
1: Introduction

Shading and shadows are determined by the characteristics of the surfaces, the

distance of the object with respect to the light source and the viewer, the orientation of the

object, and the properties of the light sources. These aspects are essential to the realism of

images. Most of the previous work has been involved in dealing with point and directional

light sources. However, many light sources are not well approximated by point and

directional lights. It becomes then important to render the effects of linear and area light

sources. Tanaka and Takahashi [1] extended the illumination model for linear light sources

of Poulin and Amanatides [2] for perfectly diffusing polygonal light sources (Lambertian

cosine distribution). They implemented the Phong shading model and then transformed the

light sources from Cartesian coordinate system to polar coordinate system to compute the

specular reflection. This allowed to produce more realistic scenes as polygonal lights can

more closely approximate real light sources.

In this report, section 2 reviews the previous work on illumination models,

including point, directional, linear, and area light sources. The area light source shading

model proposed by Tanaka and Takahashi [1] is studied and implemented in section 2.2.

Six resulting images are presented. In their paper, no shadows were computed. Section 3

presents related algorithms on shadow determination. An intuitive way to approximate the

shadowing effects of the linear or area light sources is to use many point light sources.

Unfortunately, aliasing problems arise when too few point light sources are used, or the

computation becomes too expensive when many point light sources are used. The perfect

solution consists in clipping the light by the projections of all the objects between the light

and the point to shade. The intensity is therefore calculated only for the visible parts of the

light. However, this process is fairly expensive and depends on the scene complexity.

1

After describing other shadowing algorithms presented in section 3 a new

algorithm based on shadow maps is proposed. The details are given in section 4. The

advantages and disadvantages of our approach are compared to other shadowing

algorithms, especially shadow map-based algorithms. Performance evaluation is discussed

in section 4.5. Section 5 concludes and discusses extensions of our work.

2: Shading Algorithms

We usually simplify the light reflection off a surface into two components : diffuse

and specular. The diffuse reflection at a certain point depends on the intensity of the light

source, the diffuse reflection coefficient of the surface, and the angle between the direction

of the light source to the point and the surface normal. The specular reflection, which can

be observed on shiny surfaces as highlights, depends on the intensity of the light source,

the specular reflection coefficient of the surface, and the angle between the direction of

reflection and the viewpoint direction. Both of them must be modeled to create realistic

images. (Figure 1) Phong [3], Blinn [4], and Cook and Torrance [5] proposed early

diffuse and specular shading models in computer graphics. Many more sophisticated

models have been presented since them.

2

2.1 Linear Light Sources

Verbeck and Greenberg [6] were among the first ones to treat extended (linear and

polygonal) light sources. They simply distributed a number of points on the light source,

replacing the behavior of the extended light by the sum of the contributions of every

points. The results are prone to aliasing and can be computationally expensive. Nishita et

al. [7] derived an analytical solution for the diffuse reflection of surfaces illuminated by

linear light sources. In their system, for faster computation, each linear light source is

classified into one of three categories with respect to the point to shade: parallel,

perpendicular, or skewed. Two analytical solutions are derived for the first and second

cases. For the skewed case, the integration of the diffuse reflection is done by

transforming the coordinate system and integrated numerically. However, the specular

reflection is only handled as a series of point light sources. Therefore, the same sampling

problems as above arise here.

Poulin and Amanatides [2] chose Phong's model to implement specular reflection

caused by linear light sources because of its relative accuracy with reality and the

possibility to compute and integrate it analytically at a moderately low cost. They deal

with specular reflection by transforming the light source to a coordinate system different

from the one used for diffuse reflection and by approximating the resulting integral with

Chebyshev polynomials.

2.2 Polygonal Light Sources

In [1], an analytic solution was presented to determine the diffuse and specular

components of surface reflection when illuminated by an area light source. The solution

assumes a Lambertian emitting polygonal light source and integrates Phong's reflection.

