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Résuḿe

La modélisation géométrique est devenue un domaine de recherche et de développement

central à un vaste champ d’applications. Avec la forte croissance de la puissance de calcul des

ordinateurs, la simulation par ordinateur a commencé à jouer un rôle important dans plusieurs

domaines de recherche reliés à la modélisation géométrique, de l’ingénierie traditionnelle à la

simulation de chirurgie virtuelle.

À cause de l’usage de représentations de précision finie, l’absence de robustesse numérique

en calcul scientifique est un phénomène bien connu et répandu. De nombreuses approches

différentes ont été proposées pour résoudre ce probl`eme. Les nombres en virgule flottante (IEEE

754/854) [PH98, Ove01] sont les substituts standards pour les nombres réels en calculs infor-

matisés, et la plupart des logiciels de modélisation de solides, incluant les systèmes de concep-

tion assistée par ordinateur (CAO), sont basés sur des méthodes de modélisation géométrique

qui fonctionnent en utilisant l’arithmétique en virgule flottante. Mais cette dernière, appliquée

naı̈vement, peut causer l’échec d’axiomes géométriques. L’analyse inverse d’erreur (backward

error analysis), maintenant standard, est un outil très utile qui peut nous aider à surmonter ce

problème : elle nous permet de distinguer les algorithmes qui, en présence d’incertitudes dans

les données, ont produit des résultats aussi bien que nouspouvions espérer.

L’impact de l’absence de robustesse dans le domaine de la modélisation géométrique a été

ouvertement reconnu et il y a eu beaucoup d’attention pour améliorer la fiabilité. D’un autre

côté, il existe plusieurs représentations en modélisation géométrique et, même si chacune par-

vient à bien modéliser certaines propriétés, aucune d’elles n’est suffisamment générale pour sa-

tisfaire tous les prérequis qui pourraient être souhaitables d’une représentation. Ainsi, pour des

problèmes géométriques différents, l’absence de robustesse tend à se manifester de différentes

façons et nous devons chercher la méthode appropriée pour chaque problème : une solution

universelle n’existe pas.
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Le but de cette thèse est d’étudier le calcul informatiséfiable en modélisation géométrique.

En particulier, nous abordons trois problèmes reliés à la robustesse en modélisation géométrique :

1. L’arithmétique en virgule flottante pour des problèmes de ǵeoḿetrie informatique avec

des donńees incertaines (Floating-point arithmetic for computational-geometry problems

with uncertain data).

Dans ce travail, trois exemples (résolution de systèmes d’équations linéaires, le problème

de l’enveloppe convexe planaire et un problème d’objet extrudé en trois dimensions) sont

présentés pour expliquer notre méthode pour accomplir l’analyse inverse d’erreur. Aussi,

notre exposition illustre le fait que l’analyse inverse d’erreur ne prétend pas surmonter le

problème de précision finie, et que des situations en géométrie informatique sont exacte-

ment parallèles à d’autres domaines informatiques.

2. Jonction fiable de surfaces pour des modèles combinant maillages et surfaces paramétriques

(Reliable joining of surfaces for combined mesh-surface models).

L’opérateur de jonction est un important opérateur primitif pour les opérations booléennes.

Notre motivation pour ce travail est de chercher un algorithme de jonction fiable pour

lespatchescombinant maillages et surfaces paramétriques, prenant en considération un

critère d’erreur sur la normale. Deux mesures d’erreur sont définies pour guider la procédure

de jonction. En utilisant le théorème de l’extension de Whitney, la qualité de la jonction

calculée peut être garantie.

3. Robustesse d’opérations booĺeennes sur les modèles de surface de subdivision (Robustness

of boolean operations on subdivision-surface models.)

Les surfaces de subdivision sont de plus en plus fréquemment utilisées comme représentation

de rechange, à la place des surfaces B-splines rationnelles non uniformes coupées (trim-

med NURBS), pour la modélisation géométrique dû à leurs avantages intrinsèques. En

particulier, elles permettent d’éviter le problème difficile de faire correspondre les bor-

dures despatchescoupées. Ce travail décrit un algorithme pour effectuer des opérations

booléennes, basé sur l’usage des maillages limites, dansle cas où les objets en entrée

sont définis en termes de maillages triangulaires et de subdivision de Loop. Ce travail se

concentre sur la robustesse, incluant des bornes d’erreurset des méthodes numériques

pour la validationa posterioride la forme topologique.

Mots-clés:

calcul informatisé fiable, arithmétique en virgule flottante, robustesse, stabilité, analyse inverse
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d’erreur, maillage de surfaces, jonction, opération booléenne, modèles d’interrogation de forme,

erreur de vecteurs normaux, surfaces de subdivision.



Abstract

Geometric modeling has become a central area of research anddevelopment that involves di-

verse applications. In fact, because of greatly increased computer power, computer simulation

has started playing an important role in many geometric-modeling related research domains,

from traditional engineering design to virtual surgery simulation.

