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Resune

La modélisation géométrique est devenue un domaine aerehe et de développement
central a un vaste champ d’applications. Avec la fortessaice de la puissance de calcul des
ordinateurs, la simulation par ordinateur a commencaiarjan role important dans plusieurs
domaines de recherche reliés a la modélisation géayuét de I'ingénierie traditionnelle a la
simulation de chirurgie virtuelle.

A cause de I'usage de représentations de précision fiasdnce de robustesse numérique
en calcul scientifique est un phénomene bien connu endepaDe nombreuses approches
differentes ont été proposées pour résoudre ceg@nudlLes nombres en virgule flottante (IEEE
754/854) [PH98, Ove01] sont les substituts standards gsundmbres réels en calculs infor-
matisés, et la plupart des logiciels de modélisation tidesy incluant les systemes de concep-
tion assistée par ordinateur (CAO), sont basés sur désoehés de modélisation géométrique
qui fonctionnent en utilisant I'arithmétique en virguletfante. Mais cette derniére, appliquée
naivement, peut causer I'échec d’axiomes géométsiganalyse inverse d’erreub&ckward
error analysi9, maintenant standard, est un outil trés utile qui peutsraider a surmonter ce
probleme : elle nous permet de distinguer les algorithnugsen présence d’incertitudes dans
les données, ont produit des résultats aussi bien quepmangons espeérer.

L'impact de I'absence de robustesse dans le domaine de lalisatibn géométrique a été
ouvertement reconnu et il y a eu beaucoup d’'attention powliarer la fiabilité. D'un autre
coté, il existe plusieurs représentations en moddisayeométrique et, méme si chacune par-
vient a bien modéliser certaines propriétés, aucuaked' n'est suffisamment générale pour sa-
tisfaire tous les prérequis qui pourraient étre soubltad’'une représentation. Ainsi, pour des
problemes géomeétriques differents, I'absence destalsse tend a se manifester de differentes
facons et nous devons chercher la méthode appropriéecpague probleme : une solution

universelle n’existe pas.



Le but de cette thése est d’étudier le calcul informdieiéle en modélisation géométrique.

En particulier, nous abordons trois problemes reli@sratbustesse en modélisation géomeétrique :

1. L'arithmétique en virgule flottante pour des prebies de gonétrie informatique avec
des donges incertainesHloating-point arithmetic for computational-geometrplplems
with uncertain data
Dans ce travail, trois exemples (résolution de systertgzgidtions linéaires, le probleme
de I'enveloppe convexe planaire et un probleme d’objatel en trois dimensions) sont
présentés pour expliguer notre méthode pour acconatialyse inverse d’erreur. Aussi,
notre exposition illustre le fait que I'analyse inversercéeir ne prétend pas surmonter le
probleme de précision finie, et que des situations en g&werinformatique sont exacte-

ment paralleles a d’autres domaines informatiques.

2. Jonction fiable de surfaces pour des rated combinant maillages et surfaces pagdiigues
(Reliable joining of surfaces for combined mesh-surface etg)d
L'opérateur de jonction est un important opérateur pifmour les opérations booléennes.
Notre motivation pour ce travail est de chercher un algoréhde jonction fiable pour
les patchescombinant maillages et surfaces paramétriques, premaobresidération un
critere d’erreur sur la normale. Deux mesures d’'erreut definies pour guider la procédure
de jonction. En utilisant le theéoreme de I'extension deitiéy, la qualité de la jonction

calculée peut étre garantie.

3. Robustesse d'd@pations boakennes sur les meates de surface de subdivisidRdbustness
of boolean operations on subdivision-surface majlels
Les surfaces de subdivision sont de plus en plus fréequetrutiksees comme représentation
de rechange, a la place des surfaces B-splines ratioamalle uniformes coupéesifn-
med NURBS} pour la modélisation geéométrique di a leurs aveegagtrinseques. En
particulier, elles permettent d’'éviter le probleme difé de faire correspondre les bor-
dures degatchescoupées. Ce travail décrit un algorithme pour effectuesr apérations
booléennes, basé sur 'usage des maillages limites, ldacess ou les objets en entrée
sont définis en termes de maillages triangulaires et deidsioth de Loop. Ce travail se
concentre sur la robustesse, incluant des bornes d’eretutass méthodes numériques

pour la validationa posterioride la forme topologique.

Mots-clés:

calcul informatisé fiable, arithmétique en virgule floitie, robustesse, stabilité, analyse inverse



d’erreur, maillage de surfaces, jonction, opération benhe, modeles d’interrogation de forme,

erreur de vecteurs normaux, surfaces de subdivision.



Abstract

Geometric modeling has become a central area of researctiemetbpment that involves di-
verse applications. In fact, because of greatly increasetpater power, computer simulation
has started playing an important role in many geometricetiog related research domains,
from traditional engineering design to virtual surgery siation.

Due to the use of finite-precision representation, numkenigarobustness in scientific com-
puting is a well-known and widespread phenomenon. Sevéfateht approaches have been
proposed for this problem. Floating-point numbers (IEEE/854) [PH98, Ove01] are the
standard substitute for real numbers in computations, avst solid modelers, including CAD
(Computer Aided Design) systems, are based on geometrieling methods that operate us-
ing floating-point arithmetic. But naively applied floatipgint arithmetic can cause axioms of
geometry to fail. The now-standard backward error analgsasvery useful tool that can help to
overcome this problem: it permits us to distinguish thog@@hms which, given the presence
of uncertainties in the data, have done as well as we can loope f

The impact of nonrobustness in the domain of geometric nmagidlas been widely ac-
knowledged, and much attention has been paid to improviligbrigy. On the other hand,
many different geometric modeling representations eaist, although each succeeds in mod-
eling certain properties well, none of them is general ehdogatisfy all the requirements that
could be demanded of a representation. Therefore, forrdiffegeometric problems, nonro-
bustness tends to manifest itself in different ways, and wetreeek an appropriate method for
each problem: a universal solution does not exist.

The goal of this thesis is to study reliable computation feomgetric models. More specifi-

cally, we will address three related robustness problengedmetric modeling:

1. Floating-point arithmetic for computational-geometryoptems with uncertain data.

In this work three examples (solving linear equations, tlemar convex-hull problem

vi
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and a three-dimensional extruded-objects problem) amsepted to explain our method
of performing backward error analysis. Also, our exposititustrates the fact that back-
ward error analysis does not pretend to overcome the probidimite precision, and that

situations in computational geometry are exactly parédether computational areas.

2. Reliable joining of surfaces for combined mesh-surfaceatsod
The joining operator is a very important primitive operakmr Boolean operations. Our
motivation for this work is to seek a reliable joining alghrn for combined mesh-surface
patches, taking into account a normal error criterion. Tworemeasures are defined to
guide the joining procedure. By using the Whitney extensimorem, the quality of the

computed joining result can be guaranteed.

3. Robustness of Boolean operations on subdivision-surfamels
Subdivision surfaces are more and more frequently used akeanative representation,
in place of trimmed-NURBS, for geometric modeling due tairthetrinsic advantages.
In particular, they permit us to avoid the difficulties in laihg boundaries of trimmed
patches. This work describes an algorithm to perform Baotgzerations, based on the
use of limit meshes, in the case when input objects are defiméetms of triangular
meshes and Loop subdivision. The focus of the work is on ttalkss, including error
bounds and numerical methods for th@osteriorivalidation of topological form of the

produced result.

Keywords:
reliable computing, floating-point arithmetic, robustsestability, backward error analysis, sur-
face mesh, joining, Boolean operation, shape-interrogatiodels, normal-vector error, subdi-

vision surfaces.
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Preface

This Ph.D. thesis is a thesis by articles. The main part afitesis is composed of three accepted
(to appear), published, and submitted articles. To betesgmt each individual work, we choose
to retain for each paper the complete version as it is (wi)libethe respective publication.
This leads us to two referencing systems in the thesis. Far paper (Ch. 3, 4, 5), its own
references are provided together with the paper: eachereferentry is assigned a running
number in square brackets as the in-text marker (e.g. [1$0,4 bibliography chapter is given
at the end of the thesis, and in this case the reference msak&an abbreviation of the authors’
name plus year of publication (e.g. [ABAO2]). This is therf@t for the references for all the
other chapters in the thesis. There are certain overlapgekatthe bibliography chapter and
the references of the three individual articles. Anotharark about the bibliography chapter is

that the references for websites are given in lowercase[aly.
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Chapter 1

Introduction

With the greatly improved computational techniques and gbeerful machines available,
computer-aided methods have come to be involved in almesy espect of life:

“Physicists use computers to solve complicated equatiodgling everything from the ex-
pansion of the universe to the microstructure of the atond @ntest their theories against
experimental data. Chemists and biologists use compuetstermine the molecular structure
of proteins. Medical researchers use computers for imagauniques and for the statisti-
cal analysis of experimental and clinical observationsm@spheric scientists use numerical
computing to process huge quantities of data and to solvatams to predict the weather.
Electronics engineers design ever faster, smaller, ancermadiable computers using numerical
simulation of electronic circuits. Modern airplane and sparaft design depends heavily on
computer modeling’.[Ove01]

In fact, all fields of science and engineering now rely hgawil numerical computation. But
one question has inevitably to be askedn we trust these numerical computational results
We do not want our surgery simulation software to turn outd@lsource for medical accidents
[FGGO3]. The following example gives an idea of how bad thiogn get if not enough attention
is given to verification of correctness. Figure 1.1 showsd#selt of an implemented algorithm
for a simple planar convex hull problém The point on the lower left corner which clearly
belongs to the convex hull has been ignored, and left outsfidiee resulting hull. The cause
of this failure is the naive use of floating point arithmetic a two-dimensional orientation

predicate.

1The convex hullof a finite point setS in the plane is the smallest polygon containing the set aot that the
vertices of the polygon are points Sf[KS86].
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Figure 1.1. An example of failed convex-hull algorithm doettie naive use of floating-point
arithmetic [KMP04].

Fortunately, numerical non-robustness in scientific caimgus a widely recognized phe-
nomenon. In particular, the goal of reliable computatios atiracted many researchers in the
area of geometric modeling.

Two main factors, amongst others, explain the origins ogiiners that contribute to nonro-
bustness: the use of floating-point arithmetic and unadstan the input data. Often, designers
of geometric algorithms avoid the problem of computati@rabr by assuming the real random
access machine (RAM) as the model of computation [PS85].ré&@leRAM allows real num-
bers to be represented exactly and provides exact aritbropérations. Unfortunately, often
floating-point arithmetic is substituted for exact reattaretic and special cases are ignored
[For93]. Naively applied floating-point arithmetic can saudisastrous results, as illustrated in
the previous example (Figure 1.1).

Backward error analysis has become a standard error-éatgthod. In the presence of
uncertainties in the input data, which is the usual caseantleelp to distinguish algorithms
that overcome the error probleto whatever extent it is possible to do. do such situations
expensive methods, such as exact arithmetic, are not regegrovided a stable algorithm has
been applied. The application of the backward error arelydi be presented in Ch. 3, with
detailed examples provided.

For different geometric problems, non-robustness masiieself in different manners. The
phenomena include random system crashes, inconsistées &ag. the geometric data incon-
sistent with the topological data), models that contaicksaholes and overlaps, etc. [YapO1].
This, in turn, means that we have to seek appropriate metioodsach problem: a universal

solution does not exist. The following example (Fig. 1.2 iypical “dirty” geometric model:
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an exterior-mirror model with small cracks (left), with tkeom-in on the problematic area

(middle) and the repaired result (right) [SWCOQ].

original model

Figure 1.2: An example of a “dirty” geometric model [SWCO00].

Depending on the underlying geometric representation faedescribing the model, dif-
ferent techniques can be used to eliminate the error in thétreeach with its own advantages
and weaknesses.

NURBS (details in Ch. 2) have becomela factoindustry standard for the representation,
design, and data exchange of geometric information preddsg computer. Trimmed-NURBS
(details in Ch. 2) offer greater flexibility than traditidMdURBS for the design of very sophis-
ticated objects, and they have become a very powerful taed irs most commercial model-
ing systems. The errors illustrated in Fig. 1.2 may come fiooonsistent information, e.g.
trimmed-curve mismatch problems. On the other hand, in masts, for the purpose of ren-
dering, the trimmed patches need to be transformed intoyaypohl representation. The error,
at this stage, may come from the approximation proceduitagoining (sewing/merging) op-
eration can be used to fix the problem. But even in the casefgimum auxiliary information
is available.e. even if we have both trimmed-NURBS and the (triangular) me&irmation,

a simple joining operation may not produce a satisfying lteRiscussion of this problem will
be presented in Ch. 4, where an algorithm, which producesudt iIgatisfying two error criteria
by using the Whitney extension theorem, will be presented.

NURBS information is not always available in practical apations, e.g. finite-element
analysis. Further, a simple polygonal representationy(moi soup) itself is often insufficient
for the manipulation of complex geometric models. Themfeubdivision-surface models (de-
tails in Ch. 2) become a convenient representation. In faith the increasing popularity of

subdivision-surface models, more and more modelers hayenb® use them as an alterna-
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tive to trimmed-NURBS, due to their simplicity, generaldyd efficiency for smooth surface
construction [BK04]. Subdivision-surface models do notenthe trimming difficulties and
the error-prone conversion procedure (from trimmed-NUR®Bolygonal meshes) associated
with NURBS. Complex models based on subdivision surfacesbeaformed using Boolean
operations. The related robustness issues of such Boofeatimns on subdivision-surface
models is the next problem we considered (Ch. 5).

The remainder of the thesis is organized as follows. A shaetview of the research area
of geometric modeling is given in Ch. 2. It contains two paridiable computation (sources
of error and error analysis methods), and geometric maglelirhich presents the geometric
representations, geometric operations and the relatadtrodss issues. The main part of the
thesis (Ch. 3, 4, 5) is composed of three accepted (to appman)ished or submitted arti-
cles, each of which forms an individual chapter, with a pdaog short summary. Chapter 3
describes our work on floating-point arithmetic for compiotzal-geometry problems with un-
certain data. Our work on reliable joining of surfaces fomtiined mesh-surface models is
given in Chapter 4. Chapter 5 discusses the problem of nobsstof Boolean operations on
subdivision-surface models. We conclude in Chapter 6, &/h&ralso mention promising pos-

sibilities for future work.



Chapter 2

Reliable computation and geometric

modeling

Problems of robustness are a major cause for concern in fllerimentation of algorithms relat-
ing to geometry. Most geometric algorithms are a mix of nioa¢mand combinatorial compu-
tations, and the approximate nature of the former oftensléadnconsistencies that hinder the
ability to construct a satisfactory result [Hof89]. In tlisapter an overview of the problems of
reliable computation for geometric models will be givendahe related geometric modeling

topics, including geometric representations and Boolgemadions, will also be presented.

2.1 Finite precision representation and reliable computabn

Numerical nonrobustness in scientific computing is a wetihkn and widespread phenomenon.
The root cause is the use fifite-precision numbers.g. floating-point representation, to rep-
resent real numbers, with precision usually fixed by the nm&ctvord size (e.g. 24 bits). A
number of approaches to the finite-precision problem haee belvocated in academia. Hoff-
mann [Hof01] categorizes these into three strategies:texabmetic, symbolic reasoning and
interval computation. Exact arithmetic is very expensi&ed performance can be badly af-
fected if it is used exclusively, so filtered exact arithroéti usually preferred [SDO7]. Another
proposed method related to exact arithmetic is the exachgi@ computation [Yap06]. Inter-
val arithmetic [AH83, Mo066, MB79, Sch99, EL00, DS88] treatrounded real number as an

interval and the calculations are performed on this infler¢abut the shortcoming of interval



CHAPTER 2. RELIABLE COMPUTATION AND GEOMETRIC MODELING 6

arithmetic is that it gives overly pessimistic results. $yiic manipulation is a possible way to
avoid rounding and truncation errors. Thus using softwaoh s Mathematica or Maple may
be appropriate, but in many application cases, this mighbadhe best choice for efficiency
reasons. Another approach proposed by Yap [Yap01l] is exawmngtric computation, which
again uses approximate arithmetic, but with the level o€igien guided by geometric exact-
ness. A fifth possibility [HS05, ASZ07] is to use ordinary fiog-point arithmetic, and to try
to associate the error with the input data. This is apprapifahere is uncertainty in the input.

