Génération et édition de textures géométriques représentées par des ensembles de points Soutenance de thèse

François Duranleau

Dép. d'informatique et de recherche opérationnelle

23 janvier 2009

Jury

Neil F. Stewart président-rapporteur

Pierre Poulin
directeur de recherche

Victor Ostromoukhov

Mathias Paulin examinateur externe

Abraham Broer représentant du doyen de la FAS

Plan de la présentation

- 1 Introduction
- 2 Les points
- 3 Génération de textures géométriques
- 4 Représentation multirésolution
- 5 Conclusion et travaux futurs

Plan de la présentation

- 1 Introduction
- 2 Les points
- 3 Genération de textures géométriques
- 4 Representation multirésolution
- 5 Conclusion et travaux futurs

Détails géométriques

Objet

Textures géométriques

Forme

Détails

Détails géométriques

Objet

Textures géométriques

=

Forme

Détails

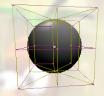
Détails géométriques

Objet

Forme

Textures géométriques

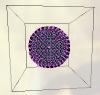
Détails



Maillages

Maillages

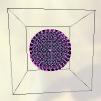
NURBS



Maillages

NURBS

Subdivision



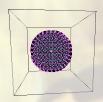
Maillages

NURBS

Subdivision

$$x^2 + y^2 + z^2$$

$$=$$
0


Implicite

Maillages

NURBS

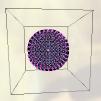
Subdivision

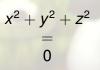
$$x^2 + y^2 + z^2$$

$$=$$
0

Implicite

Volumétrique



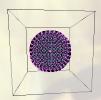

Maillages

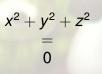
NURBS

Subdivision

Implicite

Volumétrique




Maillages

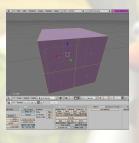
NURBS

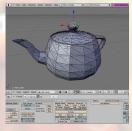
Subdivision

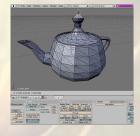
Implicite

Volumétrique

Points




- Pas d'information de connectivité
- Structures simples
- Intéressant pour découpage, jonction, rééchantillonnage



Blender, Maya, XSI, 3ds Max...

- Blender, Maya, XSI, 3ds Max...
- Méthodes procédurales

Exemple: systèmes-L

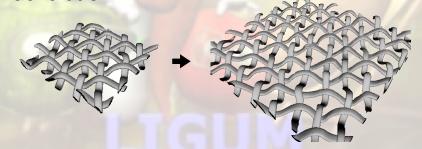
```
w : A
p1 : A -> [&FL!A]////[&FL!A]/////[&FL!A]
p2 : F -> S////F
p3 : S -> FL
p4 : L -> [^^{.-f.+f.-|-f.+f.}]
```


- Blender, Maya, XSI, 3ds Max...
- Méthodes procédurales
- Numérisation 3D

- Blender, Maya, XSI, 3ds Max...
- Méthodes procédurales
- Numérisation 3D
- Génération

- Blender, Maya, XSI, 3ds Max...
- Méthodes procédurales
- Numérisation 3D
- Génération

- Blender, Maya, XSI, 3ds Max...
- Méthodes procédurales
- Numérisation 3D
- Génération

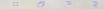


- Blender, Maya, XSI, 3ds Max...
- Méthodes procédurales
- Numérisation 3D
- Génération

- Blender, Maya, XSI, 3ds Max...
- Méthodes procédurales
- Numérisation 3D
- Génération

- Blender, Maya, XSI, 3ds Max...
- Méthodes procédurales
- Numérisation 3D
- Génération
- Édition

- Blender, Maya, XSI, 3ds Max...
- Méthodes procédurales
- Numérisation 3D
- Génération
- Édition



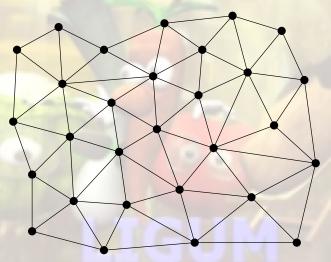
- Blender, Maya, XSI, 3ds Max...
- Méthodes procédurales
- Numérisation 3D
- Génération
- Édition multirésolution