Due to the use of finite-precision representation, numerical nonrobustness in scientific com-

puting is a well-known and widespread phenomenon. Several different approaches have been

proposed for this problem. Floating-point numbers (IEEE 754/854) [PH98, Ove01] are the

standard substitute for real numbers in computations, and most solid modelers, including CAD

(Computer Aided Design) systems, are based on geometric-modeling methods that operate us-

ing floating-point arithmetic. But naively applied floating-point arithmetic can cause axioms of

geometry to fail. The now-standard backward error analysisis a very useful tool that can help to

overcome this problem: it permits us to distinguish those algorithms which, given the presence

of uncertainties in the data, have done as well as we can hope for.

The impact of nonrobustness in the domain of geometric modeling has been widely ac-

knowledged, and much attention has been paid to improving reliability. On the other hand,

many different geometric modeling representations exist,and although each succeeds in mod-

eling certain properties well, none of them is general enough to satisfy all the requirements that

could be demanded of a representation. Therefore, for different geometric problems, nonro-

bustness tends to manifest itself in different ways, and we must seek an appropriate method for

each problem: a universal solution does not exist.

The goal of this thesis is to study reliable computation for geometric models. More specifi-

cally, we will address three related robustness problems ingeometric modeling:

1. Floating-point arithmetic for computational-geometry problems with uncertain data.

In this work three examples (solving linear equations, the planar convex-hull problem

vi
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and a three-dimensional extruded-objects problem) are presented to explain our method

of performing backward error analysis. Also, our exposition illustrates the fact that back-

ward error analysis does not pretend to overcome the problemof finite precision, and that

situations in computational geometry are exactly parallelto other computational areas.

2. Reliable joining of surfaces for combined mesh-surface models.

The joining operator is a very important primitive operatorfor Boolean operations. Our

motivation for this work is to seek a reliable joining algorithm for combined mesh-surface

patches, taking into account a normal error criterion. Two error measures are defined to

guide the joining procedure. By using the Whitney extensiontheorem, the quality of the

computed joining result can be guaranteed.

3. Robustness of Boolean operations on subdivision-surface models.

Subdivision surfaces are more and more frequently used as analternative representation,

in place of trimmed-NURBS, for geometric modeling due to their intrinsic advantages.

In particular, they permit us to avoid the difficulties in matching boundaries of trimmed

patches. This work describes an algorithm to perform Boolean operations, based on the

use of limit meshes, in the case when input objects are definedin terms of triangular

meshes and Loop subdivision. The focus of the work is on robustness, including error

bounds and numerical methods for thea posteriorivalidation of topological form of the

produced result.

Keywords:

reliable computing, floating-point arithmetic, robustness, stability, backward error analysis, sur-

face mesh, joining, Boolean operation, shape-interrogation models, normal-vector error, subdi-

vision surfaces.
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Preface

This Ph.D. thesis is a thesis by articles. The main part of thethesis is composed of three accepted

(to appear), published, and submitted articles. To better present each individual work, we choose

to retain for each paper the complete version as it is (will be) in the respective publication.

This leads us to two referencing systems in the thesis. For each paper (Ch. 3, 4, 5), its own

references are provided together with the paper: each reference entry is assigned a running

number in square brackets as the in-text marker (e.g. [1]). Also, a bibliography chapter is given

at the end of the thesis, and in this case the reference markers are an abbreviation of the authors’

name plus year of publication (e.g. [ABA02]). This is the format for the references for all the

other chapters in the thesis. There are certain overlaps between the bibliography chapter and

the references of the three individual articles. Another remark about the bibliography chapter is

that the references for websites are given in lowercase, e.g. [g-b].
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Chapter 1

Introduction

With the greatly improved computational techniques and thepowerful machines available,

computer-aided methods have come to be involved in almost every aspect of life:

“Physicists use computers to solve complicated equations modeling everything from the ex-

pansion of the universe to the microstructure of the atom, and to test their theories against

experimental data. Chemists and biologists use computers to determine the molecular structure

of proteins. Medical researchers use computers for imagingtechniques and for the statisti-

cal analysis of experimental and clinical observations. Atmospheric scientists use numerical

computing to process huge quantities of data and to solve equations to predict the weather.

Electronics engineers design ever faster, smaller, and more reliable computers using numerical

simulation of electronic circuits. Modern airplane and spacecraft design depends heavily on

computer modeling...” [Ove01]

In fact, all fields of science and engineering now rely heavily on numerical computation. But

one question has inevitably to be asked:can we trust these numerical computational results?

We do not want our surgery simulation software to turn out to be a source for medical accidents

[FGG03]. The following example gives an idea of how bad things can get if not enough attention

is given to verification of correctness. Figure 1.1 shows theresult of an implemented algorithm

for a simple planar convex hull problem1. The point on the lower left corner which clearly

belongs to the convex hull has been ignored, and left outsideof the resulting hull. The cause

of this failure is the naive use of floating point arithmetic on a two-dimensional orientation

predicate.

1Theconvex hullof a finite point setS in the plane is the smallest polygon containing the set and such that the
vertices of the polygon are points ofS [KS86].

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: An example of failed convex-hull algorithm due to the naive use of floating-point
arithmetic [KMP+04].

Fortunately, numerical non-robustness in scientific computing is a widely recognized phe-

nomenon. In particular, the goal of reliable computation has attracted many researchers in the

area of geometric modeling.