It is the last mentioned approach that is studied in this work

2.1.1 Floating-point number system

Floating-point numbers (IEEE 754/854) are the standardtgute for real numbers in scientific
computation [Ove01]. Current state-of-the-art CAD (CotepltAided Design) systems used
to create and interrogate curved objects are based on géosaitd modeling methods that
typically operate using floating-point arithmetic [PMOZ2{ 98, g-L].
A floating-point number systed C R is a subset of the real numbers whose elements have
the form [Hig96, p.40]:
y=+m x 3¢

The systent' is characterized by four integer parameters

e thebases (sometimes called thedix),
e the precisiort, and

e the exponent rangg,.;, < e < €énaz-

Themantissam is an integer satisfying < m < 8¢ — 1. To ensure a unique representation for
eachy c F itis assumed that, > 3~ if y # 0, so that the system is normalized. Tlaege
of the nonzero floating-point numbersThis given byémin=1 < |y| < gemaz(1 — p71).

The IEEE standard 754/854 for floating-point arithmeticuiegs that the results of, —,
Y/, and\/ are exactly rounded,e. the result is the exact result according to the chosen
rounding mode. It also specifies floating-point computaiiosingle, single-extended, double,
and double-extended precisions. Single precision is Bpédor a32 bit word, double precision
for two consecutive32 bit words. In single precision the mantissa lengtl24s(including a
hidden leadingl bit) and the exponent range [is126,127]. Double precision has mantissa

length53 and exponent range-1022, 1023] [Sch99, FGGO03].
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Floating-point arithmetic has numerous engineering aidgms: it is well-supported by
programming languages, it is portable, it has useful featsuch as automatic scaling, and it
has been extensively optimized in current computer harel\\or95].

Since an infinite set of numbers is represented by only finitelny floating-point numbers,
truncation/rounding techniques have to be used for reakmigal values to fit the representation
format. Consequently, floating-point computation is, byung, inexact, and concepts such as
representation range, precision and round-off error thiese.aNaively applied floating-point
arithmetic can invalidate axioms of geometry [Sch99]. Thegy [Gol91] and the book by

Overton [Ove01] are excellent references for this subject.

2.1.2 Sources of errors

There are three main sources of errors in numerical conipntatounding and truncation due
to the finite-precision representation in computer, and datertainty [Hig96]. In practice, the
input data is often not exact to start with for many applimasi [Hof89]. Uncertainty may arise
in several ways: from error in measuring physical quargjtfeom errors in storing the data on
the computer (truncation errors), or, if the data is itdedf solution to another problem, it may
be the result of errors in an earlier computation [Hig96] ofkrer source, additional to the three
mentioned, is approximation error, which occurs often i dlomain of geometric modeling
for practical reasons. One example for this kind of errothis tise of low-degree curves to

approximate high-degree curves.

2.1.3 Error analysis

The unpredictability of floating-point code across ardtiiteal platforms in the 1970's and

1980’s was resolved through a general adoption of the IERRdsird 754-1985, later enlarged
as |IEEE standard 854-1987 [Ove01]. But these standardsnoake program behavior pre-
dictable and consistent across platforms; the errors #irprsisent. Ad hoc methods for fixing

these errors (such as treating numbers smaller than sorig@esas zero) cannot guarantee
their elimination [Yap04]. And since geometric operatiassially require extensive numerical
calculations, the propagation of the errors is of great eom@and profoundly influences the
accuracy and validity of the geometric operations [Hof8®RMM]. Therefore, error analysis
became very necessary for reliable computation.

Backward error analysis was first proposed by Wilkinson §@8jlto bound the errors re-



CHAPTER 2. RELIABLE COMPUTATION AND GEOMETRIC MODELING 8

sulting from the fundamental floating-point arithmetic md@ns [PM02], especially addition
of quantities of opposite sign and approximately equal ritade: the computed result can be
completely wrong due to a simple cancellation (see exanipli® paper that follows in Ch. 3).
It is often possible to associate the error in a calculati@h gither the problem or the solution,
and there may be some choice about how much error is asgbeidteeach of these. Thus, in
Fig. 2.1, all of the error could be viewed as forward errothwhx = 0, or (as illustrated in
the figure), part of the error can be associated with the prabIThe process of bounding this
backward error of a computed solution is caltetkward error analysisand its motivation is
twofold. First, it interprets rounding errors as being @glént to perturbations in the data. The
input data frequently contains uncertainties due to pr&/icomputations or errors committed
in storing numbers on the computer, as previously mentiotigkle backward error is no larger
than these uncertainties then the computed solution cathyhae criticized — it is as good as
we can hope for. The second attraction is this. Rather thaming all of the error as forward
error, as mentioned just above, the backward error anghgsimits to bound or estimate the

influence of the total error by means of perturbation the®i3(8].

T O oy = f(z)
backward error \\\\\ l
a:;Ar —= T flx 4 Ax)
: by
Se.
Y

Figure 2.1: Backward/forward error analysis, solid linexae, dashed line = computed.

2.2 Geometric modeling

Geometric modeling has rapidly become a central area ofrelseand development that in-
volves diverse applications. It is of critical importancetie traditional fields of engineering,
general product design, and computer-aided manufactultihgs also proved to be indispens-
able in a variety of modern industries, including computision, robotics, medical imaging,

visualization, etc. [Sar03].
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2.2.1 Historical summary

Geometric modeling traditionally identifies a body of teicjues that can model certain classes
of piecewise parametric surfaces, subject to particuladitions of shape and smoothness
[GO97]. Its beginnings can be traced to the 1950s, and frasethnitial activities emerged
four main streams of work that evolved largely independefatt some two or three decades.
Thecomputer graphicstream focused on rendering and interaction. Wheframestream lead
to the commercial CAD systems of the 1970s and 80s.ffigeeform curve and surfacgream
found important applications in computer-aided designthednanufacture of car bodies, air-
craft fuselages and in other tasks in the automotive andspace industriesSolid modeling

is distinguished by the use of hopefully unambiguous repredions for complete solids. A
related fifth stream focuses on the theoretical aspects 9fjulend analysis of geometric al-
gorithms, and has become knownamsmputational geometrjreq99]. Since the late 1990s,
however, a tendency of convergence of all these differgreas of geometric computation has

become evident, and new systems use ideas from all of théde [[Req99].

2.2.2 Geometric representations

The development of complex surface representation scheaselgeen one of the core fields of
computer graphics and geometric modeling. The differeptasentations currently available
have succeeded in modeling certain properties of surfaedls but none of them is general
enough to satisfy all the requirements that could be denthofia representation [HG0O]. Two
major representation schema are often useastructive solid geometfCSG) andboundary
representatior(B-rep). In CSG a solid is represented as a set-theoretitcBoaepresentation
of primitive solid objects, so that both the surface and titerior of an object are defined
implicitly. In B-rep the solid surface is represented egitlly as a quilt of vertices, edges, and
faces [Hof89, GO97].

Most geometric modeling systems use B-rep. The differenéBschemes appearing in
the literature can be divided into two major families. Onmilg restricts the solid surfaces
to oriented manifolds. The second allows oriented nonmo&tsf Conversion from CSG to
B-rep is usually available [GO97]. Throughout this work, f@eus on the B-rep: three such

representations will be presented in detail.
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Parametric representations

Non-Uniform Rational B-Splines (NURBS) have becomdeafactoindustry standard for the
representation, design, and data exchange of geometaoriafion processed by computer.
Also, many international standards, e.g. STEP Part 42 flhd@cognize NURBS as powerful
tools for geometric design [PT97]. Their excellent mathticah and algorithmic properties,
combined with successful industrial applications, havetriiouted to the enormous popularity
of NURBS. NURBS also play an important role in the CAD/CAM (@puter-Aided Manufac-
turing)/CAE (Computer-Aided Engineering) world .

A NURBS surface of degreein the direction and degregin thewv direction is a bivariate

vector-valued piecewise rational function of the form [FT9

S(u,v) = ZZRLJ’(U’”)PLJ’ 0<wu,v<1, (2.1)
=0 j=0

where theR; ;(u, v) are the piecewise rational basis functions and p +1,m = ¢ + 1,

_ Ni,p(u)Nm(U)wiJ ‘
ZZ:O Zlnlo Nk,p(U)Nl,q (v)wk,l

R; ; (u,v) (2.2)

The {P; ;} form a bidirectional control net, thgw; ;} are the weights, and thgV; ,(u)} and
{N,(v)} are the usual nonrational B-spline basis functions.

NURBS provide a convenient way to describe surfaces of dlamogshape. However, the
most useful NURBS paradigm is constrained by the requirerien the surfaces are defined
over rectangular regions and this leads to topologicaltyamgular patches. A generalization
for an arbitrary topology can be obtained by collapsing sofiiee control mesh edges, but this
creates surfaces with ambiguous surface normals and dateiparametrization [CMO0].

Trimming operations are essential for modeling non-ragBlaep objects. A trimmed-
surface data type in the description of free-form objects terefore introduced to provide
greater power and flexibility to the NURBS representationtrilimed surface is an ordinary
tensor product surface that has a restricted parameteridothas overcoming the limitation
of tensor product surfaces defined over rectangular regamtsallowing for arbitrary domains
[CMOO0]. They can give a complete representation of the banndf a geometric model by
means of union of surfaces restricted to suitable domains.

A trimmed NURBS surface is defined by a tensor product NURB®asa and a set of

trimming curves in the parametric space of the surface [(QMUBe additional trimming pro-
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cess, using trimming curves, permits the removal of unretedeas of the traditional NURBS
surface. Combining thousands or even tens of thousandsnohd surfaces makes it possible
to design very sophisticated objects [KBK02].

Figure 2.2 gives an example of two trimmed patches joinimgptioer to form a single sur-
face. The parametric domaiP is delimited by a collection of trimming curvegs, and the
restriction of the mapping® to D defines the trimmed patch iR>. In addition, explicit
boundary information, provided by a functidrit) taking values inR?, may also be present
[SWCO00, Spa98, Ind97, KBK02].

oW

Figure 2.2: Two adjoining trimmed patches in a surface mpalgr07].

Trimmed NURBS surfaces have been adopted widely by the CARY@dustry, and in-
cluded in graphics standards. They are provided as priesitim several geometric modeling
software systems, and the rendering of trimmed NURBS sesfescsupported by international
standards, such as STEP Part 42 [Ind97] and PHIGS+ (Progeemhtierarchical Interactive
Graphics System), as well as graphics programming intesfasuch as OpenGL and Direct3D
[CMOO0].

Mesh models

NURBS have the advantage of being able to describe almosttepe conveniently. But even
today’s advanced graphics hardware is unable to direatigeretrimmed NURBS models: they
need to be transformed into a renderable (e.g. polygonpiesentation [BGK04, KBK02].

Similarly, for many applications, piecewise linear appnoations of smooth surfaces within a
given tolerance are generated. Examples of such applsatiiude finite-element analysis,

stereolithography, and visualization of geometric mod8RB00]. Many methods have been
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proposed in the literature for this triangulation (appnoeation) procedure [SB0O, Sug02].

A meshis a discretization of a geometric domain into small simpigpges, such as triangles
or quadrilaterals in two dimensions and tetrahedra or hexhahin three dimensions [BP0O].
Depending on the point of view, meshes can be classified fardiit ways. Based on topo-
logical properties, meshes can be divided istucturedmeshe$, unstructuredmeshe$ and
hybrid meshe$[GKSS02, BP00]. Based on the mesh element type, meshes catdgmrized
into tri/tetrahedral meshesguad/hexahedraneshes, and othérfOwe98].

For this Ph.D. work, we focused on triangular-surface mgshased on the fact that we
mainly work on B-rep models, and that triangles are the pinnirepresentation elements for
rendering. One of the most popular triangle and tetrahedeshing technigues is based on the

use of the Delaunay criterion, namely the Delaunay triaatgud method.

Definition
Let S be a set of points in the plane. A triangulatiéris a Delaunay triangulatiorof S if for

each edge of T there exists a circl€’ with the following properties [Che89al]:
¢ the endpoints of edgeare on the boundary @, and
e no other vertex of is in the interior ofC'.

A circle circumscribing a Delaunay triangle is calledDalaunay circle If S contains four
points that are cocircular then the Delaunay triangulasarot unique [Che89b, ELOO]. In such
a circumstance, any of the possible triangulations willdbd89a]. The Delaunay triangulation
is the straight line dual of theoronoi diagramof S [Che89a].

The Delaunay triangulation has the following propertiesmakg all triangulations of a
vertex set, the Delaunay triangulation maximizes the mimmangle in the triangulation, min-
imizes the largest circumcircle, and minimizes the largest-containment circle, where the
min-containment of a triangle is the smallest circle thattams it (and is not necessarily its

circumcircle) [She99, DS89, BPO0O].

LAll interior vertices of the mesh are topologically alike.

2Mesh vertices may have arbitrarily varying local topolagiceighborhoods.

%The mesh is formed by a number of small structured meshesinethin an overall unstructured pattern.

“This includes mixed tri-quad meshes, mixed tet-hex meshdsother less frequently used element-shape
meshes.
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Subdivision-surface models

Currently, the most common way to model complex smooth sagin the domain of geometric
modeling is by using a patchwork of trimmed NURBS. Trimmed RRS are used primarily
because they are readily available in existing commergitesns such as Autodesk. They do,

however, suffer from at least two difficulties [DKT98], whiare discussed further in Ch. 4:

e Trimming is expensive and prone to numerical error.

e It is difficult to maintain smoothness, or even approximat®asthness, at the seams of

the patchwork when the model is animated.

Subdivision surfaces have the potential to overcome bothesde problems: they do not re-
quire trimming, and smoothness of the model is automagiqpliaranteed. Also, subdivision

surfaces free the designer from worrying about the topoligiestrictions that haunt NURBS

modelers [DKT98]. Further, compared to the regular mesheisogresented in the previous

section, subdivision-surface models offer more contrelralie objects, since they contain more
topological and geometrical information about the mesht, Ba the other hand, subdivision-

surface models also prevent the use of special tools tha haen developed over the years
to add features to NURBS models, which is one of the hindarfice the extensive use of

subdivision-surface models, especially in the domain oDCA

Subdivision is a method for generating smooth surfaceschwtiist appeared as an exten-
sion of splines to arbitrary-topology control nets, and wma®duced as a generalization of knot
insertion algorithms for splines. But it is much more geharal offers considerable freedom
in the choice of subdivision rules [Zor97]. Subdivision fages were first introduced to the
domain of geometric modeling 1978, with the papers by Cdtamud Clark [CC78], and by
Doo and Sabin [DS78]. Subdivision-surface models are nadelyiused in many application
areas, including computer graphics, solid modeling, caerpgame software, film animation
and others, as an alternative to B-splines and NURBS [AS09].

The basic idea of subdivision is to define a smooth curve daseias the limit of a sequence
of successive refinements [ZSDO]. Most oftenly the subdivision procedure contains twarma
steps:refinemenandsmoothing Refinement (splitting rule) means splitting the edges andg
by inserting new vertices to obtain a finer version of the masld smoothing (averaging rule)
means shifting the vertices in order to increase the overmatiothness of the surface [AS09,

ZSD*00].
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Classification- Many different subdivision schemes have been proposéxtilast two decades.
Based on different criteria, these schemes can be classiffedently. For example, as pro-
posed in [AS09], they can be classified according to the tf@plne that is generated by the
method: B-spline methods, Box-spline methods, geneladigision-polynomial methods and
affine-invariant subdivision methods (Fig. 2.3). Simijatased on the presence or absence of
an interpolating property of the produced surface, subitiii schemes can be categorized as:
interpolating methods (e.g. Modified Butterfly [ZSS96], Kobbelt [Kob96Rdeapproximating
methods (Doo-Sabin [DS78], Catmull-Clark [CC78], Loop {i87], 4-8 [VZ01],+/3 [Kob00]).

- Repeated Averaging - Loop - Modified Butterfly
- Catmull-Clark - {Midedge? - Kobbelt
- Doo-Sabin - 4-8 subdivision - {V3)?
= —-> = —-> S e —->
! : ! Affine-
invariant
B-spline methods Box-spline methods General- subdivision
subdivision- methods
- Lane-Riesenfeld: - Three-direction polynomial
LR(d x d), quartic-spline methods
d=2,3... scheme
—* _ Four-direction —T*> - Butterfly -
scheme 1) - 4pt x 4pt
- Four-direction - {V3}?
scheme 2) -

Figure 2.3: Subdivision-scheme classifications [AS09].

Surface evaluatior Another important issue concerning subdivision-surfacelels is surface
evaluation. The first evaluation method (other than subitiui refinement itself) was proposed
by Stam [Sta98a, Sta98b]: this method parameterizes theotanesh and the limit surface
over a unit-mesh element (triangle or quadrilateral) tduata the surface at an arbitrary pa-
rameter value. Another method was presented in [WP04, WBBB?2] . It uses the linearity
of the subdivision process, the parameterization of thérabmesh and the limit surface is set
to be centered at each vertex (Fig. 2.4), such that the lionfase is evaluated as the linear

combination of the basis functions, weighted by the origamamtrol points. One advantage of
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this technique is that the parameterization near the exiirzary vertex has n-gon symmetry. It
is the second method that we have used in the paper that folfo@h. 5.