3

The model in Nishita and Nakamae [8] is used to integrate the diffuse term. For

the specular term, the equation in Phong's model is used because the specular reflectivity is

rotationally symmetrical to the mirror reflection vector of the viewer's direction (Vector

Vr). To simplify the specular reflection equation, the Cartesian coordinate system is

transformed to the polar system and Vector Vr is chosen as the new Z axis. A unit sphere

whose origin is the point to shade and of unit radius is constructed. Then the polygonal

light source is projected to this sphere and triangulated by great circles to determine the

area of integration. The coordinate system is rotated around the Z axis to obtain the values

of angles for integrating areas in the polar coordinate system. Finally, the integrand is

approximated by using Chebyshev polynomials which are integrated analytically. If regular

samples are taken on the curve, Chebyshev approximation is assured to return the best

(min-max) polynomial for a given polynomial degree.

This approach produces both diffuse and specular reflections and it can generate

images that are more photorealistic than previous methods. Figures 2, 3, 4, and 5 are

images generated by this method. Figure 2 (a) and (b) shows an office scene illuminated by

an area light source from different view points. Highlight positions changed because they

depends on the angle between the light source and the view point. Figure 3 and figure 4

show how the sharpness of specularly reflected light is controlled by the surface

roughness. With a higher coefficient, the surface becomes smoother (less rough) and

therefore the shape of the pentagonal light and star-shaped light can be observed from the

image. Figure 5 shows a scene with three objects. The surface roughness and view angle

are changed to demonstrate the result. These experimental results show that specular

reflection is essential for photorealistic rendering.

4

3: Shadowing Algorithms

All the images presented in Section 2.2 (Figure 2, and 5) have no shadows and all

objects seems to float in the air. Shadows are essential in rendering realistic images.

Furthermore, shadows provide effective information indicating the positional relationships,

shapes, and surface characteristics of objects. This can provide the observers with a more

accurate comprehension in complex spatial environments. Moreover, the approximate

location, intensity, shape, and size of light sources can be obtained from the correct

rendered scenes with shadows. For point and directional light sources, shadows are simply

determined by the binary visibility of the light. A point occluded by opaque objects is in

umbra; otherwise it is completely illuminated. Hard shadow algorithms deal with the

determination of in-umbra or in-light regions. For linear and area light sources, full

occlusion from the light still produces umbra regions, but partial occlusion from the light

creates penumbra regions. Soft shadow algorithms must calculate the fraction of opaque

occlusion, not just the binary decision as for hard shadow algorithms. As we will see in the

next sections, determining this fraction requires much more computationally expensive

algorithms.

3.1 Hard Shadows

Ray tracing can be used for the surface visibility calculation. To calculate shadows

in this context, an additional ray is shot from the intersection point to the light source. If

the shadow ray intersects any object along the way, the intersection point is in shadow.

The main advantage of ray tracing is that it can handle any ray type, whether primary,

reflected, and refracted rays in an identical manner. Ray tracing can be extended

recursively for global illumination computation.

9

Crow [9] introduced the shadow volume algorithm to generate umbrae. A shadow

volume is defined by the light source and an object, and is bounded by a set of invisible

shadow polygons. Any point within a shadow volume is in shadow of the light source. To

determine if a point is in shadow, we count the number of front-facing (+1) and back-

facing (-1) polygons between the eye and the point. A result greater than zero means the

point is in shadow. The counter for the eye itself must also be computed, but only once

per image.

Area subdivision shadow detection [10][11] is based on a two-pass hidden surface

algorithm. The first pass computes an image from the view point of the light source. All

surfaces are then divided into illuminated and in shadow. The second pass applies visibility

determination from the eye. The results are combined to determine the pieces of each

visible part of a polygon and the scene is scan-converted. The storage complexity depends

on the spatial complexity of the scene with respect to the light sources. A robust clipping

algorithm is required for dealing with concave polygons and polygons with holes.

