage proposé dans [ODJ04], qui

génère une bonne distribution d’échantillons à partir d’une fonction de densité d’importance.

Notre extension consiste à générer efficacement une bonne triangulation des points d’échan-

tillonnage résultants, au sens de Delaunay. Contrairement aux méthodes générales de triangu-

lation de Delaunay, notre méthode exploite le jeu de subdivisions de tuiles triangulaires utilisé

par ce système, afin d’en extraire une accélération considérable. Nous proposons un algorithme

rapide, qui s’exécute en temps linéaire par rapport au nombre de points générés, en pire cas, ce

qui ne peut être accompli par aucun autre algorithme de triangulation de Delaunay connu. Plu-

sieurs domaines en infographie pourraient profiter d’un tel système d’échantillonnage associé à

notre algorithme de triangulation, comme le rendu de terrain, le traitement de géométrie 3D et

la compression d’images.

Mots Clés : Échantillonnage d’importance, Triangulation Delaunay, Bruit bleu, Tuiles de Pen-

rose.
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2.2.2 L’Article

Fast Triangulated Importance Sampled Point Sets

Charles Donohue
University of Montreal

Victor Ostromoukhov
University of Montreal

Abstract

This paper presents an extension to the importance sampling sys-
tem proposed in [ODJ04], which generates a good sampling pattern
given an importance density function in 2D. Our extension consists
in efficiently generating a Delaunay triangulation of the resulting
sampling points. As opposed to general triangulation algorithms,
our method harnesses the triangle subdivision scheme used in the
above mentioned sampling system, in order to obtain a considerable
speedup. We propose a fast algorithm that runs in worst-case linear
time with regards to the desired number of points, something that
cannot be achieved with any known Delaunay triangulation algo-
rithm. There are many areas in computer graphics that can benefit
from such a sampling system in association with this triangulation
algorithm, such as terrain rendering, 3D geometry processing, and
image compression.

Keywords: Importance Sampling, Delaunay Triangulation, Blue
Noise, Penrose Tiling.

1 Introduction

In the paper [ODJ04], a novel method is proposed to generate a set
of discrete sampling points, given a 2D importance density func-
tion. The points generated exhibit a local blue-noise distribution,
which roughly means that the points do not have alignments or
principal directions, and that they are are at a minimal distance
with respect to each other. Since this system is founded on the
Penrose tiles, and because of its ties with quasicrystallography, this
system shall henceforth be named Quasisampler, for the sake of
brevity. The name also stems from the system’s potential use in
quasi-Monte-Carlo integration. The point sets generated by the
Quasisampler can be useful in many computer graphics contexts,
namely in image compression, where the image could be resam-
pled in an approach similar to [DACB96]; and in remeshing, where
the geometry could be resampled within a planar embedding, such
as proposed in [AdVDI03].

In certain typical use-cases of the Quasisampler, a triangulation of
the resulting sampling points must be obtained. Consider for ex-
ample the case of digital elevation map rendering: an importance
function based on the viewing position, the terrain curvature, and
other such factors is passed to the Quasisampler, which returns a
set of points. In order to render the terrain to the display, a trian-
gular mesh must be created, using these points as vertices. It is
often desirable that the resulting triangulation avoid narrow trian-
gles (‘slivers’). In this context, the Delaunay triangulation, which
maximizes the minimum angles of the triangles, can be considered
desirable.

There are several algorithms to build a Delaunay triangulation of
a set of n points. The more naive approaches, like incremental
algorithms such as in [GS83], typically run in O(n2). There are
more efficient ones that can run in O(n log n) worst case, such as
the Shamos and Hoey’s divide-and-conquer approach [SH75], For-
tune’s sweep-line algorithm [For86], or a randomized incremental
algorithm augmented with a search structure, such as in [Dev98].
These are all general triangulation algorithms, in the sense that their

Figure 1: An example of our triangulation shown in blue, with its
dual in red. These are respectively equivalent to the Delaunay tri-
angulation and the Voronoi diagram.

input point sets are considered to be provided by an arbitrary black-
box.