10 9

11 8

Figure 2.4: Wu-Peters [WP04] evaluation method: left: sebagsh used to generate the basis
functions for the triangl®-1-2 (regular case: vertex with valenég right: the resulting basis
function at nodd evaluated at subdivision level four.

Multiresolution— Multiresolution is a natural extension of subdivisionfages. It extends sub-
division by including detail offsets at every level of swidion, unifying patch-based editing
with the flexibility of high-resolution polyhedral meshea3D*00, ZSS97].

Lounsbery et al. were the first to propose algorithms to ekidassical multiresolution
analysis to arbitrary topology surfaces [Lou94, LDW97].efdare now many different tech-
niques available for converting subdivision surfaces amtoultiresolution hierarchy [LS98].
Two main schools exist. One approach extends classicairasagtution analysis and subdi-
vision techniques to arbitrary topology surfaces [Lou9®W97, EDD"95, CPD"96]. The
alternative is more general and is based on sequential megiification, e.g. progressive
meshes [Hop96, HG97]. In either case, the objective is teeggmt triangulated 2-manifolds in
an efficient and flexible way [LS'D8].

For this work we are mostly interested in the triangular B; s we will give more details
on the now-classical Loop subdivision scheme. The Loopraehis a simple approximating
face-split scheme for triangular meshes first proposed lopl[lboo87]. Itis based on thiaree-
directional quartic box splingBar07], which produce€'?-continuous surfaces over regular
meshes. The Loop scheme produces surfaces thafantinuous everywhere except at
extraordinary vertices, where they aré-continuous. Later Hoppe et al. [HD®4] proposed
an extension to the Loop scheme with special rules defineddges to include features such
as creases and corners. In [BLZ00], the boundary rules ateefumproved, and new rules for

concave corners and normal modification are proposed. The Eoheme can be applied to
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arbitrary polygonal meshes, and the resulting mesh is aguiar mesh [ZSD00]. The proof

of continuity of this scheme for all valences can be foundSoH96, Zor97]. Below are the

three important masks for the Loop subdivision scheme.

1. Subdivision mask
A subdivision mask defines where new vertices will be ingkaied how already existing

vertices should be shifted at each subdivision step. FigsRows the subdivision mask

for Loop subdivision scheme [HD94].

AN 1 0
0 —3/4 N
\1—715 / \0/\0 04 \0
,8  — ,8 \
smooth or dart vertex crease vertex corner vertex
5/8
| / I / | \
1< [ > \ - 0 0 - 0
3/8 1/2 3/8
smooth edge regular crease edge non-regular crease edge

Figure 2.5: The subdivision mask for Loop subdivision sceewhereg = §(n) = “(:), and

a(n) = g - w. This equivalent form can be obtained from the substitutbn
a(n)

2. Limit mask
A limit mask calculates the limit position of each vertex iretcontrol mesh. The limit

position can be expressed as an affine combination of thalimértex position and its
immediate neighboring vertices. For Loop subdivision sthethis combination is ex-

pressed by the following mask (Fig. 2.6) [HDB4, MMTPO04].
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«

AN

7 I b
-\1 B m//a 1/6 2‘/3 1(/6 / % 0
/ N\ N

(e «
smooth or dart vertex crease or boundary vertex cornerwerte

«

Figure 2.6: The limit-position mask for Loop subdivisiorheme, Wherey is defined asy =
a(n) = (szn) +n)~L, with(3) = 2, andy(n) = (3 — (2 + 1 cos 22)?) for n > 4.

3. Tangent mask
Tangent vectors of the limit surface can be computed usiagwio left eigenvectors of
the local subdivision matrix corresponding to the secongelst eigenvalues. Then their
cross product gives an exact normal vector to the limit serfé&or a Loop surface, it can
be expressed by the tangent mask (Fig. 2.7) [RDB, Kob98].

/ \ PN

N/

Cq

Figure 2.7: The tangent mask for Loop subdivision schemeyred = cos(27i/n).

2.2.3 Geometric operations for geometric models

In most geometric modeling systems, geometric operatiansbe used to generate free-form
models based on some primitive models, e.g. the geometgewperation [SGO05]. Here we

give two main groups of these operations.

e Boolean operations
One of the most important facilities of solid modelers is Buwolean operations between
solids [TTSC91, BKZ01]. Regularized Boolean operationdude: regularized union
|J*, regularized intersectioff”, andregularized difference-* (Fig. 2.8). They differ

from the corresponding set-theoretic operations in thatdsult is the closure of the op-
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eration on the interior of the two solids, and they are useaditoinate “dangling” lower-
dimensional structures [Hof89]. These operations can pkeapto both CSG models and

the B-rep8 and include some low-level operatorsaassification, orientation, merging

andintersection

union (J*) intersection (") difference *)

Figure 2.8: Regularized Boolean operations [g-b].

e Signal processing
Signal processing contains another important group ofagjpers that has been widely
used in the domain of geometry processing. It includes/nsampling upsampling
smoothinglJDDO03], filtering [Ale02], etc., which have been used for geometry editing,
simplification, denoising, compression and simulation $89]. The paper [BPK07]

gives a nice overview on this subject.

Throughout this Ph.D. work, we put our focus on the Booleaeraijions on B-reps, al-

though other related geometric operations are also studied

2.2.4 Robustness issues

Boolean operations have been used in most modeling syskeinsost often, care still has to
be taken to handle special and degenerate cases for theat@me[BMS94, TTSC91, BKZ01,
Far99]. The inconsistencies arising from numerical ereor lead to connectivity faults, such
as breaks in the supposed boundary. And the inaccuracié® icalculations can also create
geometric errors, often in the form of boundary self-inteteons [SDO7, Hof89]. In addi-
tion, implementation of Boolean operations is especiaiffycdlt for higher-order B-reps as it
requires intersecting parametric surfaces, separaterg thto pieces and constructing new sur-

faces out of these pieces. Existing systems typically @etrep as a collection of trimmed

SAlgorithms for Boolean operations on B-reps are called Atsandary-evaluation and mergiragorithms.
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spline patches, sharing boundaries. The boundaries ofiedieidual patch are often matched
only approximately, since it is difficult to ensure that twortming curves in different para-
metric domains are identical in space. Thus each intesecdperation leads to increasingly
complex and difficult-to-handle trimming curves. Applyisooth deformation to the resulting
models is also a very difficult task: special care must bertéad@void cracks, etc. [Man88]. As
a result, Boolean operations usually are neither fast nmrstp although excellent results have
been achieved by some commercial solid modeling engine87|.BKZ01, BK97].

The framework necessary to prove that algorithms work dgsly is available [ASZ07],
but, so far at least, the required analyses appear to betatte. Much research has been
devoted to seeking robust geometric-operation algorithfmg groups of methods have been
proposed to repair dirty CAD modelsurface-basedechniques andolumetrictechniques.
Surface-based techniques work directly on the input serfasing different methods to detect
and resolve artifacts. These techniques include snapmngdaries to each other, projecting
and inserting one boundary into the other, computing irtdrgns of extended surface patches,
and propagating the normal field from patch to patch [BK97,8A\BS95, BDK98, GTLHO1].
Thevolumetrictechnique converts the input into a volumetric represamtaeffects the repair
in the volumetric model and extracts a surface as the finaltrdscontains different techniques
for the B-reps to volumetric representation conversion(RB,TJu04, FPRJ0O0], and for the sur-
face extractions [KBSS01, Gib98, JLSWO02]. Also, differ&naie-filling methods have been
proposed [BKO5, ABA02, DMGLO02, NTO03] for this volumetricdenique. It is the surface-
based technigue that we will use in the paper in Ch. 5.

Robust operations on subdivision-surface models haventlgcattracted a lot of attention.
Lai and Cheng [LC07, LCO06] presented an algorithm that perfoerror-controllable Boolean
operations on Catmull-Clark subdivision-surface modetsng a volumetric approach. Lan-
guetin et al. [LFKNO3] proposed an intersection calculatinethod for subdivision-surface
models based on triangle-grouping technique. Biermanmh gB&Z01] used a perturbation
technique to avoid degenerate cases for Boolean operatioheop subdivision-surface mod-
els. Further Smith and Dodgson [SD07] used symbolic-pleation methods to guarantee topo-
logical correctness of the computed result of Boolean digars In one of the following papers
(Ch. 5), we proposed an algorithm performing Boolean opmraton Loop subdivision-surface
models using limit-mesh representation, with a verificatimethod designed to guarantee the

well-formedness of the computed result.



Chapter 3

Floating-point arithmetic for
computational-geometry problems

with uncertain data

This chapter presents our work on the application of bacHvesror analysis in the area of
computational geometry. The analysis is relevant in théestrof uncertain data, which may
well be the practical context for computational-geometgosthms.

It has been suggested in the literature that ordinary figeision floating-point arithmetic
is inadequate for geometric computation, and that reseeséh numerical analysis may believe
that the difficulties of error in geometric computation camvercome by simple approaches. It
is our purpose of this work to show that these suggestiorsgedian an example showing failure
of a certain algorithm for computing planar convex hullg misleading, and why this is so.

Our exposition illustrates the fact that the backward earwlysis does not pretend to over-
come the problem of finite precision: it merely provides d todalistinguish, in a fairly routine
way, those algorithms that overcome the probterwhatever extent it is possible to do e
also show that the situation in computational geometry, astioned in our principal reference
[2], is exactly parallel to other areas. For example, atbors for the planar convex-hull prob-
lem were discussed in [2], along with examples of failure eftain of the algorithms. But,
although those failures are spectacular, the situatiordstly analogous to many areas of nu-
merical analysis: there are certain algorithms that anelestand certain algorithms that are

unstable. If an unstable algorithm is used to solve a propthen it may produce completely

20
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wrong results, and this without warning. On the other hahd, stable algorithm is applied,

then, in the case of problems defined in terms of uncertaim, da¢ algorithm produces an an-
swer that is essentially as good as we can hope for. This migaparticular, that one cannot
do better by using exact arithmetic.

Three examples (solving linear equations, the planar cehu# problem and a three-
dimensional extruded-objects problem) are then presdatidldstrate our method of perform-
ing backward error analysis: how to measure the adequauay,th@erform the perturbation
analysis and how to seek stable solution methods.

Part of the work was first presented at the Sixth Annual Iratiéonal Workshop on Compu-
tational Geometry and Applications, Glasgow, UK, May 8-2006, and it appeared lrecture
Notes in Computer Scient¢®NCS3980, pages 50-59, 2006. We also invited the authorsirof o
main reference [2] to reply to our paper; the reply is puldistiogether with our initial paper
in the LNCS volume [KMP06]. It is an interesting discussion that shows differerinfsoof
view concerning the same problem in different research dwmnd he extended version of the
paper presented here, which shows how the results applyimmesthree-dimensional case,

will appear in the International Journal of Computation&oGetry and Applications.
The main contributions of this work are:

e we show that the numerical difficulties described in the @pal reference [2] are unex-

ceptional.

e we show how to perform perturbation analysis in geometry efind with three exam-

ples.
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Abstract

It has been suggested in the literature that ordinary fipiéeision floating-point arithmetic is
inadequate for geometric computation, and that researé¢heérumerical analysis may believe
that the difficulties of error in geometric computation camyercome by simple approaches. It
is the purpose of this paper to show that these suggestiassdibn an example showing failure
of a certain algorithm for computing planar convex hullg anisleading, and why this is so.

It is first shown how the now-classical backward error arialgan be applied in the area
of computational geometry. This analysis is relevant indbetext of uncertain data, which
may well be the practical context for computational-geagnatgorithms such as, say, those for
computing convex hulls. The exposition will illustrate taet that the backward error analysis
does not pretend to overcome the problem of finite precisiomerely provides a way to
distinguish those algorithms that overcome the probienvhatever extent it is possible to do
SO.

Itis then shown that often the situation in computationalrgetry is exactly parallel to other
areas, such as the numerical solution of linear equatiantiecalgebraic eigenvalue problem.
Indeed, the example mentioned can be viewed simply as anpdeahthe use of an unstable
algorithm, for a problem for which computational geometaslalready discovered provably
stable algorithms.

Finally, the paper discusses the implications of theseyamalfor applications in three-
dimensional solid modeling. This is done by consideringabfam defined in terms of a simple
extension of the planar convex-hull algorithm, namely, ib#fication of the well-formedness
of extruded objects. A brief discussion concerning morkailt problems in solid modeling is
also included.

Keywords:
floating-point arithmetic, robustness in geometric corapan, stability, planar convex hull,

backward error analysis.
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3.1 Introduction

This paper is an extended version of a previous paper [1]s¢udses the use of floating-point
arithmetic for the solution of problems in computationabgetry that are defined in terms of
uncertain data.

It has been suggested in the literature [2] that ordinaryefipiecision floating-point arith-
metic [3] is inadequate for geometric computation, and thaearchers in numerical analysis
may believe that the difficulties of error in geometric cortgion can be overcome by simple
approaches. As pointed out in the previous paper [1], theggestions are misleadifigand it

is the purpose of this paper to show why this is so.

3.1.1 Paper outline

We begin with a slightly modified version of the expositiontlire previous paper [1], which
illustrates how the backward/forward error analysis, froomerical analysis, relates to the
study of robustness in computational geometry. This exjpaosis focused on the problem of
planar convex hulls.

Algorithms for the planar convex-hull problem were dis@gs a recent paper [2], along
with examples of failure of certain of the algorithms. Buthaugh those failures are spectac-
ular, the situation is exactly analogous to many areas ofemigal analysis: there are certain
algorithms that are stable, and certain algorithms thatiasgable. If an unstable algorithm is
used to solve a problem, then it may produce completely wreaglts, and this without warn-
ing. On the other hand, if a stable algorithm is applied, thiethe case of problems defined in
terms of uncertain data, the algorithm produces an answaeiglessentially as good as we can
hope for. This means, in particular, that one cannot do bbjteising exact arithmetic.

Having established these basic facts, we go on to illustineteénplications of this discussion
for applications in three-dimensional solid modeling. Waken this link by the simple device
of consideringextruded objectsdefined in terms of a two-dimensional contour and a diractio
d that defines the path along which the contour should be Swepijects of this kind have
formed part of solid modeling systems from the very begignsince such objects are widely
used in design, and correspond to widely used manufactprimgesses [4, 5]. The illustration

given here will show how the question of well-formedness wfhsan object, in the (usual)

2The previous paper [1] includes an invited reply from théhats of the original paper [2].
3Throughout the paper, boldface characters are used toadeactors ifR™, and, in particular, ifR?.
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context of uncertain data, can be reliably guaranteed wiegdy established results [6], along
with Fortune’s stable implementation of the Graham sca[Z, 8] implemented in ordinary
floating-point arithmetic. We then conclude with some rdmabout the use of such arithmetic

for more general problems in solid modeling.

3.1.2 Comments concerning the failure of an algorithm

As stated in the principal reference [2], “...the algorithof computational geometry are de-
signed for a machine model with exact arithmetic. Subgtigutioating-point arithmetic for the
assumed real arithmetic may cause implementations tb Tdike paper [2] goes on to say that
“due to ...[a]...lack of examples, instructors of compiotal geometry have little mate-
rial for demonstrating the inadequacy of floating-pointharietic for geometric computations,
students of computational geometry and implementers aigéic algorithms still underesti-
mate the seriousness of the problem, and researchers imduregghboring disciplines, e.g.,
numerical analysis, still believe, that simple approadresable to overcome the problem.” An
incremental scan algorithm (which is related to Grahamésmd8] and which we will refer to
asGrahamincrementd), for planar convex hulls, is then studied in some detailparticular,
examples are given which show the algorithm can fail, andxataaation is given for why it
fails, when executed with floating-point arithmetic.

The examples given in the principal reference [2] shoule@utbe useful to students and
teachers of computational geometry, in order to illustiat@at can go wrong, and why, when
finite-precision arithmetic is used to solve geometric penis. Furthermore, the paper [2]
presents the results of experiments that are repeatablesig detail. In fact, we have imple-
mented the&Grahamincrementalalgorithm for example Al of the principal reference [2], and
we confirm that the algorithm behaves exactly as descrileze thihen applied to the data given.
Briefly, for example AlGrahamincrementalproduces a completely spurious result.