The last hard shadow algorithm discussed here is the shadow map method [12]. It

will be adapted later for our approach for linear light shadowing calculation. It uses image

-precision calculations and supports primitives other than polygons. While a Z-buffer

depth map stores the distances to the viewer for determining the surface visibility problem,

the shadow map stores the distances with respect to the light for determining if a point is

visible from the light source. Once computed, determining if a point is in shadow or not

requires to identify the shadow map pixel it projects to and compare the stored distance to

the distance of this point to the light. It can however have aliasing problems due to

discretized map cells and the orientation of shadow map.

10

3.2 Soft Shadows

Soft shadow algorithms must determine the visible part of the light from the point

to shade. For linear light sources, the light clipping algorithm must construct a triangle

with the two end-points of the light and the point where illumination is being calculated. It

then must test each object to check whether it intersects the triangle. If it does, the

coordinates of the intersection points are projected on the linear light. The occluded part

of the light is removed. Although this algorithm yields exact light segments, the cost can

be significant as many objects have to be tested with respect to the plane supporting the

light triangle. Nishita et al. [7] preprocess the scene. They project the contours of objects

as planes from both end-points of the light. This way, two shadow polygons are generated.

Then, their algorithm computes the corresponding convex hull. If a point is inside the

convex hull, light clipping determines the visible parts of the light by projecting only the

polygons associated with this convex hull. Its cost is high when the scene is complex and

when the objects are rugged, because each object involves generating convex hulls of

every other object.

Space subdivisions can reduce the number of objects subject to light clipping.

Poulin and Amanatides [2] used 3-D scan conversion of voxels. They also proposed a

linear light buffer scheme where a cylindrical buffer is oriented along the linear light. The

3-D space is split into sectors (Figure 6). In both cases, a list of object candidates to

occlusion is stored within each spatial element. Tanaka and Takahashi [13] used a

shadowing algorithm for linear light sources based on cylindrical buffer. Besides sectors,

the band which is a subspace bounded by a pair of flaps rotating in the plan with the linear

light source is used to subdivide the space again. (Figure 7) Sectors and bands together

segment 3-D space into many subspaces called sections. Each cell of the buffer stores a list

11

of objects that lie within or intersect the section mapped to the cell. To compute the

shadow of a point, we must first find its corresponding cell. All the objects stored in that

cell are candidate objects to occlude the point. Five bounding-volumes formulas are

applied to those objects to reduce the number of candidates. To optimize for polygons,

they are subdivided into trapezia and triangles cut by a cylindrical scan-conversion

algorithm before they are stored in the buffer. (Figure 8) This speeds up the computation

of light clipping. The overall improvement makes the technique achieve over 10 times

faster than the linear light buffer algorithm. This method can also be adapted to handle

curved objects.

13

4: A New Approach for Computing the Shadows from

Linear Light Sources

4.1 Review

In this section, we present techniques based on shadow maps to compute shadows

of extended light sources. Shadow map has always been a powerful rendering technique

for computing shadows from point and directional light sources. A shadow map is like an

image of the scene, but viewed from the light source instead of from the viewer. The depth

of the first visible point is stored at each pixel of the shadow map. Whether a point is

illuminated or not is decided by comparing its distance to the light source with the value in

the same direction kept in the shadow map pixel. If the value in the shadow map is

smaller, there is at least one object lying between the point and the light source, therefore

this point is in shadow. If the two values are equal, the point is then on the first object

which the light ray meets in this direction, thus it is illuminated. Shadow map is an image-

precision algorithm, and it can generate shadows for any object that can be scan-

converted, including curved surfaces. Moreover, the computation time is linear in the

number of pixels in the image produced. Memory required for shadow maps is known and

fixed. Construction of shadow maps is similar to visibility determination in an image

without the extra computation required by shadings, reflections, and refractions. Access to

shadow maps is constant for any 3-D point. However, it is prone to the same aliasing

problems as image-precision algorithms and memory required by each shadow map can be

large if fine resolution is needed to reduce aliasing.

Shapiro and Badler [14] use many point light sources distributed randomly or

evenly to approximate linear light sources. In their algorithm, a sufficient number of points

14

should be generated so that the addition of one more point to the set of point sources will

not significantly affect the shading. The amount of light reaching any point in the

penumbra region corresponds to the addition of the contributions of all visible point lights.