In this paper, we present an algorithm that can efficiently build De-
launay triangulations of the points generated by the Quasisampler.
Using a white-box approach, our technique exploits certain proper-
ties that arise from the hierarchical subdivision process within the
Quasisampler, in order to obtain the desired triangulation in O(n).
We also show how the algorithm gives fast results in practice, in
comparison with other methods.

The paper is organized as follows. TheQuasisampler system which
our method extends is briefly explained in Section 2. Our triangu-
lation algorithm is presented in Section 3, accompanied by results
in Section 4. Conclusions and future work follow in Section 5.

2 The Quasisampler

In order to explain how our triangulation algorithm works, we must
first make a brief review of the Quasisampler, as introduced in
[ODJ04]. The three basic steps that the system takes are illustrated
in Figure 2.

First, an adaptive tile subdivision scheme is used to build an initial
structure. This results in a subdivision tree in which the leaf depths
are modulated by the underlying function. The subdivision rules
are based on the Penrose tiles [Pen79], but the tiles are all triangu-
lar, save for a pair of infinitesimal pentagonal tiles. This makes for
a hierarchic structure that can be built only out of triangular sub-
divisions. Also, the subdivision rules are such that all angles are
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Figure 2: Quasisampler outline.

multiples of π
10 , so the trigonometric operations can be tabulated

for speed.

Then, the vertices of this structure are numbered, using the Fi-
bonacci number system [Knu97]. The numbers are used as a thresh-
old against the importance function, in order to obtain the desired
local density of points. The numbering of the vertices is based on
their position in the hierarchy, and the ordinal numbering of the ver-
tices ensures a linear response of point density with regards to the
importance values.

Finally, the system applies precalculated correction vectors to the
points. This tends to ‘relax’ the points with respect to their neigh-
bors and breaks the inherent structures in the point set. But no prox-
imity queries are needed, as the vectors are applied to each point
independently of its neighbors. The correction vectors are stored
in a table. It was obtained using an iterative optimization process
which involves Lloyd’s relaxation scheme [Llo83].

We are left with a discrete sample distribution, in which the lo-
cal point density is proportional to the importance density function.
Also, the local distributions of points have a blue-noise spectral
profile [Uli87; HDK01], which equates to a low anisotropy and no
principal directions or alignments. This kind of distribution can be
very effective in computer graphics, especially considering the fact
that the human visual perception system is very sensitive to such
alignments.

Several existing methods can be used to generate point sets with
blue noise properties. The techniques that give good quality re-
sults, such as Lloyd’s relaxation based techniques, tend to be slow,
whereas the faster techniques generally fail to meet the blue-noise
requirements. The Quasisampler is a fast approximation, yet it is
amongst the best in terms of quality. The possibility of generating
these good distributions at such a high speed opens the door to many
applications which were previously considered unfeasible. But, as
is, the system generates a cloud of points, without the connectiv-

ity information that is useful in many applications. We address the
connectivity issue in this paper.

3 Triangulation Algorithm

In order to extract connectivity and proximity information from a
point set, it is often useful to build a Delaunay triangulation of the
set. For a set S of points in the Euclidean plane, the Delaunay tri-
angulation can be defined as the unique triangulation DT (S) of S
such that no point in S is inside the circumcircle of any triangle in
DT (S). It can also be defined as the dual of the Voronoi diagram
of S, as illustrated in Figure 1. The Delaunay triangulation is the
target of our algorithm, and it can be built very quickly by harness-
ing certain intrinsic properties of theQuasisampler. The main ideas
behind our triangulation algorithm follow.

First, the Quasisampler uses a triangular subdivision scheme in or-
der to provide the required density of output points. This structure
can be transformed into a proper triangulation by making sure no
T-edges remain. Since a strict set of rules is used to build this struc-
ture, it is possible to create such a triangulation in linear time, with
regards to the number of triangles. Second, not all vertices in the
structure will be considered as active sampling points because of
the thresholding process, so these must be eliminated from the trian-
gulation. The supposition we make at this point is that the connec-
tivity of the triangulation of the final point distribution will be very
similar to the connectivity of the structure mentioned above. The
Quasisampler displaces the points with correction vectors, which
can leave us with an invalid topology, but we suppose that this can
be corrected in constant time at the local (edge) level. Finally, we
can observe that the connectivity information that stems from the
original structure, is very close to the Delaunay connectivity after
the points are displaced. After a finite number of conditional edge
flips, every edge is in the Delaunay set.
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Figure 3: T-edge elimination. Before on the left, after on the right.
The edges that have been added are shown in red.