- Blender, Maya, XSI, 3ds Max...
- Méthodes procédurales
- Numérisation 3D
- Génération
- Édition multirésolution

- Blender, Maya, XSI, 3ds Max...
- Méthodes procédurales
- Numérisation 3D
- Génération
- Édition multirésolution

Contributions

- Algorithme de génération de textures géométriques représentées par des ensembles de points
- Représentation multirésolution pour des ensembles de points

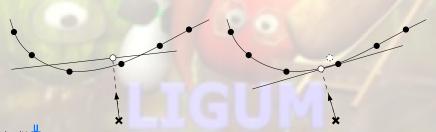


Plan de la présentation

- 1 Introduction
- 2 Les points
- 3 Genération de textures géométriques
- 4 Représentation multirésulution
- 5 Conclusion et travaux futurs

Voisinages

Voisinages-k

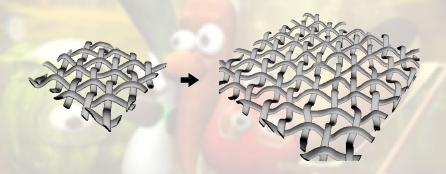


MCM = moindres carrés mobiles

- MCM = moindres carrés mobiles
- Opération fondamentale : la projection, i.e. projeter un point sur la surface implicite définie par un ensemble de points

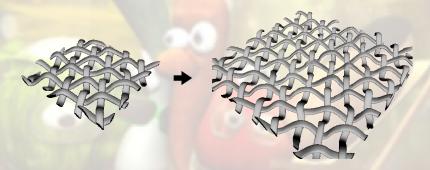
- MCM = moindres carrés mobiles
- Opération fondamentale : la projection, i.e. projeter un point sur la surface implicite définie par un ensemble de points
- La surface est l'ensemble des points se projetant sur eux-mêmes

- MCM = moindres carrés mobiles
- Opération fondamentale : la projection, i.e. projeter un point sur la surface implicite définie par un ensemble de points
- La surface est l'ensemble des points se projetant sur eux-mêmes
- La surface est lisse



Plan de la présentation

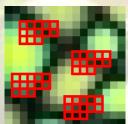
- 1) Introduction
- 2 Les points
- 3 Génération de textures géométriques
 - Algorithme
 Résultats
 Discussions et extensions
- 4 Représentation multirésolution
- 5) Conclusion entraval attuturs



Génération de textures géométriques

Génération de textures géométriques

VMV 2006


Génération de textures (2D)

Génération de textures (2D)

Échantillon

Génération

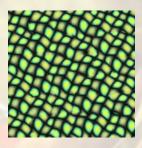
- paramétrique
- par texels
 - multirésolution
 - recherche de voisinage
 - optimisation
- par patch
- analyse structurale

Génération de textures (2D)

Échantillon

Génération

- paramétrique
- par texels
 - multirésolution
 - recherche de voisinage
 - optimisation
- par patch
- analyse structurale



- mélange en dégradé
- programmation dynamique
- coupe de graphes

- tuiles de Wang
- remplissage hybride
- déformation

- Meilleure préservation des structures
- Moins de divergence

Travaux antérieurs

- Cartes d'élévation, images de géométrie [Wei-Levoy 01] [Ying+ 01] [Lai+ 05] [Nguyen+ 05]
- Génération volumétrique [Bhat+ 04] [Lagae+ 05]
- Manipulation de surfaces

```
[Sharf+ 04] [Park+ 05]
[Zelinka-Garland 06] [Zhou+ 06]
```


Travaux antérieurs

- Cartes d'élévation, images de géométrie [Wei-Levoy 01] [Ying+ 01] [Lai+ 05] [Nguyen+ 05]
- Génération volumétrique [Bhat+ 04] [Lagae+ 05]
- Manipulation de surfaces

```
Sharf+ 04] [Park+ 05]
[Zelinka-Garland 06] [Zhou+ 06]
```

(maillages)