Certain restrictions exist on the choice of objects that can be successfully rendered.

Objects must be a union of convex, closed polyhedral pieces. Polygon faces must be

consistently ordered. This algorithm requires considerable amount of time and space.

Chen and Williams [15] apply their view interpolation technique to shadow maps

in order to generate soft shadows for linear light sources. A shadow map is computed first

for each of the two end-points of the light source using a conventional rendering method.

The shadow map for an in-between point on the linear source is interpolated from the two

end-points shadow maps using a morphing method. Then the standard shadow map

algorithm mentioned before is used to compute the visibility for in-between light positions.

The process is repeated to generate more in-between points until a desired interval is

reached. The resulting shadow images are combined to create the soft shadows for the

linear light source.

Hole problem arises when an object is invisible from the two end-points, but

becomes visible from an in-between point. The shadows of such objects are missed

because the only available information can be derived only from the two shadow map. One

way to solve this problem is to use multiple computed (not interpolated) shadow maps to

reduce the lost of information, but at an increased space and time cost. Max and Ohsaki

[16] present a method for reconstructing an image from precomputed Z-buffer views.

They store multiple Z levels at each pixel, allowing hidden objects to be reconstructed

from even a single view. This solves in part most of the hole problems.

15

Like the Z-buffer visible-surface algorithm, the shadow map algorithm is prone to

aliasing; therefore, percentage closer filtering [17] is used to antialias the shadows for each

image and to create soft shadow boundaries that resemble penumbrae. This is based on the

fact that for an extended light source, a point to shade should project onto a region of the

shadow map rather than a single pixel. The technique also reverses the order of the

filtering and comparison steps in texture map filtering but applied to the shadow map. The

Z-values of the shadow map across the entire region are first compared against the depth

of the surface being rendered. This simple transformation converts the depth map under

the region into a binary map, which is then filtered to give the proportion of the region in

shadow. The resulting shadows have soft antialised edges. However, this algorithm does

not compute exact penumbrae. An example is given in Figure 9. Consider a scene with

either Object 1 or Object 2. In both cases, they have the same projection areas in the

shadow map but result in the same penumbrae boundaries. In fact, the penumbrae should

also depend on the relative distances between objects and light source which percentage

closer filtering does not consider.

16

4.2 Implementation Theory

Our approach to generate shadows for linear light sources is based on the shadow

map technique. A multiple-level shadow map is constructed for each end of the linear

light. Object information is derived by comparing the two end-point shadow maps and is

then stored in polygonal shadow map. During rendering, the visible light segments for a

point to shade are calculated from the objects information. Integrating over all visible light

segments gives the light intensity at the point which is reflected towards the viewer.

First, a given resolution shadow map is associated with each end-point (i.e. end 0

and end 1) of the light. The shadow maps are aligned with the linear light source. They are

numbered as shadow map 0 and shadow map 1. (Figure 10) Instead of using a standard 2-

D floating point array as the data structure of the shadow map, it is augmented by a link

list in each cell. Each cell stores the visibility information for a direction from its end of the

light. When a ray is shot from the end-point of the light source, all intersection points with

objects are kept in depth order in the corresponding cell. (Figure 11) The reason to use

multiple-level shadow maps is to keep all information of objects which are hidden behind

other objects and thus reduce the hole problem.

Because the two shadow maps have identical resolutions and orientations, two

rows with same index refer to the same shadow map scan-line. Therefore, they also refer

to the same 3-D plane. The shadow maps are aligned with the linear light source; each row

in the shadow maps is also aligned with the light source. If a cell has n elements and the

next cell in the same row has n+1 elements, this means the ray from the light source

through the next cell direction has at least one more intersection point with some object.