Figure 4: Inactive vertex extraction. Before on the left, after on the
right. Blue vertices have passed the thresholding process.

3.1 Our Algorithm

Here is how the algorithm works. The preliminary step is the ini-
tialization of the Quasisampler, over the given importance density
function, as shown in Figure 2. Instead of simply using the out-
put points, we will use the tile subdivision tree structure which the
system employs internally.

3.1.1 Base Triangulation

The first step is to create a valid triangulation from the underlying
sampling structure, meaning there should not be any T-edges. An
efficient way of obtaining such a triangulation is to iterate through
the tile subdivision tree of the Quasisampler in a width-first man-
ner; this has the effect of enforcing the following rule: no two ad-
jacent triangles, which are slated to be subdivided at a subsequent
level, will ever be at more than one level of subdivision apart, at any
time during the traversal of the tree. This way, whenever a new ver-
tex needs to be added to the current triangulation, it is assured that
we only need to split two triangles along their common edge, which
is a trivial operation. Also, on the borders of areas at different levels
of subdivision, the triangulation remains valid because the triangles
on both sides are split. This holds true no matter how many levels
of subdivision this border jumps. An example of this operation is
shown in Figure 3. So, in order to build our base triangulation, we
iterate through the Quasisampler’s subdivision tree, successively
splitting the edges of the triangles according to the tile’s geometry,
while making sure that each new vertex holds a reference to the
‘sampling’ tile from which it has spawned.

µ1

µ2

e

Figure 6: Edge-flip test. If θ1+θ2 > π then the edge e is flipped.

3.1.2 Inactive Vertex Removal

The triangulation obtained at this point includes every vertex in the
tiling. The second step consists in the extraction of the inactive
vertices from the triangulation. These are the potential sampling
points that fail the thresholding step. An example of this step is
shown in Figure 4. This process is fairly straightforward; We iter-
ate through all the ‘sampling’ tiles, and those that have failed the
thresholding test are marked for extraction. Finding these vertices
in the triangulation is simple, because we have stored reference to
the latter. The removal of a vertex from the triangulation involves
the re-triangulation of the hole it generates, which can be done with
or without enforcing a Delaunay constraint. We have opted for a
simple greedy re-triangulation, because the end result is the same,
while it is less computationally intensive because we avoid the cir-
cumcircle tests. When this greedy approach is chosen, special atten-
tion must be brought to collinear points in the re-triangulated area.
The original Penrose tiling has alignments in the 10 principal di-
rections, but, depending on the numerical precision chosen for the
point representation, some collinear points might appear slightly
non-collinear, which can result in triangle slivers. These triangles
have an unstable orientation, and can be problematic for the pred-
icates used in further operations on the triangulation. Fortunately,
a simple collinearity test avoids these situations, using a numerical
precision based on the level of subdivision at the offending point.

This decimated triangulation will serve as the foundation for our
final triangulation.

3.1.3 Minimum Angle Edge-Flips

The vertices of the resulting triangulation will need to be displaced
by the vectors provided by the sampling system; this can cause an
invalid topology at certain vertices, as shown in Figure 5. This
leads us to the next step in the algorithm, which is a finite number
of conditional edge-flips of the current triangulation.