Travaux antérieurs

- Cartes d'élévation, images de géométrie [Wei-Levoy 01] [Ying+ 01] [Lai+ 05] [Nguyen+ 05]
- Génération volumétrique [Bhat+ 04] [Lagae+ 05]
- Manipulation de surfaces [Sharf+ 04] [Park+ 05] [VMV 2006] (points)

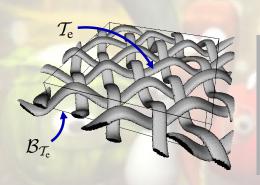
[Zelinka-Garland 06] [Zhou+ 06]

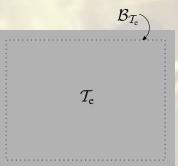
Plan de la présentation

- 1) Introduction
- 2 Les points
- 3 Génération de textures géométriques Algorithme
 - Discussions et extensions
- 4 Représentation multirésolution
- 5 Conclusion et la avaix tuturs

- Ensembles de points
 - → couper-coller trivial (vs. maillages)
- Champs de distance pour la comparaison
 - → métrique triviale et efficace à évaluer
- Génération par patch
 - → structures, divergence

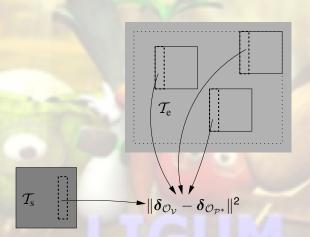
- Ensembles de points
 - → couper-coller trivial (vs. maillages)
- Champs de distance pour la comparaison
 - → métrique triviale et efficace à évaluer
- Génération par patch
 - → structures, divergence

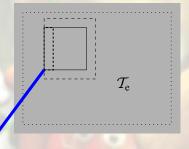

- Ensembles de points
 - → couper-coller trivial (vs. maillages)
- Champs de distance pour la comparaison
 - → métrique triviale et efficace à évaluer
- Génération par patch
 - → structures, divergence



- Ensembles de points
 - → couper-coller trivial (vs. maillages)
- Champs de distance pour la comparaison
 - → métrique triviale et efficace à évaluer
- Génération par patch
 - → structures, divergence

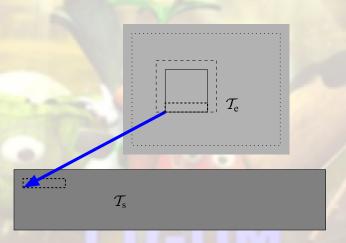
Représentation d'une texture



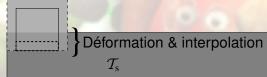


 \mathcal{T}_{s}

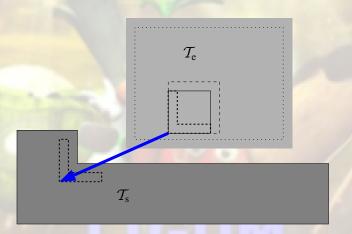
Déformation & interpolation



 \mathcal{T}_{s}



 \mathcal{T}_{s}



 \mathcal{T}_{s}

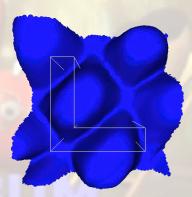


Algorithme

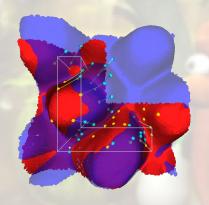
Déformation & interpolation

Algorithme

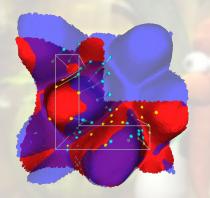
 \mathcal{T}_{s}

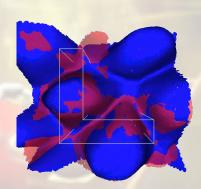


Déformation

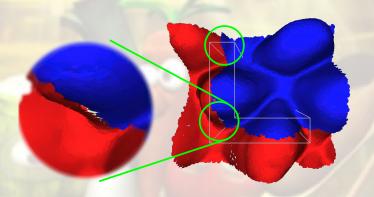

Voisinage

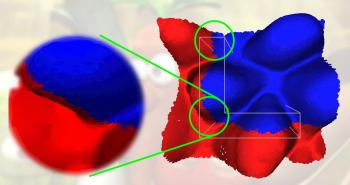
Patch sélectionnée




Déformation

- Interpolation par splinesen plaques minces[Wu-Yu 04]
- Doit être automatique
- Algorithme de sélection vorace sur une estimation du coût d'un pairage