The next cell is defined as an entering critical point because it is the first intersecting cell

with some object. If a cell has n+1 elements and the next cell in the same row has n

17

elements, this means the ray from the light source through the cell direction does not

intersect with some object any more. The cell is defined as a leaving critical point because

it is the last intersecting cell with some object. Scan-lines go toward the same direction as

the shadow map column index increases. The polygonal shadow map is formed by a 1-D

array which contains as many elements as the number of rows in the shadow maps. Each

row contains a link list of all entering and leaving critical points. (Figure 12)

Since polygonal shadow maps are derived from shadow maps, rows with the same

indices also refer to the same scan-line position. To compute the correct visibility for the

light, we create the following construction. Draw two parallel lines perpendicularly to the

light. These two lines have the same resolution in columns than the scan-lines they

represent . Draw the depth value of each column along the vertical axis. This creates a 3-D

coordinate system with two planar discontinuous curves representing the depth changes

along the same scan-line in the two shadow maps. (Figure 13). For each point appearing in

both shadow maps, we can connect its two 3-D positions in our construction. This forms a

discontinuous ruled surface. The discontinuities occur at the critical points; their segments

are called critical lines. For a position P in the scene, we must find its positions in shadow

map 0 and shadow map 1 and connect the two positions. If P’s line intersects any critical

lines, this means the visibility of the light source as seen from point P changes at those

intersection points.

An example to calculate the point Pa on the light where this visibility changes is

given in Figure 14. Let (i, a0) be the position of the entering critical point A in shadow

map 0 and (i, a1) be the corresponding position of critical point A in shadow map 1.

(i, p0) denotes the position of point P in shadow map 0 and (i, p1) denotes its position in

shadow map 1. The 2-D parallel projection along the depth of Figure 13 bottom is

redrawn at Figure 14 bottom with a 90 degree rotation. Critical line (i, a0)-(i, a1) and line

19

(i, p0)-(i, p1) intersect at (i, a’). If there were a shadow map at Pa, then the

corresponding position for entering critical point A would be at (i, a’). Pa can be derived

by similar triangle as a ration such that :

Pa end 0 Vector (end 0,end 1)
a0 p0

(a0 p0) p1 a1)
= + ×

−
− + −









(

The first visible light segment is from end 0 to Pa. The second intersection Pb with

critical line B can be derived with the same method. Pb to end 1 is the second visible light

segment from point P. To compute the proper shading, we then simply integrate the two

visible segments to obtain diffuse and specular intensity for point P.

4.3 An Example

Another example is now given to illustrate in more detailed the algorithm. (Figure

15) A linear light source, a triangle (blocker), and a plane on which the shadow will be

cast form the 3-D scene. First, we construct shadow map 0 for end 0 and shadow map 1

for end 1. We then find all critical points for the two polygonal shadow maps. Row i has

an entering critical point at (i, j0) and a leaving critical point at (i, k0) in shadow map 0,

and a entering critical point at (i, j1) and a leaving critical point at (i, k1) in shadow map 1.

To simplify the situation, representative points a, b, c, d, and e located on the

plane are aligned with the light source. Their respective positions are at (i, a0), (i, b0), (i,

c0), (i, d0) and (i, e0) in shadow map 0 and (i, a1), (i, b1), (i, c1), (i, d1) and (i, e1) in

shadow map 1.

We compute their corresponding positions in the two shadow maps and connect

each pair of points (i.e. a0-a1, b0-b1, c0-c1, d0-d1, and e0-e1) in the polygonal shadow

23

map. (Figure 16) Let us look at the segment with respect to the critical lines, (a0-a1) does

not intersect any critical line as it is located before the entering critical line (j0-j1).