The process consists in iterating through all the edges of the trian-
gulation, and for each one, calculating the angles at the vertices of
each opposing side of both adjacent triangles, as shown in Figure 6.
If these angles sum to more than π , then the edge is flipped across
the two triangles. This has the effect of maximizing the minimum
angles in the triangles, which brings us closer to a Delaunay trian-
gulation, which happens to be minimum angle maximizing. The
iteration across all edges represents a single pass, which can leave
some edges that are still not in the Delaunay set. In order to obtain
a proper Delaunay triangulation, a certain number of these edge flip
passes must be made successively. Note that each iteration can be
constrained to the local neighborhood of the edges that were flipped
in the last iteration, which can greatly reduce the number of tests
from one iteration to the next.
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Figure 5: Quasisampler correction vectors. Before corrections on the left, after on the right. Notice the invalid topology of the displaced
triangulation in certain areas (circled in blue).

Figure 7: Conditional edge flips. First pass on left, second pass on
right. Edges that have flipped are marked in blue.

An example of the results of two passes of this process is shown in
Figure 7. The results of the second pass of edge flips are compared
with a proper Delaunay triangulation in Figure 8. In this example,
only two edges differ from the Delaunay triangulation, and after a
third pass (not shown), there is no difference. In many applications,
the triangulation resulting from two edge-flip passes is more than
adequate, even if it is not a true Delaunay triangulation. In our
tests, we have found that the number of offending edges decreases
exponentially with each pass, and that with 6 passes, we can reach
the bounds of the Quasisampler’s precision (using 32 bits for the F-
Code). Of course, edges that are ambivalent in the Delaunay sense
are not counted.

3.2 Algorithmic Complexity

In order to compare the time complexity of our algorithm with other
Delaunay triangulation algorithms, we will make a worst-case anal-
ysis, which will give us an order that we can compare with the oth-
ers.

Figure 8: Comparison of our triangulation after two edge-flip
passes with a Delaunay triangulation (in blue). Red edges are not
in the Delaunay set. After 3 passes, our triangulation is identical to
Delaunay’s.
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Figure 9: Half-edge data structure (source: www.flipcode.com)

3.2.1 Triangulation Data Structure

In order to help explain the time complexity of our algorithm, here
is a quick overview of the triangulation data structures that are
common to the compared techniques and ours. The Winged-edge
(Baumgart, 1975) or Half-edge (Eastman, 1982) data structures are
efficient ways of representing triangle meshes, in that they keep
some pointers to local neighbors of the vertices, edges, and faces.
This permits efficient adjacency queries into the triangulation, and
also accelerates many common operations, such as vertex removal.
In the implementation of our algorithm, we use the triangulation
data structure provided in the Computational Geometry Algorithms
Library (CGAL) [BDTY00], which is based on the Half-edge, as
shown in Figure 9. Given that the algorithms used for comparisons
are provided by CGAL, they also employ the same data structure.
Using this data structure, the following statements about certain op-
erations can be made:

• The insertion of a vertex into the triangulation requires two
steps. First, the triangle containing the new point must be
found. This operation can be done in O(n), in the worst-case,
and can be greatly improved with efficient search structures.
Then, generally, the face is split into three triangles, which
can be done in O(1).

• The removal of a vertex out of the triangulation involves re-
moving all incident faces and then re-triangulating the result-
ing hole. This can be done in O(d2) where d is the degree of
the vertex, and this generally reduces to O(1).

• In the case of a Delaunay constraint on the triangulation, the
above operations must be followed by a certain number of
conditional edge flips, which is proportional to the degree of
the vertex. This once again reduces to O(1), thus has no im-
pact on the algorithmic complexity of the previous operations.

• The process of flipping an edge between two adjacent trian-
gles is a trivial operation in O(1) time.

So, to build a Delaunay triangulation of a set of n points using this
data structure would take O(n2) time, assuming a naive face lo-
cation scheme is used. The search structure proposed by [Dev98]
achieves the latter step in O(log n) worst-case, which results in
O(n log n) for the whole algorithm.

3.2.2 Triangulation Process

Before we start a complexity analysis of our algorithm, we must
introduce the following notion. In the Quasisampler, the vertices
of the base tiling serve as potential sampling points, but a portion
of these points fail the thresholding process. Let n be the number of
vertices that are ‘active’, and n′ be the total number of vertices, then
we can state that n ∝ n′. This is due to the autosimilar behavior of

the Penrose tiling; as the function is scaled to produce more points,
the Penrose structure subdivides to deeper levels. These deeper lev-
els are similar to the previous levels, just at a smaller scale. The
global behavior remains the same, and the ratio of ‘active’ to ‘inac-
tive’ vertices remains roughly constant.