Two main factors, amongst others, explain the origins of theerrors that contribute to nonro-

bustness: the use of floating-point arithmetic and uncertainty in the input data. Often, designers

of geometric algorithms avoid the problem of computationalerror by assuming the real random

access machine (RAM) as the model of computation [PS85]. Thereal RAM allows real num-

bers to be represented exactly and provides exact arithmetic operations. Unfortunately, often

floating-point arithmetic is substituted for exact real arithmetic and special cases are ignored

[For93]. Naively applied floating-point arithmetic can cause disastrous results, as illustrated in

the previous example (Figure 1.1).

Backward error analysis has become a standard error-analysis method. In the presence of

uncertainties in the input data, which is the usual case, it can help to distinguish algorithms

that overcome the error problemto whatever extent it is possible to do so. In such situations

expensive methods, such as exact arithmetic, are not necessary, provided a stable algorithm has

been applied. The application of the backward error analysis will be presented in Ch. 3, with

detailed examples provided.

For different geometric problems, non-robustness manifests itself in different manners. The

phenomena include random system crashes, inconsistent states (e.g. the geometric data incon-

sistent with the topological data), models that contain cracks, holes and overlaps, etc. [Yap01].

This, in turn, means that we have to seek appropriate methodsfor each problem: a universal

solution does not exist. The following example (Fig. 1.2) isa typical “dirty” geometric model:
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an exterior-mirror model with small cracks (left), with thezoom-in on the problematic area

(middle) and the repaired result (right) [SWC00].

original model zoom-in of the problem area repaired result

Figure 1.2: An example of a “dirty” geometric model [SWC00].

Depending on the underlying geometric representation usedfor describing the model, dif-

ferent techniques can be used to eliminate the error in the result, each with its own advantages

and weaknesses.

NURBS (details in Ch. 2) have become ade factoindustry standard for the representation,

design, and data exchange of geometric information processed by computer. Trimmed-NURBS

(details in Ch. 2) offer greater flexibility than traditional NURBS for the design of very sophis-

ticated objects, and they have become a very powerful tool used in most commercial model-

ing systems. The errors illustrated in Fig. 1.2 may come frominconsistent information, e.g.

trimmed-curve mismatch problems. On the other hand, in mostcases, for the purpose of ren-

dering, the trimmed patches need to be transformed into a polygonal representation. The error,

at this stage, may come from the approximation procedure, and a joining (sewing/merging) op-

eration can be used to fix the problem. But even in the case thatmaximum auxiliary information

is available,i.e. even if we have both trimmed-NURBS and the (triangular) meshinformation,

a simple joining operation may not produce a satisfying result. Discussion of this problem will

be presented in Ch. 4, where an algorithm, which produces a result satisfying two error criteria

by using the Whitney extension theorem, will be presented.

NURBS information is not always available in practical applications, e.g. finite-element

analysis. Further, a simple polygonal representation (polygon soup) itself is often insufficient

for the manipulation of complex geometric models. Therefore, subdivision-surface models (de-

tails in Ch. 2) become a convenient representation. In fact,with the increasing popularity of

subdivision-surface models, more and more modelers have begun to use them as an alterna-
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tive to trimmed-NURBS, due to their simplicity, generalityand efficiency for smooth surface

construction [BK04]. Subdivision-surface models do not have the trimming difficulties and

the error-prone conversion procedure (from trimmed-NURBSto polygonal meshes) associated

with NURBS. Complex models based on subdivision surfaces can be formed using Boolean

operations. The related robustness issues of such Boolean operations on subdivision-surface

models is the next problem we considered (Ch. 5).

The remainder of the thesis is organized as follows. A short overview of the research area

of geometric modeling is given in Ch. 2. It contains two parts: reliable computation (sources

of error and error analysis methods), and geometric modeling, which presents the geometric

representations, geometric operations and the related robustness issues. The main part of the

thesis (Ch. 3, 4, 5) is composed of three accepted (to appear), published or submitted arti-

cles, each of which forms an individual chapter, with a preceding short summary. Chapter 3

describes our work on floating-point arithmetic for computational-geometry problems with un-

certain data. Our work on reliable joining of surfaces for combined mesh-surface models is

given in Chapter 4. Chapter 5 discusses the problem of robustness of Boolean operations on

subdivision-surface models. We conclude in Chapter 6, where we also mention promising pos-

sibilities for future work.



Chapter 2

Reliable computation and geometric

modeling

Problems of robustness are a major cause for concern in the implementation of algorithms relat-

ing to geometry. Most geometric algorithms are a mix of numerical and combinatorial compu-

tations, and the approximate nature of the former often leads to inconsistencies that hinder the

ability to construct a satisfactory result [Hof89]. In thischapter an overview of the problems of

reliable computation for geometric models will be given, and the related geometric modeling

topics, including geometric representations and Boolean operations, will also be presented.

2.1 Finite precision representation and reliable computation

Numerical nonrobustness in scientific computing is a well-known and widespread phenomenon.