There are, however, three misleading suggestions in thiesinéence quoted above, and it
would be unfortunate if they were communicated to studehtomputational geometry. One
of these is the suggestion that the approaches of commaateometry and numerical analysis
are somehow adversarial, since in fact they are complemyeriaother is the suggestion that
numerical analysts believe that they can “overcome” thélpruo of finite precision. This is not
true. Whats true, however, is that in the case where input data is urineatal a stability result

is available, a backward/forward error analysis, and oftgrure backward error analysis, can
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deal with the problem in a fairly routine way, by showing thattable algorithm overcomes the
problem of finite precisiono whatever extent it is possible to da $ndeed, a stable algorithm
provides us with a solution that is as good as the data warf@pt (Stability will be defined
below in the context of a combined backward/forward analymit we will usually just refer to
a backward error analysis, since this is usually sufficjent.

A third misleading remark in the passage, quoted above,eigdference to the “inade-
guacy” of floating-point arithmetic for geometric compitat, which is incorrect as a general
statement. In fact, some algorithms using floating-poirk pvovide adequate solutions, while
others will not, and a backward error analysis will permittagecognize which algorithms
are satisfactory. On the other handjsittrue that we must begin by defining precisely what
constitutes amdequateorinadequatesolution to a geometric problem.

We will show below that numerical robustness for the conlvelt-problem is analogous to
the case of linear equations, or the algebraic eigenvalollgm, and that when input data is
uncertain, the difficulties documented in our principagrehce [2] fit exactly into the paradigm
of the backward error analysis. We emphasize that this doesnply that research into other
paradigms, including exact arithmetic and others, shoatde vigorously pursued. Our only
claim is that in the proper context (uncertain input date,liackward-error analysis is a useful
approach, and it should not be neglected.

We also present a brief summary of how the backward errolysisalk used in numerical
linear algebra, and a simple example is given to show thatkbl@vns of methods, of the sort
described for the convex-hull problem, are quite typicabtier fields. Then, a description of
the combined backward/forward error analysis is given, gnglied to the planar convex-hull
problem. These ideas were developed several decades adoabwork [9, 10] is very much
relevant today. As already mentioned, the first task is tondedixactly what is meant by the
“inadequacy” of a solution to the convex-hull problem. We #ren in a position to do gertur-
bation analysid10] to examine the effects of perturbations of the inpuadathether they are
caused by original uncertainty or by subsequent applicatifoa stable numerical algorithm).
Finally, we discuss Fortune’s implementation of the Gratsman, which we will callGra-
ham Fortune This implementation is numerically stable for the planamex-hull problem, as
proved by Fortune [7]. Indeed, a slight modification of thgagithm will produce a sequence
of points that lie on the topological boundary [11] of theimgex hull, and this convex set is

the correct convex hull for points that have been relatiypalgturbed by a small amount. Thus,



CHAPTER 3. FLOATING-POINT ARITHMETIC FOR... 27

we can use a pure backward error analysis to affirm @rahamFortune provides a solution
that is as good as we can hope for, given that the data is ancert

The situation for the geometric problem of finding planan@nhulls is, therefore, closely
analogous to the case of solving linear equations. In batbsthere exist unstable algorithms
(Grahamincremental and Gaussian elimination without pivoting, respectiyebnd in both
cases there exist stable algorithn@&ghamFortune and Gaussian elimination with total piv-
oting, respectively). Also, in both cases there exist eXxemfor which unstable algorithms
produce complete nonsense, and this with no warning thahisgyis amiss. In fact, the only
breakdown in the analogy is that in the case of the geomatoiclgm, with the error criterion
used below as an illustration, the situation is mubghterthan for solving linear equations.
This is because the perturbation analysis, mentioned alsbvsvs that the problem isell-
conditioned which is not always true for linear equations. Thus, whemzen a stable algo-
rithm may produce an unsatisfactory answer for the problem= b (if A is the Hilbert matrix,
for example), a stable algorithm such@shamFortunealways produces a satisfactory answer

for the convex-hull problem.

3.2 Backward error analysis for linear-equation solvers

For linear equations, the problem is defined by the p&ib], and the solution is defined hy

such thatdx = b. We proceed as follows:

a. Measuring error in the solution spaceA measure of the inadequacy of an approximate
solutiony, for the problem[A, b], is the relative erro ‘ﬁgﬁ/”, where| - || denotes any

convenient vector norm [10].

b. Perturbation Analysis. A simple argument shows that #A is a matrix representing
perturbation of the elements df, and if §b is a vector representing perturbations of the
elements ob, then the solutiory of the perturbed problerfA + §A, b + §b] satisfies

(neglecting second-order terms):

|z — yl —1y JIOA[l llob]l
< [lAf- 1A= + : 3.1)
] 1Al ol
where|| - || is now used also to denote a matrix norm subordinate [10] éovéttor

norm introduced above. The quantjtyt|| - ||A~!|| is usually referred to as threondition
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numberof the problem: for a trivial matrix like the identity it withe equal ta, while for

a Hilbert matrix of even moderate dimension it will be versgin The condition number
represents the amount by which a given perturbation of thetidata forAxz = b will

be magnified in the solution. A problem with a low conditiommher is said to bevell-
conditioned and a problem with a large condition number is said tdllbeonditioned
The two cases are illustrated by the lines linking problemsdlutions in Figures 3.1
and 3.2, where” denotes the class of problems, asidlenotes the class of solutions
[12]. In Figure 3.1, a small perturbation in the problem progs a small perturbation
in the solution, while in Figure 3.2, a small perturbatiorthe problem produces a large
perturbation in the solution. (The meaning of the unfillectleis in the figures will be

explained immediately below.)

Figure 3.1: Well-conditioned problem.

c. Stability proof. The third step is to seektablealgorithms, that is, algorithms that pro-
duce a slightly incorrect solution to a slightly perturbemigem [9], as illustrated by
the unfilled circles in Figures 3.1 and 3.2. (This describesmabined backward/forward
error analysis; if the words “a slightly incorrect solutiazan be replaced by “the exact
solution”, so that there is no need for the unfilled circleSinthen we have a pure back-
ward error analysis.) Gaussian elimination with total pivg is stable for the problem
Ax = b. Such algorithms produce answers that are, for practicglgses, as good as the

best answers we can hope {ewen using infinite precisionif the “slight perturbation” is
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Figure 3.2: lll-conditioned problem.

smaller than the uncertainty already in the data. Furthezniny the perturbation analysis

of step b, above, the size of the error in the solution can tmated.

It should be observed that the concept of problem conditod, the corresponding pertur-
bation analysis, are considered prior to any discussiomuwfarical methods [10]. This reflects
the central idea of the backward error analysis: if the etegmef A contain uncertainty that may
be as large a%, and the elements df contain uncertainty that may be as Iarge%%%,
then the relative erro&%—ﬁ/” may be as large as is indicated in (3.1). This means that even a
exact, infinite-precision algorithm cannot help us avoidrgé error in the solution, in the case
of an ill-conditioned problem, because of the effects ofitieerent uncertainty in the data (see
Figure 3.2). It also means, however, that if we can find anrdlguo that produces a solution
that is the exact solution, of a problem that differs fromghen problem by an amount smaller
than the inherent uncertainty in the data, then the alguritlas produced an answer that is as
good as the data warrants [9].

We emphasize again that a stable algorithm does not netggsaduce an answer with
small error: it only produces an answer with error on the oodéhat which we must accept in
any event, due to data uncertainty (see Figure 3.2, wherentilked circle inS indicates that
the method has done a good job of solving the perturbed prglidet has nonetheless produced
an answer with large error). The backward error analysis do¢ “overcome” the problem of

numerical error: it merely allows us to identify algoriththst produce errors of the same order
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as those that we must accept anyway.

We conclude this section with the remark that computatigg@metry is by no means
unusual in the fact that there are theoretically exact #@lyos that produce nonsense when
implemented in floating-point arithmetic. For example, e tase ofAx = b, suppose we

attempt to solve the sequence of problems

¢(p) 1.0 [ar ] _[10 N
[1.0 0-0]{902]—{1.0]’ p=01,02,...

whereg(p) = p? — 0.01. Forp = 0.1, the correct answer ig; = 1.0, x5 = 1.0, but Gaussian
elimination without pivoting, as implemented in the follmg program, returns the answer
x1 = 0.0, z2 = 1.0. There is no division by zero, and no overflow or underflow esauring
the execution of the implemented algorithm. In the evatwedifb[1], however, the first term on
the righthand side of the assignment statement is shiffeti@end of a register and ignored.

double rho = 0.1, phi =rho » rho - 0.01 ;
double A[2][2] = {{phi, 1.0} , {1.0, 0.0}} , b[2] = {1.0, 1.0} ;
doubl e x[2] ;
[*xxxxxxxx Triangul ate A *#xxxxsxx*x/
double mult = 1.0 / A[0][0]
A1I[1] = AL1][1] - mult = A[O][1] ;
b[1] = b[1] - mult = b[O] ;

[ **xxxxxx*x Back-substitute *xxxx*x*%x/
x[1] = b[1] / A1][1] ;
x[0] = (b[O] - A[O][1] = x[1]) / ALOI[O] ;

cout<<" The result is: "<<x[0]<<" "<<x[1] <<endl

/*********************************/

The result is: 01

3.3 Backward error analysis for planar convex hulls

We will now provide a parallel development for the problencofmputing convex hulls of points
in the plane. In this case the problem is defined [2] by a firgte§vectorsS = {a;,...,a,},
where eacla; lies in the plang. An algorithm to compute the extreme pointsShivill normally

select a subsdltiy, ia, . .., iy} Of the indices{1,...,n} and declarda;,, ..., a;,, } to be the

“We denote the points hy in order to increase the parallelism with Section 3.2.
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solution, but since we are envisaging the possibility ofartainty in the problem data, we will
permit any non-empty finite set of vectdrs= {y,,...,y,,} as a solution, where eagj) lies

in the plane.

3.3.1 Step a: measuring inadequacy

If {v1,..., v} is afinite set of vectors in the plane, defingv({v1,...,v;}) C R? to be the
convex hull of the set of vectors. We will define the distaddeetween two distinct solutions
Y! andY? of the convex-hull problem to be infinite if far= 1 or 2 the vectors it do not
actually lie on the topological boundary a@fnv(Y?); otherwise is defined to be the Hausdorff
distance betweervnv(Y'!) andconv(Y?). Definingd(Y?!, Y'!) = 0, the distancel is a metric.
Let{a;,,...,a;, } be asetof points lying on the topological boundary@fv({ai,...,a,}),
and such thatonv({a;,,...,a;, }) = conv({ai,...,a,}). Theerror E in a solutionY is
defined to be

E =d({ai,...,a;,},Y)/M, (3.2)

whereM is a fixed upper bound for the absolute value of any coordioid@ay point [7]. (Thus,
for a solution to be considered accurate, its points areinedjuo actually lie on a convex
polygon [13]). In Figure 3.3, the solution to the problem defl by{ai, a2, as,a4,as5} is

{a1,a3,a4,a5}. The solutionY” = {a1, as, as, ay, as} has infinite error, sinces is not in the

a points in solution

a4

Figure 3.3: Example convex-hull problem.
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boundary ofconv({ai,as,as,as,as}), whileY = {a1,as, a4, as,y} has error as indicated
by the dashed line.

It is possible to define other measures of distance betwdatios of this probleme.g,
we might penalize solutions with redundant points on thendany of the convex hull.

We will use the simple criterion (3.2) to illustrate our piwhich is that if we wish to
prove rigorous theorems about the inadequacy of computetists, we must give a careful

definition of inadequacy.

3.3.2 Step b: perturbation analysis

If the input dat&{a, . .., a, } is uncertain, then the true problem that we wish to solvefisdd
by{ai+dai,...,a,+da,}, where eaclia; is a vector in the plane. Suppose t ,?'””22 < A,
i=1,...,n,where| - ||2 denotes the Euclidean norm. This means that the relatioe ierthe

computed solution could be as large/ag’2, due to the uncertainty in the input data alone, since
the Hausdorff distance betweemuv({a,...,a,}) andconv({a; +da1,...,a,+da,}) has

the achievable upper bound Afy/2M. Thus, if criterion (3.2) is used/2 can be taken as a
condition number for the problem of planar convex hulls.

In comparison with the linear-equations case, this is a gatisfying result: the problem
of computing planar convex hulls is always well conditionéith this respect, the convex-hull
problem, with the metric we have used, is closer to the prolidé& computing the eigenvalues
of a real symmetric matrix than to the problem of solvidg = b: the symmetric eigenvalue
problem is also always well-conditioned [10]. It should served, however, that if a different
metric is used to measure distance, then a different petiorbanalysis will result. For exam-
ple, if only the distance between points in the convex huihiduded in the metric, then the

convex-hull problem would be ill-conditioned.)

3.3.3 Step c: stability of algorithms

Just as in the case of linear equations, there exist botkaklesand stable algorithms for the
planar convex-hull problem, when criterion (3.2) is usedl particular, it has been shown [2]
that Grahamincrementalis unstable. This algorithm should therefore not be usest §s we
should not use Gaussian elimination without pivoting tovecdxz = b). On the other hand,
a slight modification of th&srahamFortune algorithm [7] is numerically stable, that is, the

computed answer is such that it is the exact solution for sug®ed problem for which the
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relative perturbation bound in problem space is at nid@ste), wheree is the relative error of
floating-point arithmetic. The algorithm uses a functiolezhTriangle Tes{7], first to establish
lists of candidates for upper and lower chains, and secaodiecide whether or not to retain
themiddlepoint of possible triplets in these chains. The proof of itsttlepends orbothuses
of TriangleTestto show, for example, that slightly perturbed versions ef tandidates for an
upper convex chain satisfy the following condition: eittieey were retained and form part of
an actual upper convex chain, or they were not retained metheless lie above the line deter-
mined by the two points with minimum and maximusrcoordinate. The slight modification,
referred to above, is to use thepriori bounds for finite-precision floating-point arithmetic to
implement the test of a “left turn” iiriangle Tesin a fail-safe way, so that an ambiguous point
is considered to be part of a “left turn”, and dropped from ¢benputed convex hull. (This
modified test is described in detail elsewhere [13], and adlairtest has also been used for

another purpose [14].)

3.3.4 Consequence

The consequence of these well-conditioning and stabdithis: not only is it true that a stable
algorithm such a&rahamFortunewill always produce an answer that is scarcely more in error
than we should expect because of data uncertainty (thidugian follows from stability), it

is true in addition that the actual error in the computed tamuis small (this follows from
well-conditioning). We are in the situation illustrated Figure 3.1. The overall situation is

illustrated in Figure 3.4, wherg, is the true problem to be solveg, is the problem presented

P S
pl@ @
P2 . / \.
s\ 3 O

Figure 3.4: Overall situation.
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to the method, angs is the problem for which the method actually finds an exaattgmi.

This is a pure backward error analysis, with a well-conditid problem. Even if (3.2) were
replaced by a criterion that rendered the problem ill-chodéd, however, it would remain true
that the algorithm always produces an answer that is sgangete in error than we should

expect because of data uncertainty.

3.4 Practical implications for three-dimensional applicdions

The convex-hull problem discussed in the principal refeegj2], and analyzed in our previous
paper [1] and in Section 3.3, above, is only two-dimensiohat it has direct application to a
practical three-dimensional problem. Extruded objedis;u$sed in Section 3.4.1, are widely
used in solid-modeling systems. (Much more general extngsthan those discussed in Sec-
tion 3.4.1 have been used [16]). We use the example of gussiagt the well-formedness of
extruded objects to illustrate the rigorous use of floapgit arithmetic in a geometric appli-
cation. Then, in Section 3.4.2, we give a brief commentaryhenuse of such arithmetic for

more difficult geometric problems iR3.

3.4.1 A simple application inR3: extruded objects

Form =0,...,M — 1, let R™(¢) be a planar Bézier curve of degreelefined by the control

pointsQ™ = {Ry",R",...,R}'}:

v
R™(t) = ; <’:> (1- )" R™ 0<t<1.
The control points lie ifR?, and they are assumed to satisfy the conditi®fs = R{'™,
m =0,...,M — 1, where indices are calculatedodulo)M . Since a Bézier curve interpolates
its first and last control points [15], the sequence of cud&Yt), m =0, ..., M — 1, defines
a simple closed curvE in the plane, provided that no curve self-intersects, nacdijt pair of
curves mutually intersect other than at prescribed endgand no two distinct curves intersect
(see Figure 3.5).

If we are given also a direction vectdwith ||d||; = 1, and two scalarg; and\,, A; < A,

then these data define the extruded object

E={xcR3: N <d-x <)\, Oz —(d-x)d] € Int(T')},
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RO(t)
R(t)

Int(T)

/ o

R3(t) R%(t)

Figure 3.5: Simple closed curve formed of Bézier segmemts 5).

whereQ is the rotation matrix that carriaginto [0,0, 1]7, andInt denotes the interior of the

simple closed curve. An extruded object is illustrated igure 3.6.

Figure 3.6: Extruded object.