As previously mentioned, the first step in the algorithm is to build
a valid triangulation from the Penrose tiling. This triangulation is
built using successive triangle splits, and for each new potential
sampling point, a triangle is split along its edge. If a neighboring
triangle shares this edge, it is also split. Using the triangulation
data structure described before, each split is done in O(1), which
implies that the whole triangulation can be built in O(n′), or O(n)
since n ∝ n′.

The second step is the extraction of all non-active vertices from the
base triangulation. As explained before, the removal of a vertex can
be done in O(d2) time, where d is the degree of the vertex. If we
can prove that the vertices have a bound degree, then removal can be
considered to be in constant time, meaning that the whole operation
can be done in O(n′ −n). Again, since n ∝ n′, this equates to O(n).
For vertices that are surrounded by triangles from the same level of
subdivision, the worst case that can arise is a 9-connected vertex,
as shown in Figure 3, so this is a tight bound. But for vertices on
the boundary between different levels of subdivision, this bound is
not obvious. Let us examine the worst possible case, which would
be starting with two triangles, and then splitting one of them to a
high level of subdivision. Since the degrees of all interior vertices
are bound, let us only consider the boundary vertices along with
the single highly connected vertex of the non-subdivided triangle.
All the boundary vertices are 4-connected, and the lone vertex is
m-connected, where m is the number of vertices on the edge. So the
average degree of these vertices is 4m+m

m+1 , which is bound by 5.

The third step is a finite number of conditional edge-flip passes.
First of all, this is an operation on the edges of the triangulation,
but this algorithmic analysis is based on the vertex count. So, we
use Euler’s theorem, T − E +V = C, where T is the number of
triangles, E the number of edges, V the number of vertices, and C
a constant based on the surface’s genus, with C = 1 in the case of
a closed polygon. In the creation of the initial triangulation, the
addition of a new vertex involves adding either one or two new
triangles, so we can say that T ∝ V , and using Euler’s theorem,
E ∝ (V−1). Considering an edge flip as anO(1) operation, a single
pass of edge flips is in O(E) time, which then equates to O(n). This
step is repeated a finite number of times, and we have found that
doing it three times gives us sufficiently good results, and that in
some cases a single pass is good enough. As explained before,
applying six passes assures a proper triangulation for any case that
the Quasisampler can generate, because any error would be smaller
than what the numerical representation of the points can perceive,
assuming 32 bit floating points.

All in all, the algorithm is thus composed of a series of operations
that run in O(n), so we can conclude that our algorithm runs in
linear time with regards to the number of requested points. This
is exciting because the worst-case optimality of the Delaunay tri-
angulation is in O(n log n). However, we cannot claim to have a
general Delaunay triangulation that runs inO(n), because this algo-
rithm runs only on a subset of the general problem, which is limited
to the points generated by the Quasisampler.
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Figure 10: (Top) Gradient ramp importance density function. (Mid-
dle) Quasisampler output points. (Bottom) Triangulation obtained
with our algorithm.

4 Results

4.1 Qualitative Results

An example of using our triangulation algorithm on a gradient ramp
is shown in Figure 10. In Figure 12, a high dynamic range image is
used as the importance density function. The quality of the results
of our triangulation are intrinsically tied to the quality of the De-
launay triangulation. Whether this is a ‘good’ triangulation or not
depends of course on the application, but the fact that the Delau-
nay triangulation maximizes the minimum angles of the triangles
gives it many useful properties. Obviously, the quality of the trian-
gulation is also tied to the quality of the distribution of the points
generated by the Quasisampler. Given that the points follow a local
blue-noise (or Poisson-disk) distribution, the dual of the triangula-
tion, called the Voronoi diagram (see Figure 1), is very close to
what is called a centroidal Voronoi tessellation, which confers to it
some interesting properties, as further explained in [DFG99].