Therefore, point a is visible from both end-points of the light. (b0-b1) intersects the

entering critical line (j0-j1) at point jb. It means there exists a position R on the light

source for which point b is mapped to (i, jb) in R's shadow map and for which point b is

on the entering boundary of the shadow. Therefore, the light segment from end 0 to R is

visible at point b (penumbra). R is calculated as :

Position R end 0 Vector(end0, end1)
b0 j0

(b0 j0) j1 b1)
= + ×

−
− + −









(

(c0-c1) has no intersection point with the two critical lines as it is located after the

entering critical line (j0-j1) and before the leaving critical line (k0-k1).Therefore, point c is

completely in shadow (umbra). The segment (d0-d1) intersects the leaving critical line (k0-

k1) at point kd. This means there is a position Q on the light source for which point d is

mapped to (i, kd) in Q's shadow map and point d is on the leaving boundary of the

shadow. Therefore, the light segment from Q to end 1 is visible to point d (penumbra).

And Q is obtained by :

Position Q end 0 Vector(end0, end1)
d0 k0

(d0 k0) k1 d1)
= + ×

−
− + −









(

(e0-e1) does not intersect any critical line so it is illuminated by the entire linear light.

4.4 Algorithm

The algorithm to compute the shadows is described as follows:

26

Step 1. Let s be a 3-D point in the scene. Find the position of s in shadow map 0, denote it

by (i, s0). Similarly, find the position of s in shadow map 1, denote it by (i, s1). Shadow

maps 0 and 1 include all objects here, that is they contain a list of intersection points for

each pixel. If any of i, s0, and s1 exceeds the range of the shadow maps, the illumination

must be computed with another technique such as shooting random rays towards the linear

light.

Step 2. Calculate the number n0 of critical points with index values smaller than s0 in row

i of polygonal shadow map 0. Calculate the number n1 of critical points with index values

smaller than s1 in row i of polygonal shadow map 1. (n0-n1) corresponds to the number

of intersection points between (s0-s1) and all critical lines in row i of the polygonal

shadow maps.

Step 3. If the line (s0-s1) intersects the critical line (i, j0)-(i, j1) at js, the light position

where s is mapped to (i, js) is computed as:

end 0 Vector(end0, end1)
s0 j0

(s0 j0) j1 s1)
+ ×

−
− + −






(

Step 4. Pair all light positions found in Step 3. The visible segments of the light are the

segments after a leaving critical point and/or before an entering critical point.

Step 5. Integrate all the visible light segments to obtain the diffuse and specular intensity.

As the scene becomes more complicated, critical points in the two shadow maps

might have different orders. At this moment, care must be taken to properly pair the light

positions found in Step 3. Figure 17 shows such an example.

27

4.5 Evaluation

The resolution of the shadow maps influences the resulting image and the

performance very much. In this experiment, an SGI Indigo 2 is used. (The details are 1

150 MHz IP22 Processor, FPU: MIPS R4010, CPU: MIPS R4400, Main memory size: 64

Mbytes) For a 256*256 (pixels) image, when the resolution of the shadow map is less than

200*200, the aliasing problems are obvious. Each element in the shadow maps has three

fields: one double value to keep the distance to the light end, three double values to record

the intersection point coordinate, and a pointer to point to the next element. These add up

to 40 bytes. For a 500*500 resolution shadow map, if each cell has more than one

element, it requires at least 10 Mbytes. A linear light source has two such shadow maps.

Therefore, this technique requires a lot of memory when a high resolution is used.

The time in seconds to construct the various shadow maps with different

resolutions are shown in Table 1. Two 256*256 sample images are used here. (Figure 18)

The obvious advantage is the rendering time is independent from the scene complexity.

Figure 18(b) shows a multiple levels scene. The light source is not aligned with the objects

in Figure 19(a). The planes are slant in Figure (b). Figure 19(c) is a case where the order

of some critical points are crossed as explained in Figure 17. Figure 19(d) presents another

example.