To decide the question of well-formednessépfan algorithm must check the three condi-

tions mentioned above:

1. no curveR™(t) may self-intersect;

2. there may be no intersections, other than at prescribeloants, between adjacent pairs
of curvesR™(w), 0 < w < 1, and R™*(v), 0 < v < 1, where R = RJ"™,

m=0,....M —1;
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3. no two distinct curve®™! (w) and R"*?(v), m1 # mgy, may intersect.

Necessary and sufficient conditions for these three camditio be satisfied have been given
previously [6], along with less sharp but more tractabléicieht conditions. These are, respec-

tively for each case:

1. Letq = {R7}, — R” : i = 0,...,v — 1}. Then a sufficient condition for non-

selfintersection oRR™(t) is that0 ¢ conv(q) [6].

2. We first make the change of variables= 1 — w and rewriteR" (w) as R™(u) =
Yoo (Hui(1—w)" T R, so thatR™ (u)]u—0 = R™ " (v)|s=0. LetQ), = {R}""! . —
RM:0<i<v-10<j<viandQy={-RJ,;+ R} :0<i<v-10<;<
v}. Then a sufficient condition precluding intersection of tve adjacent curves is that

0 & conv(Q),) and0 & conv(Q}).

3. The classical sufficient condition ensuring that didtincurves R™!(w) and
R™(v) do not intersect is that the convex hullenv({R;",..., R}"}) and

conv({Ry"?, ..., R}'*}) of their control points should not intersect [15].

Thus, in each case, guaranteeing the sufficient conditiivias solving a planar convex-hull
problem. Application of Criterion 2.1* and Criterion 2.2 simplified by using the correspond-
ing theorems [6] Theorem 2.1* and Theorem 2.2*, which tramsfthe two criteria into state-
ments about the maximal perturbation of the data that willaamse unwanted intersections.
These maximal perturbations are, respectivélyt (0, conv(q)) andmax{dist(0, conv(QY)),
dist(0, conv(Qy))}, wheredist denotes the separation betwekand the convex set.

The elements defining the setg, W Qy,  conv({R(™,...,R}"}) and
conv({Ry"?, ..., R]**}) might be entered by a user indicating a pixel on a screen. ,Thus
the user is uncertain about the exact value of the pointsepted to the planar convex-hull
algorithm. If R} is the value stored by the system, denoteR}y + 6 R;" a value envisaged
by the user, where the double symiddR?* denotes a vector iR2. The user may be ignorant
of (and perhaps indifferent to) the exact valueRif' + d R;", and capable only of specifying
a bound on||6 R}"||2. In the present context, it is reasonable to suppose thatebebound
available for||d R)"||2 is, say,10~3|| R} ||».

Additional uncertainty in the input data€., the input data for the convex-hull algorithm)

is added by the numerical calculations necessary to contpetelements ofy, Q., Q;,
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conv({R(™, ..., R }) andconv({R("?, ..., R}"?}), and to perform the rotation contained
in the definition of€. Bounding this additional uncertainty can be done usingdsteda pri-
ori bounds on floating-point arithmetic [10], and in our caseghiadd relative uncertainty
on the order ofl0~!4, assuming that double-precision floating-point arithmételative error
e = 10716) has been used. Note that the uncertainty associated eiimplt data is different
for each of the convex-hull problems to be solved. Similate uncertainty implicitly associ-
ated with the input data, by Fortune’s stability proof, vailso be different for each convex-hull
problem. But if each sufficient condition is satisfied indegently, therf will be well-formed.
Independently of the exact additional uncertainty, thaltaill overwhelm theO(ne) un-
certainty introduced bysrahamFortune (see Section 3.3.3). In the largest of our convex-hull
problems, we have = v(v + 1). Thus, for example, if cubic splines are used~= 3 and
n = 12. Use of exact arithmetic would permit us to eliminate €h@:.c) uncertainty, but not the
input uncertainty, which is larger by a factor of many bifigo And the user must live with the

effects of the input uncertainty in any event.

3.4.2 Other problems

The topic of providing an analysis of the sort described irti®a 3.3 for floating-point-
arithmetic implementations for more complicated problesnsh as Boolean operations on
trimmed-NURBS representations, has been much studiedtbgdast two decades; whether
this will prove tractable, however, remains an open quedtiy, 18]. It is quite likely that
certain parts of the necessary algorithms will require anpgntation using more expensive
arithmetics. There is no claim in this paper that ordinaratfltg-point arithmetic will always
be sufficient—as stated in Section 3.1.2, we only claim thataybe sufficient, in spite of the
existence of unstable algorithms such as those discusseé.ab

A framework for a backward error analysis, suitable for tlhsecof Boolean operations
on objects represented by internally inconsistent trimiR&RBS representations, was given
elsewhere [18]. The fundamental difficulty in providing dihems in this case comes from the
problem of topology resolution [19]. There are many gooaatgms for computing intersec-
tions between NURBS surfaces [19, 20], but to rigorouslyoaot for short intersection edges
between surfaces, and inconsistent decisions based osdha amall numerical tolerances, is
difficult, especially in the case where several surfacesramved. On the other hand, it has

been shown that certain computed intersections of surfeaede viewed as the exact inter-
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section of slightly perturbed surfaces [21]. This is an m8akingredient for a backward error
analysis for Boolean operations on trimmed-NURBS repragiems. Furthermore, rigorous
backward-error analyses are more easily obtained in thelsimase of objects represented by

locally-planar subdivision surfaces [22].

3.5 Conclusion

In order to prove theorems about the adequacy of numerigatitims in computational geom-
etry, we must define how to measure adequacy. Furthermadhe aase where data is uncertain,
it is worthwhile to do a perturbation analysis, and seeklstablution methods, in order to per-
form a backward error analysis. Carrying out these stegwindntext of the planar convex-hull
problem shows that the numerical difficulties describechenrincipal reference [2] are unex-
ceptional. Furthermore, these results carry over to simpldications in three-dimensional
solid modeling. On the other hand, whether it is possibleatoycout a backward error analy-
sis for floating-point arithmetic, for problems such as Bawmi operations for timmed-NURBS

solids, remains an open question.
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Chapter 4

Reliable joining of surfaces for

combined mesh-surface models

The joining (or merging) operator is a very important prig@toperator for Boolean operations.
It can be applied to different geometric representatiomsluding subdivision-surface models
and trimmed-surface models. In this work, we study the dattpresentation, which is a com-
posite model containing both a NURBS surface patch and agwiar mesh patch. A naively
designed joining operator can produce very poor resullis,tdangles along the target joining
curve in the final result (triangular mesh) can be turneddgsiown by the joining process,
even in the case when maximum auxiliary information is amd. Our motivation for this
work is to seek a reliable joining algorithm taking into asoba normal error criterion.

To evaluate the result produced by our joining algorithmd aiso to guide the joining
process, we first define two error measures, ahsolute errorand thenormal-vector error
The Whitney extension theorem is then used as a theoretictbgeerform the joining. Its use
guarantees that in the joined mesh patch, the absoluteveittdoe no greater than that already
present along the boundary of the input mesh patches, asidjts will be smaller than or equal
to the maximum slope along the boundary of the two input mesbhes. Two different cases
can be treated with our algorithm, based on the availalilitgn explicit common edge curve
which represents the boundary between the two patches trteal] Implemented results are
also presented.

The preliminary work that deals with a single joining segieas presented in the IMCS

International Symposium on Scientific Computing, Compétgthmetic and Validated Numer-

41
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ics (SCAN), Duisburg, Germany, September, 2006. The camplerk included here was pre-
sented at the 21st European Conference on Modelling andi&ionu(ECMS), Prague, Czech

Republic, June 2007, and appeared in the conference piingeed
The main contributions of this work are:

1. we propose to use the Whitney extension theorem as thesthea base for our joining

algorithm.

2. ajoining algorithm is proposed to merge combined mesfase patches, which can deal

with two different cases based on the availability of certixiliary information.
3. two error measures €. absolute error and normal-vector error) are proposed tieghie
joining process, and evaluate the quality of the joint resulface.
Small corrections:

1. In page 53 line -3: should read “approximately 30 floatiiat operations for each

piecewise linear segment”.

2. Two footnotes have been added (pages 49, 52).
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Abstract

Algorithms to join two mesh patches along an edge are of iniategbractical interest in the
context of higher-level operations on models of objectsnfedl by such mesh patches. Such
models are widely used in graphical visualization and sittioih, shape interrogation, and other
areas. Thus, there are now available methods to join twoigslmh surfaces along a common
edge curve, as well as methods to join mesh patches thatxamate given trimmed-surface
patches. The latter problem is studied in this paper.

The auxiliary information available to the algorithm, iretbontext of surface joining, varies,
depending upon circumstances. In particular, it may or nzdya true that an explicit common
edge curve, representing the boundary between the twogsatohbe joined, is available as
part of the data. Even in the case, however, when maximaliayxinformation is available
algorithms are not necessarily reliable. For example, gustihat do not use normal-vector
error criteria, to measure the discrepancy between thasifatch and the associated mesh
patch, can produce poor results, due to large changes irotheahdirection of a triangle near
the mesh boundary. It is even possible to give examples wherériangles near the joined
boundary are turned upside down by the joining process aatimputed meshes self-intersect.
In this paper an algorithm is presented that uses a proxyiormal-vector error criterion, and
the Whitney extension theorem, to produce reliable algord. Examples are given, and an
implementation is described.

Keywords:

surface mesh, joining, graphical simulation, shape-ngation models, normal-vector error
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4.1 Introduction

This paper is concerned with the problem of the reliableipgjrof surface meshes used in
combined mesh-surface models. Such models are of interegtaphical visualization of solid
objects, shape interrogation, computer-aided designyaiwh [1, 2, 3, 4, 5, 6, 7]. The joining
process is sometimes referred tosasving[1]. The main novel aspect of the work is the use of
normal-vector criteria, described below, to prevent foddof edges during the joining process.

A mesh patchis a surface made up of non-degenerate triangles lyifRpinAlgorithms to
join two mesh patches along a common edge are of immediatéiqaiainterest in the context
of higher-level operations on objects formed by such mesbhea. For example, methods
have been given to join two subdivision patches along a comeaige curve, specified R>.

In particular,combined subdivision surfac§8] were designed for this purpose, adgnamic
subdivision surfacef®] may be used to produce subdivision surfaces with harg@®ddpng a
given curve in space. Similarly, methods are available[filJ, Sec.3.4] to join together mesh
patches that approximate given trimmed-surface patchieg Iy R3. It is the latter problem
(surface-mesh joining) that is studied in this paper.

The auxiliary information available to the algorithm, iretbontext of surface-mesh joining,
may vary. Mesh solids formed by a trimmed-surface model lsalith a triangular mesh are
used in solid modeling [1, 3, 5] and in graphical simulatianZ, 4]. In the latter case, the mesh
model may be carried along with the surface model, or contpatkaptively during rendering,

given the current camera position. The trimmed-surfaceahisdllustrated in Figure 4.1.

IS

F F’
D @ !
M b

Figure 4.1: Two adjoining trimmed patches in surface modéh boundary curveb(t), t €
[0,1].
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The parametric domai is delimited by a collection of p-curves (a typical p-cunge i
denoted here by), and the restriction of the mappidg to D defines the trimmed patch iR3.

In addition, explicit boundary information may also be s Sometimes [3, 11, 12] this may
take the form of explicit curvel(t) taking values ink3, due to the convenience of having such
explicit representations available. This curve is analegim the common edge curve specified
for combined subdivision surfaces. Alternatively, exiplaundary information inkR?* may be
represented in other ways; for example, it may be repredameroximately by scan conversion
[1].

Even with an explicit boundary curve provided, joining aitfams are not necessarily reli-
able, and it is this fact that led to the development of therdtlgms described below.

We present joining algorithms for both cases: when an explicve b(¢) is provided, and
when it is not. The algorithms described are based on theasse gupplement to absolute error
criteria) of normal-vector error criteria [13, 14, 15] fdret discrepancy between the surface
patch and the mesh-patch. A difficulty, with algorithms tthatot use such criteria, is that they
may cause large changes in the normal direction of a triamgge the joined boundary, which
may in turn introduce undesired visual effects. In factoiild even happen that triangles near
the boundary are turned upside down, so that computed mesHdatersect. The nature of
the difficulty is illustrated in Figure 4.2, in the case wh@iging moves mesh vertices on the
basis of interpolation along a polygonal path that is notraigtt line. In both illustrations,
vertex!; is paired with vertex, and vertex, is paired with vertex,. The intervening joining
vertices are obtained by joining the midpoints of pairs ahfmoobtained by linear interpolation
along the polylined;-l>-I3-l4, andr{-ro. In the first illustration, this leads to a well-behaved
triangulation, but in the second illustration, the positad the vertex, is different: it is further

towards the interior of the segmentr,, but still within the joining tolerance, relative iq-rs.

Figure 4.2: Sewing based on midpoints of pairs of pointspakated along mesh edges.
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This phenomenon is called “folding” [1], and can result in egim triangle that has flipped, as in
the second illustration of Figure 4.2. Such phenomena cavdided by using normal-vector
criteria, and in fact, if the normals of the triangles in thegi-patch can be bounded, they can
be used to rigorously exclude the possibility of extraneiotersections between neighboring
mesh-patches [16, 17, 18]. In the context of graphical sati, it is clearly of interest to do
So.

The algorithms presented here use the Whitney extensiardime[19] to ensure that a
proxy for the normal-vector error (defined below), and thecdlite error, should not be any
larger than the corresponding errors already present dlomgdges of the patch. Thus, in
addition to avoiding the difficulty described in the prevdgoaragraph, the procedure smooths
the input mesh patches, in the sense just described of einomimation. The algorithms apply
to the case of general trimmed patches, and we describe denraptation.

Whitney extension can be viewed as a way to perform transfinterpolation between
boundary curves. Amongst many other applications, it hag seggested for use as a meshing
method in [5]. The algorithms below will adjust the vertia#fshe input mesh patch in a way
that constrains them to lie in a transfinite interpolant d=fiby Whitney extension.

Numerical properties of one of our algorithms were discdssethe special case of planar
patches with straight-line boundaries, in [20].

Related areas of work include mesh simplification (finding.a¢oncise, yet geometrically
faithful .. .representation of a surface ...” [14, Sec. fdmeshing [14, Sec. 1.1][15], [5, 21]
and mesh fairing [22]. A good overview is given in [14]. Yehet work deals with computation
of meshes over imperfect geometry [3, 23], and methods feahmepair [2, 4, 24, 25].

Other work on meshing can be related to ours in another wagglhya by examining the
metrics used to compare surfaces. The general concept ab#wute error in a mesh, relative
to a given surface, is ubiquitous (see for example [26]).iAghe reference [14] gives a good
overview. As already mentioned, other authors [13, 15] hiatreduced normal-vector criteria
similar to ours. For example, in [15], although priority isv&n to other mesh-smoothness
criteria, it is verified from time to time that a criterion,nsilar to the mean-square criterion
discussed in Section 4.2, is not above a certain threshalche®&hat different criteria are used
in other applications. For example, in the context of snakesiangular meshes, [27] refers to
bending-energy and curvature-distribution criteria tratdifferent from but nonetheless similar

to the height-field-slope criterion introduced below.
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4.2 Error criteria to measure mesh-patch quality

One measure of the quality of a mesh paldhis theabsolute error Letv,...,v, € R? be
the vertices of\/, andT7, . .., T, its triangles, wherd; =< v; ,v;,,v;, >, 1 < iy, i2,i3 < n.

We assume that the Jacobian of the mapgihig of full rank, i.e., the rank is equal to 2. Let
n(u,v) = (Fu(u,v) X Fy(u,0))/[[Fu(u,v) X Fy(u, )]

be the unit normal of the surfadg at (u, v), and let the height(u,v) € R be the scalar such
that
M (u,v) = F(u,v) +n(u,v)n(u,v) € [M],

where| M | denotes the mesh viewed as a subsdtfif a unique suchy exists. We suppose in

fact that for all mesh patches considered, the mapping
M| M|~ [0,1]?

is well-defined and injective. Thus, it is assumed that forane | M

= dist(m, F') = min |m —
In| = dist( ) ;nelgll yl|

is uniquely defined, and furthermore, that the correspan@ioint (u, v) is well defined and
lies in [0, 1]2. (It follows that the mapping" itself must be injective, at least on the part of the
domain of interest. Note also that the symlfbhas been used to denote both the mapping and
the image of the mapping, which is a pointset.)