The root cause is the use offinite-precision numbers, e.g. floating-point representation, to rep-

resent real numbers, with precision usually fixed by the machine word size (e.g. 24 bits). A

number of approaches to the finite-precision problem have been advocated in academia. Hoff-

mann [Hof01] categorizes these into three strategies: exact arithmetic, symbolic reasoning and

interval computation. Exact arithmetic is very expensive,and performance can be badly af-

fected if it is used exclusively, so filtered exact arithmetic is usually preferred [SD07]. Another

proposed method related to exact arithmetic is the exact geometric computation [Yap06]. Inter-

val arithmetic [AH83, Moo66, MB79, Sch99, EL00, DS88] treats a rounded real number as an

interval and the calculations are performed on this interval — but the shortcoming of interval

5
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arithmetic is that it gives overly pessimistic results. Symbolic manipulation is a possible way to

avoid rounding and truncation errors. Thus using software such as Mathematica or Maple may

be appropriate, but in many application cases, this might not be the best choice for efficiency

reasons. Another approach proposed by Yap [Yap01] is exact geometric computation, which

again uses approximate arithmetic, but with the level of precision guided by geometric exact-

ness. A fifth possibility [HS05, ASZ07] is to use ordinary floating-point arithmetic, and to try

to associate the error with the input data. This is appropriate if there is uncertainty in the input.

It is the last mentioned approach that is studied in this work.

2.1.1 Floating-point number system

Floating-point numbers (IEEE 754/854) are the standard substitute for real numbers in scientific

computation [Ove01]. Current state-of-the-art CAD (Computer Aided Design) systems used

to create and interrogate curved objects are based on geometric solid modeling methods that

typically operate using floating-point arithmetic [PM02, PH98, g-L].

A floating-point number systemF ⊂ R is a subset of the real numbers whose elements have

the form [Hig96, p.40]:

y = ±m × βe−t.

The systemF is characterized by four integer parameters

• thebaseβ (sometimes called theradix),

• the precisiont, and

• the exponent rangeemin ≤ e ≤ emax.

Themantissam is an integer satisfying0 ≤ m ≤ βt − 1. To ensure a unique representation for

eachy ∈ F it is assumed thatm ≥ βt−1 if y 6= 0, so that the system is normalized. Therange

of the nonzero floating-point numbers inF is given byβemin−1 ≤ |y| ≤ βemax(1 − β−t).

The IEEE standard 754/854 for floating-point arithmetic requires that the results of+, −,

·, /, and√ are exactly rounded,i.e. the result is the exact result according to the chosen

rounding mode. It also specifies floating-point computationin single, single-extended, double,

and double-extended precisions. Single precision is specified for a32 bit word, double precision

for two consecutive32 bit words. In single precision the mantissa length is24 (including a

hidden leading1 bit) and the exponent range is[−126, 127]. Double precision has mantissa

length53 and exponent range[−1022, 1023] [Sch99, FGG03].
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Floating-point arithmetic has numerous engineering advantages: it is well-supported by

programming languages, it is portable, it has useful features such as automatic scaling, and it

has been extensively optimized in current computer hardware [For95].

Since an infinite set of numbers is represented by only finitely many floating-point numbers,

truncation/rounding techniques have to be used for real numerical values to fit the representation

format. Consequently, floating-point computation is, by nature, inexact, and concepts such as

representation range, precision and round-off error then arise. Naively applied floating-point

arithmetic can invalidate axioms of geometry [Sch99]. The paper [Gol91] and the book by

Overton [Ove01] are excellent references for this subject.

2.1.2 Sources of errors

There are three main sources of errors in numerical computation: rounding and truncation due

to the finite-precision representation in computer, and data uncertainty [Hig96]. In practice, the

input data is often not exact to start with for many applications [Hof89]. Uncertainty may arise

in several ways: from error in measuring physical quantities, from errors in storing the data on

the computer (truncation errors), or, if the data is itself the solution to another problem, it may

be the result of errors in an earlier computation [Hig96]. Another source, additional to the three

mentioned, is approximation error, which occurs often in the domain of geometric modeling

for practical reasons. One example for this kind of error is the use of low-degree curves to

approximate high-degree curves.

2.1.3 Error analysis

The unpredictability of floating-point code across architectural platforms in the 1970’s and

1980’s was resolved through a general adoption of the IEEE standard 754-1985, later enlarged

as IEEE standard 854-1987 [Ove01]. But these standards onlymake program behavior pre-

dictable and consistent across platforms; the errors are still present. Ad hoc methods for fixing

these errors (such as treating numbers smaller than some positive ǫ as zero) cannot guarantee

their elimination [Yap04]. And since geometric operationsusually require extensive numerical

calculations, the propagation of the errors is of great concern and profoundly influences the

accuracy and validity of the geometric operations [Hof89, MP07]. Therefore, error analysis

became very necessary for reliable computation.

Backward error analysis was first proposed by Wilkinson [Wil60] to bound the errors re-
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sulting from the fundamental floating-point arithmetic operations [PM02], especially addition

of quantities of opposite sign and approximately equal magnitude: the computed result can be

completely wrong due to a simple cancellation (see examplesin the paper that follows in Ch. 3).