29

The first image

resolution shadow map 0 shadow map 1 polygonal s. m. rendering

100 1.18 1.24 <0.0.1 18.00

200 4.98 4.96 0.03 17.26

300 11.14 11.33 0.06 18.52

400 19.99 21.16 0.12 19.11

500 31.58 33.82 0.17 19.23

The second image

resolution shadow map 0 shadow map 1 polygonal s. m. rendering

100 1.28 1.34 0.01 17.93

200 5.47 5.59 0.04 18.09

300 12.39 12.54 0.07 17.24

400 22.18 23.14 0.12 18.23

500 34.84 37.08 0.19 19.45

Table 1. The time costs for two sample images (in seconds)

30

5: Discussion

There is a tradeoff between time, space, and accuracy. The computational time and

required memory for constructing the shadow maps and polygonal shadow maps are

proportional to their resolutions. Aliasing problems arise when the shadow maps have

insufficient resolutions. However, after the shadow maps have been constructed, the

rendering time of shadows is linear in the resolution of the image and independent from

the scene complexity. Moreover, the rendering time is less than the light buffer algorithm.

Table 2 shows that the rendering time with a polygonal shadow map algorithm is about

68% of the rendering time of the light buffer algorithm. The resolution of the light buffer

has 36 sections.

Image Size Polygonal shadow map Linear light buffer

100*100 2.6 3.06

200*200 9.95 11.7

300*300 22.48 26.4

400*400 40.18 49.39

500*500 68.45 77.72

1000*1000 248.87 292.31

 Table 2: The rendering time of two algorithms (The second image of Figure 17)

The shadow map memory requirement can be reduced greatly by storing only the

distance value in each element. The intersection point coordinate could be recomputed on

demand from the distance and shadow map index vectors. Besides, the distance value

could be saved as integer like for Z-buffer. This can reduce the size from currently 40

bytes per shadow map element down to 4 bytes.

33

There are some problems resulting from the resolution and sampling problem.

Although two shadow maps have the same resolution, two scan-lines may still have

differences. Because all critical points are found by sampling so the positional difference

may cause some edges or corners of objects to appear in one shadow map but not in the

other. This brings up problems in matching information when constructing the polygonal

shadow map. Moreover, determining the best resolution for the shadow map is still based

on trial-and-error experiment. The quality resulting with a given resolution can only be

known after the rendering. Worst, even though a given resolution would give good

results, another higher resolution may show other artifacts.

Resolution and sampling problem also affect how close two intersection points can

be considered as identical. A larger error range should be allowed at a lower resolution.

There are still some other limitations. With this technique, non-polygonal objects are

allowed but curved surfaces cannot be rendered. When a surface with large curvature is

rendered, rays with the same row indices from the light ends hardly have the same

intersection points. If there are no common critical points, the polygonal shadow map

cannot be derived. (Figure 20) Therefore, this technique does not apply. The possible

solution to render curved surfaces is to combine view interpolation technique [18]. When

a very long linear light source is used, the two end shadow maps may not see all the same

objects. In this case, our technique does not apply.

Comparing to view interpolation, this technique uses a multiple-level shadow map

data structure. This avoids the problems with holes, but consume more space and time.

Rays from the light source will stop only when they do not intersect any more objects. All

intersection points along the way are recorded in shadow maps. No object is therefore

missed. This technique solves the hole problem. An example is shown in Figure 21.

34

Scan-line algorithm [18] [19] [20] [21] offers an attractive alternative to improve

this technique. We can construct each row in the two shadow maps using the scan-line

algorithm so p critical points can be derived accurately because scan-lines are not

discretized along the line direction. This will greatly reduce the sampling problem.

Furthermore, the same rows in two shadow maps should be built simultaneously to obtain

the polygonal shadow map. When enough information is kept in the polygonal shadow

map, shadow maps are not needed any more. This will reduce the memory requirement

tremendously.

Overall speaking, this polygonal shadow map technique has a potential to generate

accurate soft shadows efficiently. Especially, in some applications such as the background

of the animation where the shadow maps only need to be computed once before rendering.

Only the moving objects in a 3-D scene need to be recomputed in each shadow map

(assuming fixed light sources). However, the conventional method to build the shadow

maps should be improved to get correct and more accurate information. Scan-line

algorithm can be expected to be the key of improvement.