A possible definition of the absolute error M is the supremum ofiy| over I C [0, 1]?,
where! is the inverse image df\/|. Meshes are in practice close enoughffD] that the
assumption above, thag| is well defined, does not present a problem, provided [0, 1]2.
(The mesh must be close relative to the local minimum normelature ofF'.) On the other

hand, there is a theoretical difficulty in simply defining #igsolute error to be

sup || (4.1)
(uw)el

because there is nothing in this criterion to force full gage of the surface patch by the mesh.

For example, a degenerate méghconsisting of a single vertex lying iff[ D] would produce
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an error of zero. As observed in [14, Sec. 2.1], use of (4.uats to using a one-sided version
of the Hausdorff metric. In spite of the difficulty we havetjdescribed, this approach is often
used in practice [14], and we will do so here. The coverageaiftital meshes is usually quite
good.

We also assume tha lies strictly inside[0, 1]?, i.e., that the patch is trimmed on all sides.
There is no theoretical problem in the opposite case, sincmally [26] the mappingF' is
defined outsidé0, 1]2. If, however, the inverse image of a point|i | lies outside0, 1]2, there
may be numerical difficulties in the calculationpf

A second measure of the quality f is thenormal-vector error defined here as the largest,
over all triangles’’;, of the maximum slope (in absolute value) of the height fieket.7; be the
inverse image of’; under M, and letL; be the smallest value df for which ) satisfies the

Lipschitz condition

In(p1) —n(p2)| < L-|p1 — pa|

for all pointsp; = (u1,v1) andpy = (u2,v2) in I;. Our second criterion is themnax; L; .
To relate this criterion to similar normal-vector measunéduced elsewhere [13, 14, 15],
we note that

sup [[n(u,v) — nj|
()

(wheren; is the unit normal of the trianglé};, and the supremum is taken ovg} is analogous
to the mean-square norm [14, Sec. 2.3.1] [15h0f, v) — nj, normalized to allow for the area

of the regionl;:

1/2
1 /

——— | |n(u,v) — n;j|Pdudv
(Z;) /Ij ’

[n —mnjll2 = Trea

It is, however, a more strict criterion, since

[n —njl2 < sup [[n(u,v) — nyll.
(u,v)
On the other handsup,, ) [|(u, v) — n;|| and the criterion;, defined above, are equiv-
alent metric$, a fact which follows from our assumptions about the JacobiaF’, and the

Implicit Function theorem. This justifies the terminologydrmal-vector error” for the maxi-

1Two metrics are equivalent if the unit sphere of each can Iéagwed in the other by multiplying a positive
constant.
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mum slope of the height field.

It was stated in Section 4.1 that our algorithms control anfgroxy for the normal-vector
error. This proxy is obtained as follows. First of all, theg ofr on I; is replaced by the slope
measured only between the three corner points; 0T his process can increase the error in the
case of long thin triangles, but the difficulty can be avoibgdnesh-edge splitting. (The error
estimates given below, in Section 4.3.4, take account opttential error introduced in this
way, i.e, it is not assumed that mesh-edge splitting has been useduoe the error.) Secondly,

in order to reduce computational cost, we estimate; L; by using the Whitney theorem with

the ordinary Euclidean norm @f, — p,, over all of [ = ngl I;, which could in principle (see
Section 4.3.1) lead to the minimization notafix; L; but, rather, the minimization of a certain

upper bound fomax; L;.

4.3 Joining algorithms

As mentioned in the introduction, joining algorithms thatrtbt use normal-vector criteria may
cause large changes in the normal direction of a triangle theaboundary. The nature of the
difficulty was shown in the second illustration in Figure 4Taus, even though the input mesh
patches satisfy the assumptions of Section 4.2, and havk lsight  along the edges of the
two patches, folding may occur within (or approximatelyhirf) the curvilinear surfacé’. In
this section we present algorithms that avoid this probkema, which, at the same time, smooth
the mesh. Both of these are of obvious importance in grapsiicailation. An example will be
given below, in Section 4.4, which shows the possible ikef$ of folding.

We begin by giving a brief summary of Whitney extension, vhis used in both of the
algorithms presented. We then give an algorithm in the cdsenwhe boundary cuni(t) is
provided as part of the input, and in a subsequent subseet®deal with the opposite case, by
constructing ourselves a boundary cubye) based on the input mesh patches. The algorithms
adjust the mesh vertices to ensure that the proxy, mentiabede, for the normal-vector error,
and the absolute error, should not be any larger than theseah@ady present along the edges
of the input patch. In fact, they will not be any larger thangl associated with the boundary
curvesb(t) bordering the mesh patch. This of course representsparyof the error present
in the input data: the error in the edge of the input mesh piggelf could in principle be even

larger (and this fact makes our bound even more attractive).
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4.3.1 Whitney extension

As mentioned at the end of Section 4.1, our algorithms adjgsvertices of mesh patches in a
way that constrains them to lie in a transfinite interpolagfirced by Whitney extension. This
process is referred to asprojectionin the algorithm outlines given below. The reprojected
mesh interpolates the curvéét), and the assumption of injectivity @¢7 !, at the beginning
of Section 4.2, includes in particular the assumption thatan compute the heightug, vo)
corresponding to a giveh(ty) € R3, where(ug,v9) = M ~1(b(ty)). This is done, as for
vertices in a given mesh patch, by computifigt (b(¢y), F'). (As in Section 4.2, the assumption
requires thab(to) be close taF'[ D], relative to the local minimum normal curvature Bf)

Now, suppose given a mesh patth with m edges, and corresponding boundary curves
b (t),k =0,...,m —1,t € [0,1]. Lete(p) be the heighty(M ~'(b*(t)) defined for a point
p € OR, the inverse image ofb"(t) : k = 0,...,m — 1,t € [0,1]}. We suppose thalR is
the boundary of a well-defined regidh C [0, 1]2.

The optimality of the reprojection obtained by Whitney exdion can be described as fol-
lows. We view the height associated with the curb'%ét) as a discrepancy between the surface
dataF" and the boundary data. Lettp) be the discrepancy(p) defined byM 1 (b*(t)) = p,

i.e., the discrepancy defined by the boundary cubfds) for k = 0,...,m — 1 andt € [0,1].
Then, if the reprojected mesh (denotkf is to interpolate the boundary curves, the maximum

absolute discrepandy(p)| of M, measured ovaall of R, cannot be less thanax,cor |¢(p)

and the maximum slope of the reprojected mesh over alt ohnnot be less than the slope on
OR, defined by

L = sup |6(p1) — E(p2)| ) (42)

P1,P2€OR, P #Py le - p2H
This follows from the fact tha®R C R.
Now, a continuous extension efp) from dR to R will be calledWhitneyif it satisfies the

Lipschitz condition

le(py) — €(P2)| < L-[|py — po|

everywhere onR (and not just on the bounda@R). There exist [29] a bracketing pair of
extensiong(p) andu(p) that are Whitney, and such that for any extensi@) that is Whitney,

we have

l(p) <e(p) <u(p), peR

(The explicit definitions of(p) andu(p) are given below, in (4.3) and (4.4).) Furthermore, if
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we take the average

thena(p) is Whitney, and

la(p)| < sup le(q)|, p € R.
qEOR

Thus, usingu(p) to reproject the mesh, as we do below, provides an exterisatias absolute
error no greater than that already present along the bowrifr and which has slogeno
greater than that already imposed by the slopg(pf on OR. It is therefore optimal (and the
errors minimal) in the sense that we cannot do better.

In [28, Sec. 3.5] an alternate but computationally more aspe version of the Whitney
theorem is given, appropriate for severely non-convex dasnal here is a possibility in such
cases, if the ordinary Whitney theorem is used, of overregton ofmax; L;. The practical
risk is small. Also, there exist [19] extensions that are sther than theC°-continuous ex-
tension described above, when the data along the boundamdsth. These might be used
to permit specification of joining with a given level of camtity. We have not explored this

possibility.

4.3.2 Case 1: Theé"(t) are provided as input

The outline of the joining algorithm, in the case when therutary curves” (t) are provided

as part of the input, is as follows:

1. Project the vertices; of the input mesh\/ into [0, 1]? in the u-v domain, to produce
aprojected mesh(There is of course an approximation involved here, siheeiriverse

images of triangled’; are typically curvilinear sets in the-v domain.)
2. Project a piecewise-linear approximation of e&€ft) into [0, 1]2 in theu-v domain.

3. Remove a sufficient number of peripheral triangles fromgiojected mesh (in the-v
domain) to guarantee that the projected mesh does not dxégiodid the projection of the
boundary curvebk(t), but with at least one layer of triangles removed from thephery
of the projected mesh. The remaining part of the projecteshmell be referred to as the

central meshSee Figure 4.3.

2Here the slope is not the slope along the boundary: therel dmvariation across the interior &%
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4. Triangulate the region between the projection of the dawn curves and the central

mesh. (This will be referred to as the triangulation oféxeernal region See Figure 4.3.)

5. Reproject the vertices of the combined mesh (the centeshnand the triangulation of

the external region) t&?> using Whitney extension, as described in Sec. 4.3.1.

6. Merge the reprojected combined mesh, along the joint dayn(in %) between the two

parts of the combined mesh, to obtdif

central mesh projection of
boundary curves

external region

u

Figure 4.3: Meshing domain.

The projection of the input mesh (step 1), and of the cutﬁés) (step 2), can be dealt with
in several ways [6, 30, 31, 32]; here we simply used the Fgt&teeves gradient algorithm
provided in the GNU Scientific Library [33].

The reprojection (step 5) requires calculation of the fiomst/(p) andu(p), mentioned in

Sec. 4.3.1. The functiori$p) andu(p) are defined by

I(p) = sup{e(q) — L-|lp—4qll}, pER, (4.3)
gcdRr
and
u(p) = qienafR{E(q) +L-|lp—qll}, pER, (4.4)

[29]. Due to the use of the piecewise-linear approximatisief{ 2), the calculation of the
supremum in the definition dfp), and the infimum in the definition af(p), together require
only 8 floating-point operations for each piecewise-linear segme

The triangulation of the external region (step 4) is donagisi slightly modified version

of Ruppert’'s Delaunay refinement algorithm [34], namely ¥heant [35]. Suppose that the
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triangulation producing the projection mesh is done ushmg ¢ame algorithm. Then, be-
cause we remove at least one layer of triangles in step 3lldife that the minimum angle
in the boundary of the external region is at ledst 26.45 degrees, provided that this con-
dition is also satisfied by the projections of th&(t). Consequently, it follows [35] under
these hypotheses that the minimum angle in the triangukategtnal region is no smaller than
arctan|(sin 8)/(2 — cos(#)], which is approximatell21.96 degrees.

The merging required in step 6 refers to triangle splittirgewthere are extra vertices along
the boundary, between the two parts of the combined mesim@ifrom the triangulation of the

external region.

4.3.3 Case 2: Certain of theb®(¢) are not provided as input

The procedure in the case when certain ofliﬁ(‘:t) are not provided is exactly the same as in
Sec. 4.3.2, except that before projecting a piecewisedliapproximation of the curves®(t),
it may be necessary to calculate surrogates for the missingdary curves. Note that we need
b"(t) (or a surrogate) for alt, even if no mesh patch is to be joined along certain edges.

If a curveb’“(t) is present, for a giveh, it is used as in Sec. 4.3.2.

If b’“(t) is not present, for a giveh, then there are two possibilities. If there is not an
adjoining mesh along edde then we simply use the boundary of the input mesh to compute
OR along that edge. If there is an adjoining mesh along éddlkeen we compute a piecewise-
linear median polyline, deleting loops if necessary. Fajdiauses no problem here: there is no

requirement that the external region be convex in ordeiidagulate it.

4.3.4 Error estimates

Use of the Whitney theorem (step 5) in Sec. 4.3.2 guarankedgtie slope of the reprojected
mesh points, between corners of the combined-mesh trigngi# be less than or equal to the
value of L along the boundary of the mesh. It does not, however, gusgahtt the minimum
slope of the actual triangles in the combined mesh will be than or equal td., as can be
seen by consideration of a long thin triangle. On the otherdhd the triangulation in the
u-v domain has minimum angle equal 20.96 degrees, then it can be shown that the cosine
of the angle of inclination, of a triangle in the reprojectegsh, is greater than or equal to
{1+ L)1+ (#6%)2]}—1/2. This follows from a straightforward trigonometric argumhe

using spherical coordinates. The valuesiof21.96 is approximately).384.
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The problem just mentioned, related to long thin triangtes) be avoided if a long edge
of such a triangle is split, and the Whitney reprojectiorcokidted at the inserted vertex. Note
however that the worst-case risk of neglecting to do the reggfe split is that the slope of the

triangle could be unnecessarily large. There is no dangeffligped triangle (Figure 4.2).

4.4 Computational examples

4.4.1 Examples illustrating the two algorithms

In the accompanying figures, examples of the use of the jpinigorithms are given. The
examples involve joining of trimmed patches: the trimmettpallustrated in Figure 4.4 is
exactly the input patch shown in the upper right corner ohezfcFigure 4.5 and Figure 4.6.
The second input patch, in the upper left corner of Figureaté Figure 4.6, is, similarly, a
trimmed patch obtained from a larger untrimmed surface ghotvn). The joined patches are
shown in the lower part of Figure 4.5 and Figure 4.6, respelsti

Figure 4.7 shows two input patches with folding present. fdwilt of joining by means
of linear interpolation along polylines, as described ioti® 4.1, is shown in Figure 4.8. The
result of using the algorithm of this paper is shown in Figli@

The triangulations of the input trimmed patches were obthinsing Maya [4]. The trian-
gulations of the exterior regions were obtained, as expthin Section 4.3.2, using a variant of

the Ruppert algorithm.

Figure 4.4: Trimmed patch together with its original suefac
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Figure 4.5: Example with(¢) not provided. Top: the input trimmed patches; bottom: tisaite
of joining.

Figure 4.6: Example witlb(¢) provided. Top: the input timmed patches; bottom: the tesiul
joining.
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Figure 4.7: Input patches with folding present.

Figure 4.8: Result with flipped triangles.

Figure 4.9: Sewing result with Whitney extension.
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4.4.2 Computational cost

Let o be the number of segments in the piecewise linear approkimaf the boundary curves
b*(t) (step 2 in Section 4.3.2). The time required to do the joiningluding the projection
and reprojection, varies directly with - n, wheren is defined (Section 4.2) to be the number
of vertices inM. The constant of proportionality in our experiments (runac®.2 GHz AMD
Athlon 64 3500+ processor), was approximai@ly- 10~%. Thus, for a pair of meshes compris-
ing 2.1K nodes, witho = 80, the total time required wes 16 seconds. (The examples shown
in Figures 4.5 - 4.9 had fewer nodes, and required less tiihidney reprojection accounts for

65-85% of the total time cost.

45 Conclusion

Ouir first conclusion, as suggested in Section 4.1, is thahabvector criteria will be necessary
if we wish to devise reliable algorithms. Note that the pggof presenting examples like those
of Figure 4.2 and Figure 4.8 is not to suggest that such exasmpill occur frequently when
using any particular algorithm but, rather, to illustratesssgibilities that must be excluded if we
want provably reliable methods. One of the two main contidims of the paper is to set out the
minimal requirements for an eventual proof of reliability.

Our second conclusion is that it is possible to devise algms, operating at reasonable
cost, that will join given mesh patches together while nainihg a proxy for the normal-
vector error, as well as the absolute error, at a level belat already present in the given
mesh. Furthermore, the mesh in th domain is not disturbed by the reprojection process,
and the triangulations of the central mesh and the exteeg@m in theu-v domain can be done
using the best available method. In this paper the centrahm&s triangulated using Maya,
while the external region was triangulated using a varidiuppert’'s algorithm, but if better
methods become available, they can be used directly. Siwithe u-v coordinates of any
previously-applied mesh-fairing or smoothing algorithritl mot be disturbed—only the height
field is modified in order to ensure that its slope over the wipaitch will not be larger than the
slope along the edge of the patch.

The advantage of using normal-vector criteria for graghétmulation is clearly evident
from the example of Figure 4.8. Further research shouldsfacuthe estimation of normal-

vector error by using the mesh itself.
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Chapter 5

Robustness of Boolean operations on

subdivision-surface models

Boolean operations on standard trimmed-NURBS geometridetsaare still notoriously diffi-
cult problems, and the associated difficulties manifegnadves in the appearance of artifacts
such as cracks and gaps. On the other hand, subdivisiomesuniodels as a representation are
rapidly gaining popularity in the field of geometric modglinMore and more frequently they
are used in place of trimmed-NURBS representations duestoghmplicity, and efficiency for
smooth surface construction. Also, based on our previopsrence with the merging oper-
ation on combined mesh-surface models (Ch. 4), the avhtijabf both NURBS information
and the mesh data is not easily satisfied. In addition, pushmapresentation (polygon soup)
usually does not contain enough topological and geomeéirit@mation about the model for
the explicit shape control. As an alternative, we can eksabdivision topology from arbitrary
meshes using some existing methods [LDW97, EDB), to convert arbitrary meshes into
subdivision-surface models. But even though the fundaahéinéory underlying subdivision-
surfaces has been widely discussed in the domain of matlemntiere does not exist any
theoretical guarantee about the robustness of the impleaepplicationsi.e., at which pre-
cision level we can safely use these models. Based on thegsevations, we move our focus
from trimmed-NURBS representations to subdivision-stefaepresentations, and the target
operation is enlarged from a simple merging operation topieta Boolean operations.