It is often possible to associate the error in a calculation with either the problem or the solution,

and there may be some choice about how much error is associated with each of these. Thus, in

Fig. 2.1, all of the error could be viewed as forward error, with ∆x = 0, or (as illustrated in

the figure), part of the error can be associated with the problem. The process of bounding this

backward error of a computed solution is calledbackward error analysis, and its motivation is

twofold. First, it interprets rounding errors as being equivalent to perturbations in the data. The

input data frequently contains uncertainties due to previous computations or errors committed

in storing numbers on the computer, as previously mentioned. If the backward error is no larger

than these uncertainties then the computed solution can hardly be criticized — it is as good as

we can hope for. The second attraction is this. Rather than viewing all of the error as forward

error, as mentioned just above, the backward error analysispermits to bound or estimate the

influence of the total error by means of perturbation theory [DB08].

f(x + △x)
△y

y = f(x)

ŷ

x

backward error

x + △x

Figure 2.1: Backward/forward error analysis, solid line = exact, dashed line = computed.

2.2 Geometric modeling

Geometric modeling has rapidly become a central area of research and development that in-

volves diverse applications. It is of critical importance in the traditional fields of engineering,

general product design, and computer-aided manufacturing. It has also proved to be indispens-

able in a variety of modern industries, including computer vision, robotics, medical imaging,

visualization, etc. [Sar03].
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2.2.1 Historical summary

Geometric modeling traditionally identifies a body of techniques that can model certain classes

of piecewise parametric surfaces, subject to particular conditions of shape and smoothness

[GO97]. Its beginnings can be traced to the 1950s, and from these initial activities emerged

four main streams of work that evolved largely independently for some two or three decades.

Thecomputer graphicsstream focused on rendering and interaction. Thewireframestream lead

to the commercial CAD systems of the 1970s and 80s. Thefree-form curve and surfacestream

found important applications in computer-aided design andthe manufacture of car bodies, air-

craft fuselages and in other tasks in the automotive and aerospace industries.Solid modeling

is distinguished by the use of hopefully unambiguous representations for complete solids. A

related fifth stream focuses on the theoretical aspects of design and analysis of geometric al-

gorithms, and has become known ascomputational geometry[Req99]. Since the late 1990s,

however, a tendency of convergence of all these different aspects of geometric computation has

become evident, and new systems use ideas from all of these fields [Req99].

2.2.2 Geometric representations

The development of complex surface representation schemeshas been one of the core fields of

computer graphics and geometric modeling. The different representations currently available

have succeeded in modeling certain properties of surfaces well, but none of them is general

enough to satisfy all the requirements that could be demanded of a representation [HG00]. Two

major representation schema are often used:constructive solid geometry(CSG) andboundary

representation(B-rep). In CSG a solid is represented as a set-theoretic Boolean representation

of primitive solid objects, so that both the surface and the interior of an object are defined

implicitly. In B-rep the solid surface is represented explicitly as a quilt of vertices, edges, and

faces [Hof89, GO97].

Most geometric modeling systems use B-rep. The different B-rep schemes appearing in

the literature can be divided into two major families. One family restricts the solid surfaces

to oriented manifolds. The second allows oriented nonmanifolds. Conversion from CSG to

B-rep is usually available [GO97]. Throughout this work, wefocus on the B-rep: three such

representations will be presented in detail.
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Parametric representations

Non-Uniform Rational B-Splines (NURBS) have become ade factoindustry standard for the

representation, design, and data exchange of geometric information processed by computer.

Also, many international standards, e.g. STEP Part 42 [Ind97], recognize NURBS as powerful

tools for geometric design [PT97]. Their excellent mathematical and algorithmic properties,

combined with successful industrial applications, have contributed to the enormous popularity

of NURBS. NURBS also play an important role in the CAD/CAM (Computer-Aided Manufac-

turing)/CAE (Computer-Aided Engineering) world .

A NURBS surface of degreep in theu direction and degreeq in thev direction is a bivariate

vector-valued piecewise rational function of the form [PT97]

S(u, v) =
n

∑

i=0

m
∑

j=0

Ri,j(u, v)Pi,j 0 ≤ u, v ≤ 1, (2.1)

where theRi,j(u, v) are the piecewise rational basis functions andn = p + 1,m = q + 1,

Ri,j(u, v) =
Ni,p(u)Nj,q(v)wi,j

∑n
k=0

∑m
l=0 Nk,p(u)Nl,q(v)wk,l

. (2.2)

The{Pi,j} form a bidirectional control net, the{wi,j} are the weights, and the{Ni,p(u)} and

{Nj,q(v)} are the usual nonrational B-spline basis functions.

NURBS provide a convenient way to describe surfaces of almost any shape. However, the

most useful NURBS paradigm is constrained by the requirement that the surfaces are defined

over rectangular regions and this leads to topologically rectangular patches. A generalization

for an arbitrary topology can be obtained by collapsing someof the control mesh edges, but this

creates surfaces with ambiguous surface normals and degenerate parametrization [CM00].

Trimming operations are essential for modeling non-regular B-rep objects. A trimmed-

surface data type in the description of free-form objects was therefore introduced to provide

greater power and flexibility to the NURBS representation. Atrimmed surface is an ordinary

tensor product surface that has a restricted parameter domain, thus overcoming the limitation

of tensor product surfaces defined over rectangular regions, and allowing for arbitrary domains

[CM00]. They can give a complete representation of the boundary of a geometric model by

means of union of surfaces restricted to suitable domains.