Déformation


Interpolation

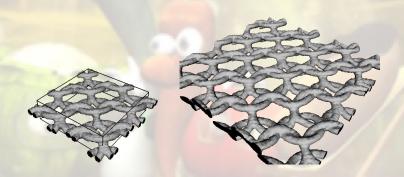
La déformation n'est pas parfaite

Interpolation

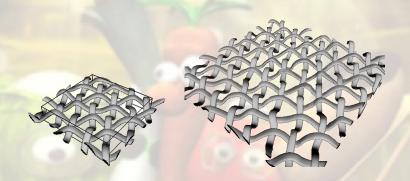
Correction avec une interpolation graduelle avec la projection

Plan de la présentation

- 1) Introduction
- 2 Les points
- 3 Génération de textures géométriques
 - Algorithme
 - Résultats
 - Discussions et extensions
- 4 Représentation multirésolution
- 5) Conclusion et travai e tuturs


Carte d'élévation

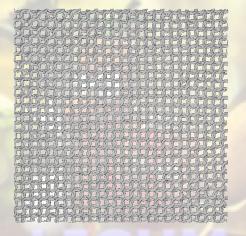
 $33194 \rightarrow 87101$ points, 30.7 sec.


Cotte de mailles

71454 → 197282 points, 38 sec.

Treillis

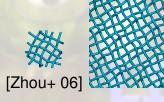
43592 → 126139 points, 28 sec.


Fleurs

 $37473 \rightarrow 68290$ points, 36 sec.

Grande cotte de mailles

71454 → 2947085 points, 710.8 sec.


Statistiques

	Nb. points		Temps de génération (sec.)								
	\mathcal{T}_{e}	\mathcal{T}_{s}	Rech.	Déf.	Int.	Autre	Total				
Carte d'élévation	33194	87101	6.7	11.2	10.8	2.0	30.7				
Cotte de mailles	71454	197282	8.5	7.3	18.4	3.8	38.0				
(grande)	71454	2947085	147.5	201.3	316.2	45.8	710.8				
Treillis	43592	126139	5.7	7.7	12.0	2.6	28.0				
Fleurs	37473	68290	11.0	14.9	7.4	2.7	36.0				

Statistiques

	Nb.	points	Temps de génération (sec.)					
	\mathcal{T}_{e}	\mathcal{T}_{s}	Rech.	Déf.	Int.	Autre	Total	
Carte d'élévation	33194	87101	6.7	11.2	10.8	2.0	30.7	
Cotte de mailles	71454	197282	8.5	7.3	18.4	3.8	38.0	
(grande)	71454	2947085	147.5	201.3	316.2	45.8	710.8	
Treillis	43592	126139	5.7	7.7	12.0	2.6	28.0	
Fleurs	37473	68290	11.0	14.9	7.4	2.7	36.0	

7 704 37 838 sommets 15 168 74 792 faces

180 sec.

Plan de la présentation

- 1) Introduction
- 2 Les points
- 3 Génération de textures géométriques
 - Algorithme Résultats
 - Discussions et extensions
- 4 Représentation multirésolution
- 5) Conclusion et travai e tuturs

Discussion

- Génération par patch avec ensembles de points
- Efficace (relativement)
- Topologie arbitraire

Discussion

- Génération par patch avec ensembles de points
- Efficace (relativement)
- Topologie arbitraire
- Limité aux champs aléatoires de Markov (idem pour tous)
- Pas de caractéristiques abruptes

Coupe optimale

- Coupe optimale
- Génération adaptée à la surface d'application [Zhou+ 06]

- Coupe optimale
- Génération adaptée à la surface d'application [Zhou+ 06]
- Études plus approfondies sur les paramètres

- Coupe optimale
- Génération adaptée à la surface d'application [Zhou+ 06]
- Études plus approfondies sur les paramètres
- Équivalence d'une génération par texel?