An algorithm performing Boolean operations on subdivissoimface models is proposed

first. It is based on the use of limit meshes, rather than as@fuersion of the control meshes.

62
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Limit meshes have intrinsic advantages: they contain fesiargles than refined control meshes
of comparable accuracy, and they are closer to the limiasag than the control meshes of the
same subdivision level. In this work we restrict our disémsg$o the Loop subdivision scheme,
but the ideas are more generally applicable. We still puffocus on robustness: this includes
error bounds and numerical methods for ¢hposteriorivalidation of topological form of the
computed result. In this work, we also use some of our prelWopublished results, for ex-
ample, the reliable three-dimensional orientation testin 3 is used in the triangle-triangle
intersection procedure.

The preliminary part of this work was presented at the DagsSeminar in January, 2008,
and later appeared in the Dagstuhl seminar proceedingstliiddgresearch Online Publication
Server). It contained some early-stage bounding resutiseceto the use of the limit mesh,
which turned out to be insufficient for our purposes. In thalfsubmitted version of the paper

presented here, a different bounding technique is used.

The main contributions of this work are:
¢ the use of limit mesh for Boolean operations on subdivisiarface models is proposed.
e an error bound is presented for the use of limit mesh.

e a checking method for the well-formedness of the computedltrés presented to guar-

antee the quality of the models produced by our algorithm.
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Abstract

This paper describes an algorithm to perform Boolean ojpeigt based on the use of limit
meshes, in the case when input objects are defined in term&ofjdlar meshes and Loop
subdivision. The focus of the paper is on robustness, imujudrror bounds and numerical

methods for the posteriorivalidation of topological form.
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5.1 Introduction

Boolean operations on standard trimmed-NURBS geometridefsd1] are still notoriously
difficult problems, and the associated difficulties marniteemselves in the appearance of ar-
tifacts such as cracks and gaps [2]. The framework necessgmove that algorithms work
rigorously is available [3], but, so far at least, the regdianalyses appear to be intractable.

On the other hand, subdivision-surface models are more amd frequently being used
in place of trimmed-NURBS representations due to their Bgityy generality, and efficiency
for smooth surface construction [4]. In this paper we déscan algorithm for computing
Boolean operations on objects defined by their boundaegsesented as subdivision surfaces.
The algorithm is similar to the one described in [5], but usbst is called the limit mesh to
perform the initial boundary intersection calculatiorhetthan a refined version of the control
mesh. The focus of the paper is on robustness: for exampldowet discuss fitting operations
[5] in detail. We do, however, consider several robustnesges: integration of Fortune’s
a-predicate into the code for triangle-triangle intersmetj6], new error bounds for the limit
surface, and, at least in the regular case, simple and tugorethods to verifa posteriorithat
the polyhedral computed solution has the same topological &s its corresponding boundary
surface. Finding such bounds, and performing saiglosteriorivalidations, are essential steps
in providing ana posterioribackward error analysis [7] for a Boolean-operation athani

Previous work on robustness for Boolean operations on gisimh surfaces includes [8]
and [9]. In [8], voxelization representations were usedaicwate the Boolean intersection of
sets defined by Catmull-Clark subdivision surfaces. Ing®@mbolic perturbation methods were
used to guarantee topological correctness of the compesedt of a Boolean operation.

The algorithm presented here has been implemented, andrte egtent we have been
concerned with questions of efficiency and triangle coustdescribed below. In this paper,
however, we restrict our attention for the most part to thristness issues mentioned above.

We suppose that the reader has a general familiarity witHigigion-surface methods for
the representation of solids [10].

Boolean operations on solids defined using a subdivisiof&se representation are usually
carried out on a piecewise polygonal mesh (hatrol mesh rather than théimit surfacethat
defines the true geometry of an input operand [11]. Such arpappation might not be ac-
curate (nor, in the context of collision detection, safe€)][1The accuracy can be improved,

however, by using thémit mesh a polyhedral approximation formed by driving each of the
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control points in the control mesh to its limit position [1B4]. This representation better ap-
proximates the limit surface while maintaining the sametogical form as the control mesh.

The algorithm discussed in this paper is based on the useedintlit mesh. The discus-
sion refers to the Loop subdivision scheme, but the ideasnare generally applicable. As
already mentioned, we do not discuss fitting procedureswbutote here that the posteriori
validation is applicable both before and after such fittingcpdures have been applied. Also,
we often phrase the discussion in terms of regularized Booletersection [15] (there is no
loss in generality in doing so: different Boolean operaiomerely change which segments of
the original meshes should be retained). The input solidg IleadenotedS and S/, and the
operation studied i$ N* S’, wheren* denotes regularized intersection. The input solids are
represented by subdivision surfaces defining their boueslar

The remainder of the paper is organized as follows. In Sed&ig we discuss the represen-
tation of solids using subdivision surfaces. In SectionvBe3describe the Boolean intersection
algorithm. This is followed by the discussion of error bosiiathd validation of topological form

in Section 5.4, and by a short concluding section.

5.2 Representations of solids

A typical solid will be denotedS. It is defined by its boundary surfaéss, a two-manifold
without boundary embedded ®?, and a directed normal vector specifying which sideé)sf
corresponds to the inside of the object. The surfagés defined by a polyhedral megh/, P),
where M is a (logical) locally-planar triangular mesk! is a3 x L matrix containing the
control pointsp; € R?,i = 1,...,L, and the limit surface is defined implicitly by Loop
subdivision. We call the polyhedral mesleantrol meshand denote if\/.

Loop subdivision was proposed in [16] and extended in [1818]. Triangles are subdi-
vided by splitting each edge, and joining the new verticestsd by this split with an edge. The
weight for a newly introduced edge point is given by the madkigure 5.1 (lower left), and ex-
isting vertices are modified using the mask in Figure 5.1 ¢apgft), with 5 = 3(n) = a(n)/n,
anda(n) = 5/8 — (3 + 2cos(2m/n))?/64 [17]. SinceB(6) = 1/16, for regular triangular
meshesi(e., meshes for which the valeneeof each vertex is equal &) we havel —n3 = 5/8.
Figure 5.1 (right) is discussed below.

The limit surface defined by Loop subdivision is a box splingface [20], andS can be
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Figure 5.1: Subdivision masks (left) and limit mask (right)

expressed as
0S = 0S(u,v) = Zpibi(u,v) (5.1)

where on regular parts of the mesh the basis functibpare piecewise polynomials.

The range of the indekin (5.1) was left undefined. In the case of a box spline defimeallo
of R?, the range of could be taken to be the entire gfid. Both in this case and in the case of
a finite locally-planar mesh without boundary, howevers sufficient to consider only vertices
in a one-ring neighbour of a triangular patch, as illusttdateFigure 5.2 (right), provided that
at least one step of subdivision has been carried out, sdahbed are no adjacent non-regular
vertices.

This can be seen as follows. If we consider the domain ofbthe, v) to be all of R?,
the functionsb;(u,v) can be found by substituting a scalar control point with= 1 for ¢
corresponding to a particular grid-point labelleith hZ? C R?, andp; = 0 for j # 4, and then
applying the subdivision process until convergence. If wetds by using the masks given in
Figure 5.1 (left), it can be shown that the supporbgdi:, v) lies in the convex hull of the set
of vertices at distance from ¢, where distance is measured as an integer quantity in tipd gra
formed by the triangulated grid embeddedRin (see Figure 5.2, left). Figure 5.2 (right) is the
consequence of looking at this fact from the opposite pdintew: the value of the surface on
the patch corresponding to a single triangle is determineth® control points that are 1-ring

neighbours of the patch. Similarly, if the local parametiienain is supposed to be embedded

LIn fact, in contrast to the tensor-product B-spline casesétunctions do not form a basis for the spline space.
A better name would be “nodal functions” [21].
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support of b;(u.v)

Figure 5.2: Loop subdivision

in R? as shown in Figure 5.3 (left) [12], then the correspondindahdunction can be found in

10 9

11 8

Figure 5.3: Left: a base mesh used to generate the basisdumdbr the trianglé-1-2 (regular
case: vertex with valence = 6) [12]; right: the resulting basis function at notlevaluated at
subdivision level four.

the same way. It is illustrated for the regular case in FiguB(right).

Finally, to deal with creases introduced due to design demations, or due to Boolean
operations, it is necessary to introduce additional sukidiv rules for crease edges and corner
vertices [18, 17, 19]. The implementation described belewts crease edges in the input
objects, and produces crease edges along intersectioascurv

By using the limit mask in Figure 5.1 (right) we can drive aytrol point to its position on
the limit surface. If we take the set of such limit points, diné them together into a polyhedral
mesh with the same connectivity as, we obtain thdimit mesh denotedV/. Both M and M
depend on the level of subdivisianbut since: is the same for both meshes, and fixed, we do

not show it explicitly.
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5.3 The Boolean algorithm

The goal of the Boolean-operation algorithm is to apply theration to two subdivision-surface
models, and to form the result, made up of the desired boursggyments. The algorithm takes
the boundarie®S andd.S’ of two solids, as described in Section 5.2, and producegéesivell-
formed object boundary as output. The algorithm introduneslifications of ideas previously
suggested by other authoesg, thetriangle-triangle-intersectiorprocedure of [6] is modified
by the a-predicate [22] to ensure robustness. The overall ideaefthorithm is similar to
[5], but we use the limit meshe&/ and M’, rather than refined control meshes (which have
more triangles), for the intersection-curve calculatidhe limit mesh)/ is generally closer to
the limit surface than the control meﬂfﬁ, with fewer triangles than a refined control mesh of
comparable accuracy, which makes the calculation lessnekme An example (in this case, a

union operation) produced by the implemented algorithmviergin Figure 5.4.

(PP AT A
DK SRR 1]

‘i i,‘ WX AA\Y/“, “ ')‘
~ﬁg€§;ﬁi’e;z¢v&-hl‘%"4’!/.‘
NOAVAN \

R e 1N

Figure 5.4: (a) control mesh (b) union.

Here is the overall description of the algorithm.

1. Surface intersection. This step computes the intersection curves of two limit raesh
M and M’ and maps them to the control meshésand A1’. The computation uses a

triangle-triangle-intersection test, and takes floafogait roundoff error into account.

2. Cutting. This step takes the mapped intersection curves as a reégieenonstruct cutting

curves, and separates the original control meshes into eshes.

3. Merging. This step combines the desired parts to form a well-formgdabbthe inter-

section curve is tagged as a crease.
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4. Fitting. This is an optional procedure that aims to reduce the diffexebetween the

computed result and true solution [5].

The Boolean intersection algorithm involves two main pchges,triangle-triangle inter-
section andrefinementwhich is used in the cutting and merging stepssnappingprocedure
is also used in [5] (if a vertex in the mapped intersectiorvelis within a certain threshold
of a vertex in the control mesh, the latter vertex is moved, alhsegments of the intersection
curve within a one-ring neighbourhood of the displaced mdngoint are updated). Based on
our observation in the context of an algorithm based on thé linesh, such a procedure has
little influence on the number of triangles in the computeslile but a large (negative) effect
on the geometric form of the result. Consequently, we didmadtde it. This reduces both the
amount of work and potential robustness problems.

Our first comments on robustness concerrtiamgle-triangle-intersectiomprocedure. This
procedure is largely based on the work of Guigue and Desi[@r For our implementation, we
downloaded their source code (available online); modificatwere made in order to introduce
the equivalent of Fortunes-predicate, for robustness reasons. The hypothesis [Bftbie are
no degenerate triangles in the input will always be satisfigatactice if the input objects have
been provided by means of a coarse control mesh. Othervissedhdition must be checked.

Similarly to [33, 22], we define to be an upper bound > |4|, for all z,y, wherexzky =
(z x y)(1 + &) and% is a set of operations-, —, >2,7 defined on the representable reals with
relative errore.

The intersection computation relies exclusively on the sifcertain4 x 4 determinants,
wheresignis a three-valued function taking values {r-1,0,1}. Consider first theabove-
predicate which determines whether the poibis above (positive), below (negative), or on

(zero) the plane through, g andr:

Definition 1. Given four three-dimensional poings = (p;,py.02), ¢ = (¢, ¢y, ¢2), T =

(ra,Ty,72), andt = (t,,t,,t.), we define the above-predicate

pCL’ q:L’ TI tI
Ty o
aplp, g, t]i=—| PV WV W~ p) ((g-p)x (r—p). (52
P G, T, T
1 1 1 1
The evaluation of this predicate is error-prone due to theeaidinite precision arithmetic

[5]. Consequently, a perturbatia¥i is introduced similar to the--predicatein [22], and the
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classification of point positions is modified as follows:

above\ : ap[\,t] € (', 00) (sign(ap[A,t]) = 1)
t — on/\ : ap|At] € [-8,] (sign(ap[A,t]) < 0) (5.3)
below/A : ap[At] € (—o0,—8")  (sign(ap[A,t]) = —1)

where< meansconsideredo be zero. With these modifications, the plane throdgbgr is
thickened to contain an ambiguity zone with= 1600 3¢, neglecting higher-order terms af
andM is a fixed upper bound for the absolute value of any coordiob#my point.

We assume that not all points are coplanar. If all the vestafeone triangle have sign equal
to zero with respect to the other triangle, we are in the caplaase, and we can ignore the
potential intersection, since the edges of neighbouriiagdtes will produce the desired result.
To eliminate ambiguities in the opposite case, the first &ep perturb the point having sign
equal to0 by an amounp, wherep > 27, in a direction away from the edge opposite the point
[6]. The vertices of the two triangles, andT;, are then permuted to form the layout shown
in Figure 5.5, where a simple comparison of intervals deifemwhether there is a non-empty

intersection.

Figure 5.5: Triangle-triangle intersection.

Given two triangledl’ : (p;,q;,71) andT; : (psy, g4, 72), SUPPOSe that at least one of the
vertices of7} has a non-zero sign for trebove-predicatesay, sign(ap[Ts, r1]) # 0, and that
at least one of the vertices @f has different sign from vertex,, e.g, sign(ap[Ts, p;]) #
sign(ap[Ty,r1]). Thus, we are in the case where there is a potential intéssect

Without loss of generality, letign(ap[Ts, r1]) = 1. Then there are two possibilities for the

position of pointp, in the case of intersection:

1. sign(ap[T2,p,]) = —1; in this case there is definitely an intersection, and we\ath

original Guigue-Deveillers algorithm [6].
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2. sign(ap[T2,p;]) = 0; this means that the point, falls in the ambiguity zone, and an
a-arithmetic modification must be applied in order to remove this ambjguiThe p
perturbation is applied: let the perturbed pointdie= p, + pn, wheren is the direction
of perturbation, determined by the direction throygland orthogonal to the opposite

edge ofT}. Here,||n| = 1.

Our version of the algorithm as described here fails saféhdrsense that if there is actually
an intersection, it will be detected, but errors of the ofeatype may occur. The maximum
error in the case of errors of opposite type can be deterntigegpplying the standara priori
bounds [33, p. 107] to the Guigue-Devillers algorithm [6].

The arguments presented here clearly do not constitute af pfahe correctness of the
overall process: in particular, such a proof would have twlve consideration of multiple
perturbations of a single vertex; the merging step, desdrltelow; and take into account the
classical steps described in [24] to obtain a regularizedlteNote also that, given the fail-safe
nature of our algorithm, it might be decided to implement atpwcessing step to eliminate
small thin sets (slivers) [9]. This, however, lies outside domain of numerical analysis.

The goal ofrefinements first to guarantee that the mesh remains valid (merginm ,sted
secondly, that the cutting curves conform to the shape afidygped intersection curves (cutting
step). A triangle containing a part of the intersection eus/refined if it is detected as “bad”,
i.e. the curve intersects the triangle boundary more than twioes not intersect at all (the
curve is completely inside the triangle), or intersectskibendary twice but on the same side.
The refinement is done using quadrisection (midpoint ifs®dn the triangle edges).

The steps just summarized make up a large part of the implechddoolean operation
algorithm, but since they are not directly concerned with ibbustness questions we discuss,
we omit the details (the main requirement, from the robisstpmint of view, is that the process
should not modify the topological form of the meshes).