4.2 Quantitative Results

In order to compare our algorithm’s performance with others in
real-world applications, we have timed the triangulation algorithms
on an increasing number of points. The results are shown in Fig-
ure 11. For fairness’ sake, all three algorithms use the same tri-
angulation data structure. Also, the implementations of the two
compared algorithms are provided by the CGAL library [BDTY00],
known for its good performance. As the graph shows, a naive algo-
rithm such as the incremental insertion method, is no match for our
algorithm. The brute force approach, in O(n4), is not even shown
because it is substantially slower than all other methods. Devillers’
algorithm [Dev98] uses an efficient search structure, which gives a
nearly linear performance on the point sets generated by the Qua-
sisampler, given their blue-noise distribution. This makes for an
algorithm that performs in the same order as ours. Nevertheless,

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 20000 40000 60000 80000 100000 120000 140000 160000

Number of points

ti
m
in
g
s
(i
n
m
s
)

(a)

(c)

(b)

Figure 11: Performance comparison: (a) Incremental insertion. (b)
Devillers’ algorithm. (c) Our algorithm. The source function is a
non-trivial HDR image.

our algorithm manages to run at least twice as fast, and this is while
adhering to the highest quality standards.
In addition, if the application can tolerate a few edges that are not in
the Delaunay set, fewer edge flip passes can be afforded, resulting
in a faster triangulation. In our implementation, we have observed
up to a two-fold speed increase by cutting this corner, but the results
may vary according to what is considered an acceptable deviation
from the Delaunay set.

5 Conclusions and Future Work

We have addressed an important problem in computer graphics,
that is to generate well distributed point sets along with their De-
launay triangulation, given an importance density function in 2D.
To this end, we have developed a fast algorithm to generate a De-
launay triangulation of point sets obtained through the importance
sampling system described in [ODJ04]. Although we have demon-
strated that our algorithm runs in linear time, which cannot be ob-
tained by any known Delaunay triangulation algorithm, we must
acknowledge that other triangulation methods run almost linear in
the expected (average) case. Regardless, we have demonstrated in
our tests that we can run at least twice as fast as the best known
algorithms, and possibly even faster if certain concessions to qual-
ity can be accepted, in terms of how many edges that are not in the
Delaunay set.

As future work, we plan to extend the algorithm in order to gener-
ate 3D triangulations, and possibly n-D triangulations. Of course,
this depends on whether the Quasisampler will be applicable or not
in such dimensions. This is a question which we are looking into.
Some operations on triangulations are trivial in the 2D case, but be-
come complex in higher dimensions. Also, the L2 norm on which
the Delaunay constraint relies can become problematic in high di-
mensions, so it is questionable whether the Delaunay triangulation
is ‘good’ in such situations.

Another extension that we plan to explore is the case of a dynamic
function, where temporal coherency of the function could be ex-
ploited to save computation time, as opposed to simply rebuilding
the triangulation at each frame. Given that the Quasisampler is
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expected to return coherent point sets across frames (which is not
the case in most other similar systems), the time savings could be
considerable.

Finally, we plan to develop applications of the algorithm for
promising uses in computer graphics. One such application is im-
age compression, where an image would be partitioned into a trian-
gulation which has a local density proportional to the image com-
plexity. Another application is isotropic remeshing of 3D surfaces,
in a manner similar to [AdVDI03], which could be made more in-
teractive with our fast system.
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Figure 12: HDR map sampled with the Quasisampler (top), then triangulated using our algorithm (bottom). (HDR image source: Paul
Debevec.)
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2.2.3 Discussion

Dans cet article, nous avons adressé un problème important en infographie en abordant la

notion de connectivité des points d’échantillonnage. Nous avons présenté un algorithme rapide

pour la triangulation de Delaunay des ensembles de points générés par le système d’échantillon-

nage décrit dans l’article précédent. Nous avons démontré que notre algorithme se déroule en

temps linéaire par rapport au nombre de points, en pire cas, ce qui est un exploit qu’aucun autre

algorithme de triangulation de Delaunay ne peut atteindre. Il faut quand même tempérer cette

déclaration par le fait que certains algorithmes peuvent donner des performances quasi-linéaires

dans les cas typiques. Toutefois, nous avons démontré dans nos tests que nous pouvons être au

moins deux fois plus rapide que les meilleurs algorithmes existants. De plus, les vitesses d’exé-

cution peuvent être encore améliorées si on peut accepter que certaines arêtes ne fassent pas

partie de l’ensemble Delaunay.