Plan de la présentation

- 1) Introduction
- Les points
- 3 Cénération de textures géométriques
- 4 Représentation multirésolution
 - Decomposition
 - Reconstruction
 - Résultats
 - Discussion et extension
- 5 Conclusion et travaux futurs

Édition

Décomposition multirésolution pour aider l'édition

Édition

Décomposition multirésolution pour aider l'édition

(maillages ✓ : [Eck+ 95] [Lounsbery+ 97] [Zorin+ 97] [Kobbelt+ 98] [Guskov+ 99] [Lee+ 00] [Guskov+ 00] [Hubeli-Gross 01] ...)

Édition

Décomposition multirésolution pour aider l'édition

Point?

Travaux antérieurs

 "Multirésolution" pour les points : surtout des structures hiérarchiques axées pour le rendu [Pfister+ 00] [Rusinkiewicz+ 00] [Botsch+ 02] [Pajarola 03] [Park+ 04] [Pajarola+ 05] [Wu+ 05] ...

Travaux antérieurs

- Ensembles de points progressifs
 [Fleishman+ 03] [Singh-Narayanna 06]
- Éventails de triangles
 [Linsen-Prautzsch 03]
- Surfaces multiéchelles
 [Pauly+ 06] [Zhang+ 05]

Travaux antérieurs

- Ensembles de points progressifs
 [Fleishman+ 03] [Singh-Narayanna 06]
- Éventails de triangles
 [Linsen-Prautzsch 03]
- Surfaces multiéchelles
 [Pauly+ 06] [Zhang+ 05] + [Boubekeur+ 07]

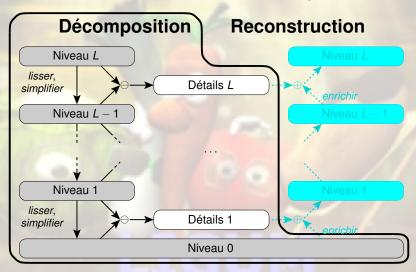
Réduction du nombre de points

Réduction du nombre de points

GI 2008

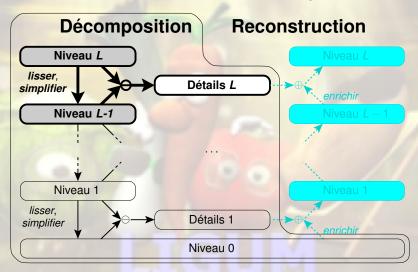
Aperçu

Décomposition Reconstruction Niveau L Niveau L lisser. Détails L simplifier enrichir Niveau L - 1 Niveau L - 1 Niveau 1 Niveau 1 lisser, Détails 1 simplifier · enrichir Niveau 0

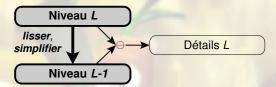


Plan de la présentation

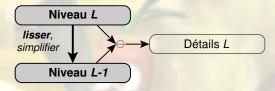
- 1 Introduction
- Les points
- 3 Cénération de textures géométriques
- 4 Représentation multirésolution Décomposition
 - Résultats
 Discussion et extension
 - 5 Conclusion et travaux futurs



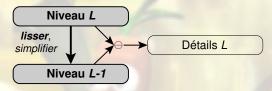
Décomposition

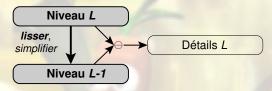


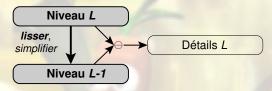
Décomposition

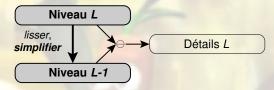


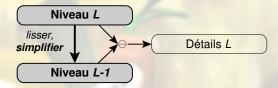
Génération du niveau grossier



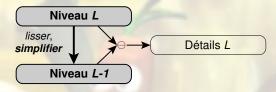

Surfaces MCM ⇒ lissage par projection MCM


- Surfaces MCM ⇒ lissage par projection MCM
- Simplifier avant la projection

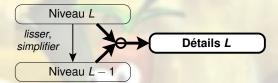

- Surfaces MCM ⇒ lissage par projection MCM
- Simplifier avant la projection
- Similaire à [Pauly+ 06], mais avec un taux de simplification constant