A trimmed NURBS surface is defined by a tensor product NURBS surface and a set of

trimming curves in the parametric space of the surface [CM00]. The additional trimming pro-
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cess, using trimming curves, permits the removal of unneeded areas of the traditional NURBS

surface. Combining thousands or even tens of thousands of trimmed surfaces makes it possible

to design very sophisticated objects [KBK02].

Figure 2.2 gives an example of two trimmed patches joining together to form a single sur-

face. The parametric domainD is delimited by a collection of trimming curvesp, and the

restriction of the mappingF to D defines the trimmed patch inR3. In addition, explicit

boundary information, provided by a functionb(t) taking values inR3, may also be present

[SWC00, Spa98, Ind97, KBK02].

p p′

D D′

F F ′

v

b(t)

Figure 2.2: Two adjoining trimmed patches in a surface model[ASZ07].

Trimmed NURBS surfaces have been adopted widely by the CAD/CAM industry, and in-

cluded in graphics standards. They are provided as primitives in several geometric modeling

software systems, and the rendering of trimmed NURBS surfaces is supported by international

standards, such as STEP Part 42 [Ind97] and PHIGS+ (Programmer’s Hierarchical Interactive

Graphics System), as well as graphics programming interfaces, such as OpenGL and Direct3D

[CM00].

Mesh models

NURBS have the advantage of being able to describe almost anyshape conveniently. But even

today’s advanced graphics hardware is unable to directly render trimmed NURBS models: they

need to be transformed into a renderable (e.g. polygonal) representation [BGK04, KBK02].

Similarly, for many applications, piecewise linear approximations of smooth surfaces within a

given tolerance are generated. Examples of such applications include finite-element analysis,

stereolithography, and visualization of geometric models[SB00]. Many methods have been
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proposed in the literature for this triangulation (approximation) procedure [SB00, Sug02].

A meshis a discretization of a geometric domain into small simple shapes, such as triangles

or quadrilaterals in two dimensions and tetrahedra or hexahedra in three dimensions [BP00].

Depending on the point of view, meshes can be classified in different ways. Based on topo-

logical properties, meshes can be divided intostructuredmeshes1, unstructuredmeshes2 and

hybrid meshes3 [GKSS02, BP00]. Based on the mesh element type, meshes can becategorized

into tri/tetrahedralmeshes,quad/hexahedrameshes, and others4 [Owe98].

For this Ph.D. work, we focused on triangular-surface meshes, based on the fact that we

mainly work on B-rep models, and that triangles are the primitive representation elements for

rendering. One of the most popular triangle and tetrahedralmeshing techniques is based on the

use of the Delaunay criterion, namely the Delaunay triangulation method.

Definition

Let S be a set of points in the plane. A triangulationT is aDelaunay triangulationof S if for

each edgee of T there exists a circleC with the following properties [Che89a]:

• the endpoints of edgee are on the boundary ofC, and

• no other vertex ofS is in the interior ofC.

A circle circumscribing a Delaunay triangle is called aDelaunay circle. If S contains four

points that are cocircular then the Delaunay triangulationis not unique [Che89b, EL00]. In such

a circumstance, any of the possible triangulations will do [Che89a]. The Delaunay triangulation

is the straight line dual of theVoronoi diagramof S [Che89a].

The Delaunay triangulation has the following properties. Among all triangulations of a

vertex set, the Delaunay triangulation maximizes the minimum angle in the triangulation, min-

imizes the largest circumcircle, and minimizes the largestmin-containment circle, where the

min-containment of a triangle is the smallest circle that contains it (and is not necessarily its

circumcircle) [She99, DS89, BP00].

1All interior vertices of the mesh are topologically alike.
2Mesh vertices may have arbitrarily varying local topological neighborhoods.
3The mesh is formed by a number of small structured meshes combined in an overall unstructured pattern.
4This includes mixed tri-quad meshes, mixed tet-hex meshes and other less frequently used element-shape

meshes.
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Subdivision-surface models

Currently, the most common way to model complex smooth surfaces in the domain of geometric

modeling is by using a patchwork of trimmed NURBS. Trimmed NURBS are used primarily

because they are readily available in existing commercial systems such as Autodesk. They do,

however, suffer from at least two difficulties [DKT98], which are discussed further in Ch. 4:

• Trimming is expensive and prone to numerical error.

• It is difficult to maintain smoothness, or even approximate smoothness, at the seams of

the patchwork when the model is animated.

Subdivision surfaces have the potential to overcome both ofthese problems: they do not re-

quire trimming, and smoothness of the model is automatically guaranteed. Also, subdivision

surfaces free the designer from worrying about the topological restrictions that haunt NURBS

modelers [DKT98]. Further, compared to the regular mesh models presented in the previous

section, subdivision-surface models offer more control over the objects, since they contain more

topological and geometrical information about the mesh. But, on the other hand, subdivision-

surface models also prevent the use of special tools that have been developed over the years

to add features to NURBS models, which is one of the hindrances for the extensive use of

subdivision-surface models, especially in the domain of CAD.