Dans nos travaux futurs, nous voudrions étendre cet algorithme aux triangulations 3D, et

possiblement N-D, mais tout dépend de la possibilité d’étendre le système de base à ces dimen-

sions, ce qui n’est pas encore fait. De plus, certaines opérations sur les triangulations qui sont

triviales en 2D peuvent devenir compliquées en plus haute dimension. D’ailleurs, les choses

peuvent se complexifier d’avantage à très haute dimension, alors que la métrique de distanceL2

sur laquelle dépend la contrainte de Delaunay devient moins significative.

Une autre extension que nous planifions explorer est celle des cas de fonctions dynamiques,

dans lesquels on pourrait exploiter la cohérence temporelle du signal d’entrée afin d’éviter de

rebâtir la structure de base à zéro. Le fait que le système d’échantillonnage soit déterministe et

qu’il retourne des ensembles cohérents de points d’image en image, nous permettrait de faire

des grandes économies en temps de calcul.

Finalement, nous voulons explorer l’application de notre algorithme de triangulation à cer-

tains problèmes prometteurs en infographie. Une première application serait la compression

d’images, où l’image pourrait être partitionnée en une triangulation dans laquelle la densité se-

rait proportionnelle à la complexité de celle-ci. Une autre application intéressante serait celle

du remaillage isotropique des surfaces 3D, dont l’interactivité pourrait être améliorée par notre

système.
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2.2.4 Contribution Personnelle

En tant que premier auteur de cet article, il me revient l’élaboration de l’algorithme de tri-

angulation qui y est présenté. J’ai aussi implémenté l’algorithme pour les fins de tests, monté

les preuves algorithmiques, et rédigé l’article. Étant donné que la méthode est intimement liée

au système d’échantillonnage proposé dans le premier article, la collaboration avec Victor Os-

tromoukhov a été très étroite à tous les égards.

2.2.5 Droits de publication

Par sa signature ci-dessous, le coauteur de la publication ci-jointe,Fast Triangulated Impor-

tance Sampled Point Sets, accorde sa permission explicite pour que l’article soit inclu tel quel

dans le présent mémoire. Aussi, il atteste que ma contribution à l’article est effectivement telle

que décrite dans le présent mémoire.

Victor Ostromoukhov
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Conclusion

En exploitant certaines propriétés des tuiles de Penrose, nous avons présenté deux méthodes

qui se penchent sur des problèmes reliés à l’échantillonnage en infographie.

Dans le premier article, nous proposons une technique d’échantillonnage 2D, qui non seule-

ment donne des résultats de bonne qualité, mais peut le faire à une vitesse beaucoup plus rapide

que les techniques existantes qui donnent de telles distributions. Nous avons illustré notre mé-

thode avec un cas typique d’application, dans le contexte du rendu d’images de synthèse, mais

le système peut s’appliquer à une grande variété de problèmes en infographie.

Dans le second article, nous proposons une technique d’échantillonnage qui inclut égale-

ment la notion de la connectivité des échantillons résultants, au sens de Delaunay. La technique

permet d’obtenir une triangulation de Delaunay dans temps un d’au moins deux fois plus rapide

qu’avec les meilleures techniques existantes pour accomplir cette tâche. Combinée avec la mé-

thode d’échantillonnage précédente, nous avons un système qui donne des résultats de bonne

qualité et à haute vitesse, ce qui ouvre la porte à plusieurs applications en infographie, dans

lesquelles la vitesse joue un rôle critique.

En conclusion, nous croyons sincèrement que l’approche proposée dans ces articles face aux

problèmes d’échantillonnage est très prometteuse, et que nous n’avons qu’effleuré le potentiel

réel des tuiles de Penrose dans le domaine de l’infographie.
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