- Surfaces MCM ⇒ lissage par projection MCM
- Simplifier avant la projection
- Similaire à [Pauly+ 06], mais avec un taux de simplification constant

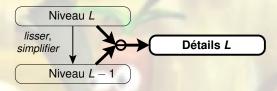
Simplification : même qu'au lissage

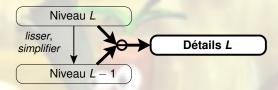


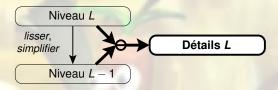
- Simplification : même qu'au lissage
- Mais: <



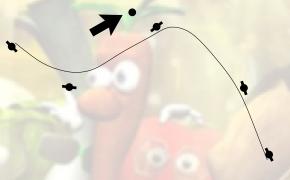
- Simplification : même qu'au lissage
- Mais : 🗐 👵
- Ajout d'un raffinement supplémentaire utilisant des heuristiques basées sur l'analyse des voisinages-k




 Difficulté principale : cohérence entre encodage et enrichissement d'échantillonnage


- Difficulté principale : cohérence entre encodage et enrichissement d'échantillonnage
- Les maillages profitent de l'information de connectivité explicite

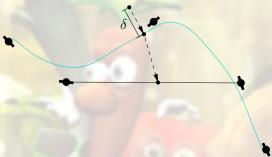
- Difficulté principale : cohérence entre encodage et enrichissement d'échantillonnage
- Les maillages profitent de l'information de connectivité explicite
- [Linsen-Prautzsch 03]: stockage du plein voisinage-k

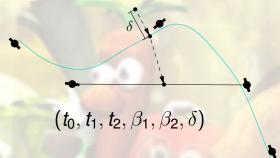

- Difficulté principale : cohérence entre encodage et enrichissement d'échantillonnage
- Les maillages profitent de l'information de connectivité explicite
- [Linsen-Prautzsch 03] : stockage du plein voisinage-k
- Reformulation intrinsèque [Boubekeur+ 07]

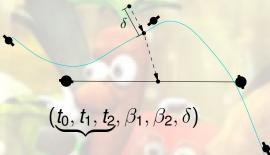
Point du niveau L

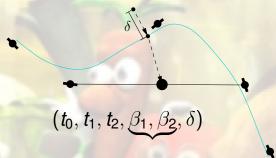


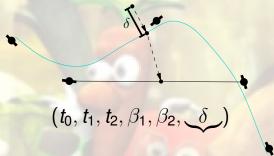
• Projeter sur le niveau L-1 δ = information du détail géométrique

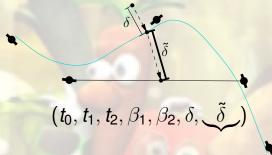



- 2 Trouver un triangle circonscrivant


- Trouver un triangle circonscrivant
- Reformuler la projection relativement au triangle

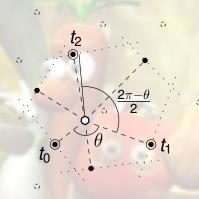

- Trouver un triangle circonscrivant
- Reformuler la projection relativement au triangle

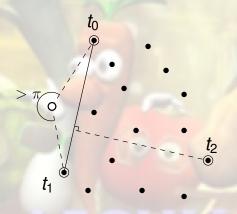

- Trouver un triangle circonscrivant
- Reformuler la projection relativement au triangle


- Trouver un triangle circonscrivant
- Reformuler la projection relativement au triangle

- Trouver un triangle circonscrivant
- Reformuler la projection relativement au triangle

- Trouver un triangle circonscrivant
- Reformuler la projection relativement au triangle