Subdivision is a method for generating smooth surfaces, which first appeared as an exten-

sion of splines to arbitrary-topology control nets, and wasintroduced as a generalization of knot

insertion algorithms for splines. But it is much more general and offers considerable freedom

in the choice of subdivision rules [Zor97]. Subdivision surfaces were first introduced to the

domain of geometric modeling 1978, with the papers by Catmull and Clark [CC78], and by

Doo and Sabin [DS78]. Subdivision-surface models are now widely used in many application

areas, including computer graphics, solid modeling, computer-game software, film animation

and others, as an alternative to B-splines and NURBS [AS09].

The basic idea of subdivision is to define a smooth curve or surface as the limit of a sequence

of successive refinements [ZSD+00]. Most oftenly the subdivision procedure contains two main

steps:refinementandsmoothing. Refinement (splitting rule) means splitting the edges and faces

by inserting new vertices to obtain a finer version of the mesh, and smoothing (averaging rule)

means shifting the vertices in order to increase the overallsmoothness of the surface [AS09,

ZSD+00].
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Classification– Many different subdivision schemes have been proposed in the last two decades.

Based on different criteria, these schemes can be classifieddifferently. For example, as pro-

posed in [AS09], they can be classified according to the type of spline that is generated by the

method: B-spline methods, Box-spline methods, general-subdivision-polynomial methods and

affine-invariant subdivision methods (Fig. 2.3). Similarly, based on the presence or absence of

an interpolating property of the produced surface, subdivision schemes can be categorized as:

interpolatingmethods (e.g. Modified Butterfly [ZSS96], Kobbelt [Kob96]) and approximating

methods (Doo-Sabin [DS78], Catmull-Clark [CC78], Loop [Loo87], 4-8 [VZ01],
√

3 [Kob00]).

- Repeated Averaging

- Catmull-Clark

- Doo-Sabin

- . . .

- Loop

- {Midedge}2

- 4-8 subdivision

- . . .

- Modified Butterfly

- Kobbelt

- {
√

3}2

- . . .

B-spline methods

- Lane-Riesenfeld:
LR(d × d),
d = 2, 3 . . .

Box-spline methods

- Three-direction
quartic-spline
scheme

- Four-direction
scheme (×1)

- Four-direction
scheme (×2)

- . . .

General-
subdivision-
polynomial
methods

- Butterfly

- 4pt × 4pt

- {
√

3}2

- . . .

Affine-
invariant
subdivision
methods

Figure 2.3: Subdivision-scheme classifications [AS09].

Surface evaluation– Another important issue concerning subdivision-surfacemodels is surface

evaluation. The first evaluation method (other than subdivision refinement itself) was proposed

by Stam [Sta98a, Sta98b]: this method parameterizes the control mesh and the limit surface

over a unit-mesh element (triangle or quadrilateral) to evaluate the surface at an arbitrary pa-

rameter value. Another method was presented in [WP04, WP05,BS02] . It uses the linearity

of the subdivision process, the parameterization of the control mesh and the limit surface is set

to be centered at each vertex (Fig. 2.4), such that the limit surface is evaluated as the linear

combination of the basis functions, weighted by the original control points. One advantage of
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this technique is that the parameterization near the extraordinary vertex has n-gon symmetry. It

is the second method that we have used in the paper that follows in Ch. 5.

11
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4 5 6

4 5 6

72
8

9

1

3

Figure 2.4: Wu-Peters [WP04] evaluation method: left: a base mesh used to generate the basis
functions for the triangle0-1-2 (regular case: vertex with valence6); right: the resulting basis
function at node1 evaluated at subdivision level four.

Multiresolution– Multiresolution is a natural extension of subdivision surfaces. It extends sub-

division by including detail offsets at every level of subdivision, unifying patch-based editing

with the flexibility of high-resolution polyhedral meshes [ZSD+00, ZSS97].

Lounsbery et al. were the first to propose algorithms to extend classical multiresolution

analysis to arbitrary topology surfaces [Lou94, LDW97]. There are now many different tech-

niques available for converting subdivision surfaces intoa multiresolution hierarchy [LSS+98].

Two main schools exist. One approach extends classical multiresolution analysis and subdi-

vision techniques to arbitrary topology surfaces [Lou94, LDW97, EDD+95, CPD+96]. The

alternative is more general and is based on sequential mesh simplification, e.g. progressive

meshes [Hop96, HG97]. In either case, the objective is to represent triangulated 2-manifolds in

an efficient and flexible way [LSS+98].

For this work we are mostly interested in the triangular B-rep, so we will give more details

on the now-classical Loop subdivision scheme. The Loop scheme is a simple approximating

face-split scheme for triangular meshes first proposed by Loop [Loo87]. It is based on thethree-

directional quartic box spline[Bar07], which producesC2-continuous surfaces over regular

meshes. The Loop scheme produces surfaces that areC2-continuous everywhere except at

extraordinary vertices, where they areC1-continuous. Later Hoppe et al. [HDD+94] proposed

an extension to the Loop scheme with special rules defined foredges to include features such

as creases and corners. In [BLZ00], the boundary rules are further improved, and new rules for

concave corners and normal modification are proposed. The Loop scheme can be applied to
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arbitrary polygonal meshes, and the resulting mesh is a triangular mesh [ZSD+00]. The proof

of continuity of this scheme for all valences can be found in [Sch96, Zor97]. Below are the

three important masks for the Loop subdivision scheme.