In order to improve the approximation to the true intersactiesult, an optional fitting step
can be applied [5]. This step is applied after execution efabmplete Boolean operation. We
have used a modified fitting procedure which minimizes thetional formed by the sum, for

the two objects, of the terms

> IF®) — LpslI%, (5.4)
J

wherej indexes the vertices in the mesh at subdivision leyel; is one vertex in the mesh

at level., pj is its corresponding position in the original coarse cdntnesh M, f() is the
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limit-surface evaluation function, andlis the limit matrix that determines the limit position of

the vertexp;. Other constraints can be added to obtain better fitting.

5.4 Error estimation and verification of well-formedness

5.4.1 Error estimation

Using the limit mesh as an approximation to the limit surfémethe intersection calculation
implies potential errors in the final result. In this sectiore will give a bound on the possible
error, based on the work of [14], followed by some possiblpritmements.

Bounds of this type were discussed in a preliminary way ir].[Z&her work on this topic
includes [13, 12], as well as earlier work [26] on B-splinbattused derivatives to bound the
surface.

Each faceF in the limit meshM is defined by the cornerg,, q,, andq,, which can be

obtained by limit-surface evaluation

n+5
= 05(uj,v;) ZpZ i(uj,v5), j=0,1,2, (5.5)

where thep, are the control points in the control mesh that affect the position of;, theb;
are the nodal functions, artd;, v;) is the coordinate fog; in the parametric domain illustrated
in Figure 5.3 (left).
Letn denote the face normal @&. An upper and lower bound at each of these three vertices

can be obtained:

l; < anj < 1y (5.6)
where
n+5 n+5
= Z(nT(Pi —q;)" b + Z(nT(pi —q;))” b
=0 i=0
n+5 n+5
wi=y (n"(p;—q;))" b7 +> (n"(p;—aq;)” b (5.7)
=0 i=0

as illustrated in Figure 5.6 for a two-dimensional case, and
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Pj+2

Figure 5.6: A 2D illustration for the upper and lower boundsiuction.

T(Pi - q]'))+ = max{nT(pi - qj), 0}

T(Pi - q]'))_ = min{nT(pi - qj), 0}

(see [14]). It is necessary here to estimate the réb;‘gnd)j] of the basis functiom;, where

b, = minb; (u,v), b2+ = max b;(u,v),
u,v u,v

and the minimum and maximum are taken over the triafigle2 in Figure 5.3 (left). As
suggested in [14], this can be done by estimating the basdifun by applying the subdivision
process to the Dirac polygon described abowe£€ 1, p; = 0if j # 7). Since this only
gives an estimate, however, it is necessary to iterate tieeps [14], beginning with the coarse
estimate of the range-1, 1]. In this way we get a bounding volumeédefined by the offsets of
limit-mesh vertices (see Figure 5.7):

2]

~ i -
q]' + —'I’LT'FLj n;, qj + —'I’LT’ij n; (58)

wheren; is the normal vector at each vertgx.

Possible improvements on the bounding volume can be obt&imeising the fact that the
limit mesh is a down-sampling of the limit surface, which meahat all of its vertices lie on
the limit surface (except for floating-point error). We witlodify the bound above for a tighter
enclosure of the limit mesh by exploring this idea.

Using the tangent mask, a tangent plafe; = 0, 1,2, at the three vertices of each limit
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upper bound

lower bound

Figure 5.7: Upper and lower bounds for a single face in thé linesh.

face can be obtained as:

Pj = (g;,7;) (5.9)

whereg; is vertex of the limit face that lies in the plane, anglis its vertex normal, given as

ﬁj = u1 X u2 (5.10)

up =cp; + Pyt ...+ cpp,

Ug = C2P; +C3Py + ... + C1Dy,

wherep,, p,,... p, are the neighbours of vertex;, andc; = cos(2mi/n) are the limit-mask

coefficients. Let
T

f; = " i20,1,2, (5.11)
| |[||7]|
and
¢ = min{6;,j =0,1,2}. (5.12)

We can adjust each vertex norma) outward from the center of the limit face, by rotating the
vectorc — g; around the axis formed b; x (c — q;) wherec is the center of the limit face,

until the new vertex norma‘i;- satisfies

nT fz; ]
T = =0, 7=0,1,2. (513)
[ ][72]]

Then for each vertey; we get a new plane

Pj = (g;,7)). (5.14)
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By reflecting each of these three planes with respect to thié face F', we get three other
planesP’. Intersecting each of these planes with the bounding volimeeviously calculated,
P; with the upper bound, an®” with the lower bounds (see Figure 5.8), we can get a tighter

closure for each face in the limit mesh.

vertex nornlal\ limit mesh patch

original upper and lower bounds

AVA
7‘ ‘/tangent plane

Figure 5.8: lllustration for the tighter bound construantio

For now, these modifications provide only approximate bsuadd more work is required

to transform them into provable bounds that are guaranteeddlose the limit surface.

5.4.2 A posteriori verification of well-formedness

It is of interest to be able to confirm that the limit mesh (respectivelyM’) has the same
topological form as the corresponding input set, represthy its boundary).S (respectively
0S’). Similarly, suppose that/¢ is the mesh corresponding to the computed approximation
of the result of the Boolean operatione., M€ is intended to approximate the boundary of
Sy = Sn* 5. (The meshV/¢ is obtained from refined control meshes corresponding th eac
input operand.) Again, it may be of interest to confirm th&t has the same topological form
asdsSy, the actual surface associated with the computed mesh. Wehrase the discussion of
these questions in terms of the first of the examples jushgive

Given the limit mesh\Z, the fact that two of its faces are disjoint does not implyt tha cor-
responding faces alS are disjoint. Similarly, it may happen tha} and F;, are adjacent faces
sharing an edge or vertex, but that the corresponding fAcemd F» of 9S have extraneous
intersectionsij.e., intersections other than those along the designated edgjelte designated
vertex. A completely robust algorithm should be able to ganfa posteriorivalidations of

computed results that exclude the possibility of incoesisies of this kind. (Note that there
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is no practical inconvenience in assuming that faces in &foehed mesh do not share more
than a single edge or vertex.)

Detection of intersection between patchgsand F; that are supposed to be disjoint can
be detected on a fail-safe basis by comparison of conves fudl, non-intersection of convex
hulls is a sufficient condition for non-intersection of gags). Excluding the possibility of
self-intersection of a patchy, and of extraneous intersections of adjacent patéhesnd F5,
was discussed in [28], where the method of [27] was used. Wandxhat work as follows.
First of all, we conclude that in the regular case, it is natassary to compute the projection
direction required in [27]. This means, in particular, thrathe regular case there is no need to
omit verification of the second condition in [27], which wagygested as a possible approach
in [28]. Secondly, [28] detects extraneous intersectionsafplying the criterion of [27] to
the union of adjacent patches. It was shown in [29], howabex, there is a supplementary
condition to be satisfied if this method is used, and we show tieoverify this supplementary
condition in the regular case.

The details for the following extensions can be found in [3Dhe first extension follows
from the fact that if the corners df, and F;, all have valencé (the regular case), then the cor-
responding patcheg; and F; can be expressed as Bézier surfaces, and the Bézier @reffic
are explicitly available [31, 32]. This means that extraremtersections can be detected by the
convex-hull criterion [30, Crit. 3.2.1*] (common edge) d8@, Crit. 3.2.2*] (common vertex).
Furthermore, itis easy to extend this approach to work ifl-@&ie manner, once the separation
plane specified in these criteria has been found, by applyiagtandarch priori bounds for
floating-point arithmetic to the calculation of the inneogucts defining the separation planes.
Similar remarks apply to the case of self-intersection odi@lp, sayf, using [30, Crit. 3.1%].

The second extension, mentioned above, concerns the &etgplication of the criterion of
[27] to the unionFy U F; of adjacent patches requires verification of a supplemgctamdition
along the common boundary, namely that the mapping defitiagcombined patch must be
locally one-to-one along the common boundary [29, Prop. Z.&is is true in both the regular
and non-regular case. In the regular case the condition earfified, using the fact that the
common boundary is a Bézier curve, and using [30, Crit.]2.A%ain, this result can be made

fail-safe when ordinary floating-point arithmetic is used.
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5.5 Conclusion

We have given a summary description of an implemented dlgorthat computes Boolean
operations on objects represented by their subdivisiofasel boundaries. The algorithm is
based on the use of the limit mesh, rather than a refined ¢onésh, for the computation of the
intersection between the surfaces defining the two operdridst of the discussion in the paper
was concerned with three robustness issues of interese icathtext of this algorithm, namely
the robustness of triangle-triangle intersection, apipnaiion of the limit surface by the limit
mesh, andh posterioriverification of well-formedness. While the nature of the nesthatical
arguments necessary to resolve these issues was desthniedper did not give proofs. Thus,
future work should include integration of the analysis imeitl above into a combined whole,
to produce a unified robustness result for Boolean intémgcincluding validation results in
the non-regular case. Such a result would include, in paatic procedures permitting tre

posteriorivalidation of topological form.
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Chapter 6

Conclusion

“During the 1991 Gulf War, the United States used a missilerdef system called Patriot to
defend its troops. The system was largely effective but enocnasion, it failed badly. An

analysis after the event explained what happened. Thenmitetock of the computer that con-
trolled the defense system stored the time as an integee walunits of tenths of a second, and
the computer program converted this to a floating point vafuenits of seconds, rounding the
expansion accordingly. Because the program was an old atéhtid been updated to account
for new technology, the conversion to floating point was dooee accurately in some places
in the program than in others. To calculate a time intervak program took two snapshots of
the clock and subtracted them. Because of the round indensigs, the system failed to work
when it had been running for more than 100 houf&ve01]

The above example may help explain the importance of réitigbas it is said There is
one thing that is even more important than lightning speet| thhat is reliability’ [Ove01].
This is especially true because many critical matters tedeydependent on complex computer
programs, and much of this code depends, in one way or anotimépating-point computing.
They can be greatly affected by its reliability.

In this thesis, we presented our work on the problem of riimlmmputation for geo-
metric models. It covered three individual but related peois: floating-point arithmetic for
computational-geometry problems, especially with thdiagfion of backward error analysis in
different geometric problems; the combined mesh-surfaodel repair problem, with focus on

the joining procedure; and the robustness of Boolean dpasabn subdivision-surface models.

82
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6.1 Summary

Floating-point arithmetic is very convenient for most pigad work because of its numerous
engineering advantages, but naively applied floatingipamithmetic can cause disasterous re-
sults. The now-standard backward error analysis provides ool to distinguish those algo-
rithms that overcome the problem tehatever extent it is possible to do.sbhree examples
were presented to illustrate how to carry out error analysidifferent geometric application
contexts. We showed that floating-point arithmetiay be sufficient, provided that a stable
algorithm is applied, in the case where uncertainties asqut in the data.

Trimmed-NURBS surfaces have been widely adopted in moshgei modelers, and ge-
ometric operations on this representation are very impbrt&Ve proposed an algorithm for
the joining operation for combined mesh-surface patchét, guidance based on the use of
two error measures. The joined result is guaranteed tdysatish the absolute error criterion
and the normal error criterion. The necessity of these twar @riteria has also been proved,
if we wish to devise a reliable algorithm. Two different casee considered for the proposed
algorithm, based on the availability or not of an explicihjag curve.

Trimmed-NURBS get their advantage from being able to modeiglex geometrical ob-
jects, but the trimming difficulties and the error-pronea@nsion procedure hinder their appli-
cation. Subdivision-surface models, as an alternativartonied-NURBS, have rapidly gained
popularity as a geometric representation due to their siitylnd efficiency for smooth sur-
face construction. But even though the fundamental thebrhese models has been well
discussed and understood, few theoretical guarantees di@orobustness of the implemented
applications are available.

Amongst these applications are the Boolean operationsleBomperations are one of the
most important facilities of geometric modelers. Theirlaggtion on trimmed-NURBS models
are known to be difficult, and care has to be taken to handleiapand degenerate cases.
We have studied the problem of applying Boolean operatiorsubdivision-surface models.
An implemented algorithm that computes Boolean operat@nsbjects represented by their
subdivision-surface boundaries was presented. The pedpalgorithm is based on the use
of the limit mesh, rather than a refined control mesh, for thmputation of the intersection
between the surfaces defining the two operands. Our focuseha@ined on the robustness

issues of interest in the context of this algorithm.
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6.2 Future work

A first possible extension to the current work is a theoratitification for the use of the
limit mesh of subdivision-surface models, as an operan®Bfwlean operations, in place of
a finer control mesh. Some empirical results have been gessan[HWO07] for Catmull-Clark
subdivision-surface models, but no theoretical resulvaglable on this subject.

A framework for a backward error analysis, suitable for tasecof Boolean operations on
objects represented by internally inconsistent trimm&tRBS representations, was given in
[ASZ07], but no such framework has been given for subdivisiarface models. Therefore,
an immediate extension of our work would be to generalizectireent validation results to
the non-regular case, and to integrate all of this analyssa combined whole, to produce a
unified robustness result for Boolean intersection for sdfidn-surface models. This result
would include, in particular, procedures permitting #h@osteriorivalidation of topological
form.

The impact of nonrobustness in the domain of geometric nvagled well known, especially
its effects on economics and productivity, e.g. it is thex@pal barrier to the full automation
of the modeling system [YapO1]. Over the past twenty yearshhprogress has been made on
the precision and robustness problem. Methods to enhapegardéizision of intersection com-
putation, to monitor numerical error contamination and mal falternate means of performing
arithmetic, have been explored in some detail [Muk05]. k@mtmore attention has been paid to
improving robustness, e.g. the birth of Computational GetoynAlgorithms Library (CGAL)
project [g-c], which is a joint effort by a number of reseagioups in Europe and Israel to
produce a robust software library of geometric algorithmd data structures [Hal02]. The goal
of CGAL is to make available a carefully designed and impletaé library with an emphasis
on robustness and generality.

From a long-term view, unfortunately, no satisfactory gahpurpose solution has been
found for the robustness problem, especially in geometddeting [Sch99]. Robustness issues
are still critical in the passage from theory to practice éometric algorithms. Ignoring these
issues can result in unreliable or incorrect programs. sSfocaming a geometric algorithm into
an effective computer program is particularly difficult base of the basic assumptions made
on most theoretical geometric algorithms, concerning derily measures and the handling of
robustness, namely issues related to arithmetic prec@sidrdegenerate input [Hal02]. For the

CAD community, one of the biggest challenges today is stifustness related issues [KBF05].
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Translation of geometries from one CAD system into anotedaii from stable: holes, trans-
lation errors, and other problems often arise. The majorcesuare: floating-point arithmetic
and tolerances. Floating-point arithmetic can be deah tieoretically but not yet practically.
Digital arithmetic and current mathematical theory araffisient to perform reliably for com-
plex geometric operations and to interoperate well with Cédwnstream analysis software
[Far99, KBFO05, BAA™99]. Other problems include mesh-based techniques: majpiigms
are reliability and difficulty in preserving small featunehose size is of the same order of error
due to some user-specified global distance threshold [PMO08]

As “the availability of greatly improved computational teaués and immensely faster
computers allows the routine solution of complicated peaild that would have seemed im-
possible just a generation afyfOve01], we hope, one day, nonrobustness will be resohged a

well.



Appendix

Permission has been obtained from the publishers for theafilg two articles (one to appear,

and one published) in this thesis:

1. Permission froninternational Journal of Computational Geometry and Apations
(IJCGA) for the paper “Floating-point arithmetic for comptional-geometry problems

with uncertain data”.

2. Permission fronEuropean Council for Modelling and Simulatigg CMS) for the paper

“Reliable joining of surfaces for combined mesh-surfaceleis’.
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Notes on the implementation

The implementation of all of this Ph.D. work was carried ouCi++. OpenGL and gt were used
for visualization and interface design.

For the work on reliable joining of surfaces for combined mearface models (Ch. 4):

e Software Maya [g-ma] was used to generate 3D trimmed-NURB8ats and the corre-

sponding triangular meshes.

e GNU Scientific Library (GSL) was used for the constructiorcofrespondences between

trimmed-NURBS and triangular meshes.
For the work on robustness of Boolean operations on sulbglivisurface models (Ch. 5):

e The halfedge data structure was used for subdivision-seinfiaodels (OpenMesh [g-0]),

both for the data storage and the mesh manipulation.

e The Axis-Aligned Bounding Box (AABB) hierarchy was used retsubdivision surfaces

intersection calculation procedure for optimization megs.

e The GNU Scientific Library (GSL) was used for the minimizatiproblem in the fitting

procedure.

Software such asmatlab[g-mb] andmathematicdg-mc] were used for prototype and veri-

fication purposes. Xfig [g-x] was used to draw the illustratfigures in the thesis.
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