35

References

[1] Toshimitsu Tanaka and Tokiichiro Takahashi, "Shading with area light sources," In

W. Purgathofer, editor, Eurographics 1991, North-Holland, Sept. 1991, pages 235-246.

[2] Pierre Poulin and John Amanatides, "Shading and shadowing with linear light

sources," In C. E. Vandoni and D. A. Duce, editors, Eurographics 1990, North-Holland,

Sept. 1990, pages 377-386.

[3] B. Phong, "Illumination for computer generated pictures," Communications of the

ACM, Vol. 18, No. 6, June 1975, pages 311-317.

[4] J. Blinn, "Models of light reflection for computer synthesized pictures," SIGGRAPH

1977, Vol. 11, No. 2, July 1977, pages 192-198.

[5] R. Cook and K. Torrance, "A reflectance model for computer graphics," SIGGRAPH

1981, Vol. 15, No. 3, Aug. 1981, pages 307-316.

[6] C. Verbeck and D. Greenberg, " A comprehensive light source description for

computer graphics," IEEE Computer Graphics and Applications Vol. 4, No. 7, 1984,

pages 66-75.

[7] Tomoyuki Nishita, Isao Okamura, and Eihachiro Nakamae, "Shading models for

point and linear sources," ACM Transaction on Graphics, Vol. 4, No. 2, Apr. 1985, pages

124-146.

[8] T. Nishita and E. Nakamae, “Half-tone representation of 3-D objects illuminated by

area sources of polyhedron sources,” Proceedings IEEE Computer Software and

Application Conference, 1983, pages 237-242.

[9] F. C. Crow, "Shadow algorithms for computer graphics," SIGGRAPH 1977, Vol. 11,

No. 2, July 1977, pages 242-247.

[10] Tomoyuki Nishita and Eihachiro Nakamae, “An algorithm for half-tone

representation of three-dimensional objects,” Information Processing in Japan, Vol. 14,

1974, pages 93-99.

37

[11] P. Atherton, K. Weiler, and D. Greenberg, “Polygon shadow generation,”

SIGGRAPH 1978, Vol. 12, No. 3, Aug. 1978, pages 275-281.

[12] L. Williams, “Casting curved shadows on curved surfaces,” SIGGRAPH 1978, Vol.

12, No. 3, Aug. 1978, pages 270-274.

[13] Toshimitsu Tanaka and Tokiichiro Takahashi, "Fast shadowing algorithm for linear

light sources," Eurographics 1995, Vol. 14, No. 3, 1995, pages 205-216.

[14] Lynne Shapiro Brotman and Norman I. Badler, “Generating soft shadows with a

depth buffer algorithm,” IEEE Computer Graphics and Application, Vol. 4, No. 10, 1984,

pages 5-38.

[15] Shenchang Eric Chen and Lance Williams, “View interpolation for images synthesis,"

SIGGRAPH 1993, Vol. 24, No. 4, Aug. 1993, pages 279-288.

[16] Nelson Max and Keiichi Ohsaki, “Rendering trees from precomputed Z-buffer

views,”

[17] William T. Reeves, David H. Salesin, and Robert L. Cook, "Rendering antialiased

shadows with depth maps," SIGGRAPH 1987, Vol. 19, No. 3, July 1987, pages 283-291.

[18] C. Wylie, G. W. Romney, D. C. Evans, and A. C. Erdahl, “Half-tone perspective

Drawings by computer,” FJCC 67, Thompson books, Washington, DC, 1967, pages 49-

58.

[19] W. J. Bouknight, “A procedure for generation of three-dimensional half-tone

computer graphics presentations,” CACM, Vol. 13, No. 9, Sept. 1970, pages 527-236.

[20] W. J. Bouknight and K. C. Kelly, “A procedure for producing half-tone computer

graphics presentations with shadows and movable light sources,” SJCC, AFIPS Press,

Montvale, NJ, 1970, pages 1-10.

[21] G. S. Watkins, “ A real time visible surface algorithm,” Ph. D. Thesis, Technical

report UTEC-CSc-70-101, NTIS AD-762 004, Computer Science Department, University

of Utah, Salt Lake City, UT, June 1970.

38