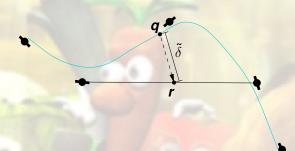




S

Reformulation

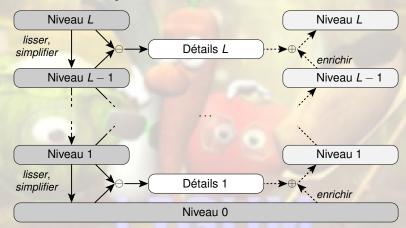
• Trouver un point \mathbf{r} sur le triangle tel que $\mathbf{q} = \mathbf{r} + \tilde{\delta} \mathbf{n}(\mathbf{r})$ pour $\tilde{\delta}$ quelconque $(\mathbf{n}(\mathbf{r}) = \text{estimation de normale en } \mathbf{r})$


Reformulation

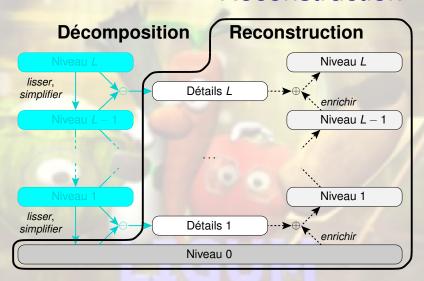
- Trouver un point r sur le triangle tel que $\mathbf{q} = \mathbf{r} + \tilde{\delta} \mathbf{n}(\mathbf{r})$ pour $\tilde{\delta}$ quelconque
- Procédure iterative (détails épargnés)

Reformulation

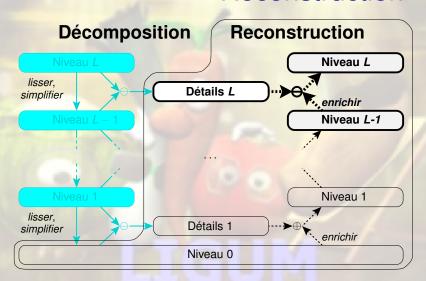
- Trouver un point r sur le triangle tel que $\mathbf{q} = \mathbf{r} + \tilde{\delta} \mathbf{n}(\mathbf{r})$ pour $\tilde{\delta}$ quelconque
- Procédure iterative
- β_1, β_2 sont calculés à partir de r


Plan de la présentation

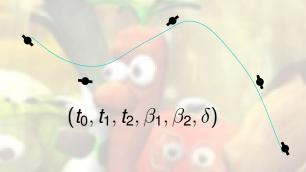
- 1) Introduction
- Les points
- 3 Cénération de textures géométriques
- 4 Représentation multirésolution
 - Décomposition
 - Reconstruction
 - Résultats
 - Discussion et extension
- 5 Conclusion et travaux futurs


Reconstruction

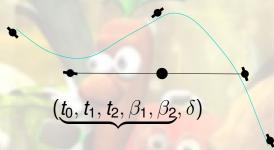
Décomposition Reconstruction



Reconstruction

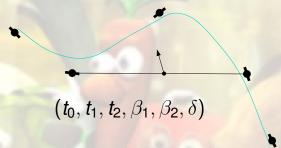


Reconstruction

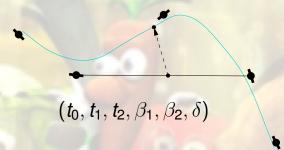


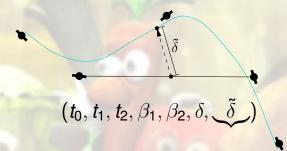
Procédure de reconstruction

LIGUM


Procédure de reconstruction

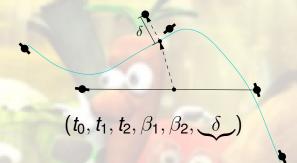
Calculer la position de base




- Calculer la position de base
- 2 Estimer la normale à la position de base



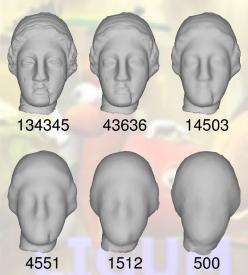
- Calculer la position de base
- Estimer la normale à la position de base
- Calculer l'intersection entre le rayon et la surface



- Calculer la position de base
- Estimer la normale à la position de base
- 3 Calculer l'intersection entre le rayon et la surface (estimation rapide avec $\tilde{\delta}$)

- Calculer la position de base
- Estimer la normale à la position de base
- 3 Calculer l'intersection entre le rayon et la surface
- Estimer la normale à l'intersection

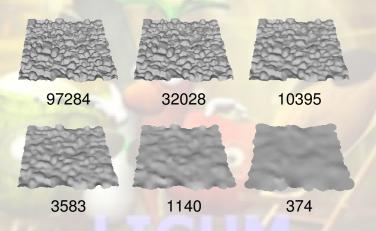
- Estimer la normale à la position de base
- 3 Calculer l'intersection entre le rayon et la surface
- Estimer la normale à l'intersection
- **5** Déplacer par δ

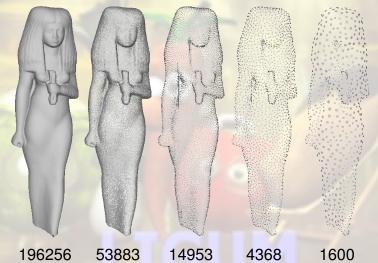


Plan de la présentation

- 1) Introduction
- Les points
- 3 Cénération de textures géométriques
- 4 Représentation multirésolution
 - Reconstruction
 - Résultats
 - Discussion et extension
- 5 Conclusion et travaix futurs

Hygie


Tatou



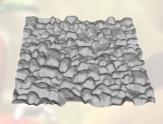
Bosses

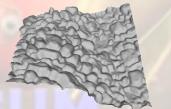
Statistiques

	Décomposition	Reconstruction
Hygie	27.4 / 60.1	7.6 / 12.2
Tatou	137.4 / —	9.5 / —
Bosses	17.9 / 36.7	5.0 / 6.1
Isis	39.9 / 67.3	10.5 / 14.4

Nous

I RALLY X


Nous


(Bauly x

Déformation

Accentuation et lissage des détails

Plan de la présentation

- 1) Introduction
- Les points
- 3 Cénération de textures géométriques
- 4 Représentation multirésolution
 - Reconstruction
 - Résultats
 - Discussion et extension
- 5 Conclusion et travaux futurs



- Surfaces représentées par points sont flexibles avec des structures de données simples
- Absence d'information de connectivité peut nuire
- Représentation multirésolution par points
 - Vérification de conditions lors de la simplification
 - Détails avec information de connectivité partielle

 Plus économe en mémoire (pour un nombre de niveau suffisamment grand)

- Plus économe en mémoire (pour un nombre de niveau suffisamment grand)
- Traitement d'édition plus rapide (niveaux grossiers), mais les temps de reconstruction nuisent à l'interactivité

- Plus économe en mémoire (pour un nombre de niveau suffisamment grand)
- Traitement d'édition plus rapide (niveaux grossiers), mais les temps de reconstruction nuisent à l'interactivité. Mais...

Extensions

- ... il y a de l'espoir :
 - Multirésolution adaptative [Zorin+ 97]
 - Opérations grandement parallélisables (processeurs multi-cœurs, Cell, processeurs graphiques)
- Place pour améliorer la robustesse des heuristiques
- Encore plus économe?

Plan de la présentation

- 1 Introduction
- 2 Les points
- 3 Genération de textures géométriques
- 4 Representation multirésolution
- **5** Conclusion et travaux futurs

Conclusion

Importance des détails géométriques

Conclusion

- Importance des détails géométriques
- Avantages de la modélisation géométrique par points

Conclusion

- Importance des détails géométriques
- Avantages de la modélisation géométrique par points
- Deux contributions :
 - Génération de textures géométriques
 - 2 Représentation multirésolution

Travaux futurs

- Génération multirésolution
- Compression de textures géométriques [Wei+ 08]
- Génération contrôlable

Travaux futurs

- Génération multirésolution
- Compression de textures géométriques [Wei+ 08]
- Génération contrôlable
- Projection : goulot d'étranglement général
- MCM classique : estimation de plans

Travaux futurs

- Génération multirésolution
- Compression de textures géométriques [Wei+ 08]
- Génération contrôlable
- Projection : goulot d'étranglement général
- MCM classique : estimation de plans

[Guennebaud+ 07-08]