1. Subdivision mask

A subdivision mask defines where new vertices will be inserted and how already existing

vertices should be shifted at each subdivision step. Fig. 2.5 shows the subdivision mask

for Loop subdivision scheme [HDD+94].

ββ

β

β β

1 − nβ

0

0

0

0

0

1/8

1/8

3/4

0

0

0

0

1

0

0

smooth or dart vertex crease vertex corner vertex

3/8

1/81/8

3/8

1/2

0

1/2

0 0

5/8

3/8

0

smooth edge regular crease edge non-regular crease edge

Figure 2.5: The subdivision mask for Loop subdivision scheme, whereβ = β(n) = a(n)
n , and

a(n) = 5
8 − (3+2 cos(2π/n))2

64 . This equivalent form can be obtained from the substitutionof

1 − nβ = α(n)
n+α(n) .

2. Limit mask

A limit mask calculates the limit position of each vertex in the control mesh. The limit

position can be expressed as an affine combination of the initial vertex position and its

immediate neighboring vertices. For Loop subdivision scheme, this combination is ex-

pressed by the following mask (Fig. 2.6) [HDD+94, MMTP04].
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α

α α

1 − nα

α α

1/6 2/3 1/6

0

0

0

0

1

0

0

smooth or dart vertex crease or boundary vertex corner vertex

Figure 2.6: The limit-position mask for Loop subdivision scheme, whereα is defined asα =
α(n) = ( 3

8γ(n) + n)−1, with γ(3) = 3
16 , andγ(n) = 1

n(5
6 − (3

8 + 1
4 cos 2π

n )2) for n ≥ 4.

3. Tangent mask

Tangent vectors of the limit surface can be computed using the two left eigenvectors of

the local subdivision matrix corresponding to the second largest eigenvalues. Then their

cross product gives an exact normal vector to the limit surface. For a Loop surface, it can

be expressed by the tangent mask (Fig. 2.7) [HDD+94, Kob98].

0

c3

c4

cn c1

c2 c3

c4

0

c2c1

c5

Figure 2.7: The tangent mask for Loop subdivision scheme, whereci = cos(2πi/n).

2.2.3 Geometric operations for geometric models

In most geometric modeling systems, geometric operations can be used to generate free-form

models based on some primitive models, e.g. the geometric sweep operation [SG05]. Here we

give two main groups of these operations.

• Boolean operations

One of the most important facilities of solid modelers is theBoolean operations between

solids [TTSC91, BKZ01]. Regularized Boolean operations include: regularized union
⋃∗, regularized intersection

⋂∗, andregularized difference−∗ (Fig. 2.8). They differ

from the corresponding set-theoretic operations in that the result is the closure of the op-
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eration on the interior of the two solids, and they are used toeliminate “dangling” lower-

dimensional structures [Hof89]. These operations can be applied to both CSG models and

the B-reps5 and include some low-level operators asclassification, orientation, merging

andintersection.

union (
⋃∗) intersection (

⋂∗) difference (−∗)

Figure 2.8: Regularized Boolean operations [g-b].

• Signal processing

Signal processing contains another important group of operations that has been widely

used in the domain of geometry processing. It includesdownsampling, upsampling,

smoothing[JDD03], filtering [Ale02], etc., which have been used for geometry editing,

simplification, denoising, compression and simulation [GSS99]. The paper [BPK+07]

gives a nice overview on this subject.

Throughout this Ph.D. work, we put our focus on the Boolean operations on B-reps, al-

though other related geometric operations are also studied.

2.2.4 Robustness issues

Boolean operations have been used in most modeling systems,but most often, care still has to

be taken to handle special and degenerate cases for these operations [BMS94, TTSC91, BKZ01,

Far99]. The inconsistencies arising from numerical error can lead to connectivity faults, such

as breaks in the supposed boundary. And the inaccuracies in the calculations can also create

geometric errors, often in the form of boundary self-intersections [SD07, Hof89]. In addi-

tion, implementation of Boolean operations is especially difficult for higher-order B-reps as it

requires intersecting parametric surfaces, separating them into pieces and constructing new sur-

faces out of these pieces. Existing systems typically treata B-rep as a collection of trimmed

5Algorithms for Boolean operations on B-reps are called alsoboundary-evaluation and mergingalgorithms.
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spline patches, sharing boundaries. The boundaries of eachindividual patch are often matched

only approximately, since it is difficult to ensure that two trimming curves in different para-

metric domains are identical in space. Thus each intersection operation leads to increasingly

complex and difficult-to-handle trimming curves. Applyingsmooth deformation to the resulting

models is also a very difficult task: special care must be taken to avoid cracks, etc. [Man88]. As

a result, Boolean operations usually are neither fast nor robust, although excellent results have

been achieved by some commercial solid modeling engines [LC07, BKZ01, BK97].

The framework necessary to prove that algorithms work rigorously is available [ASZ07],

but, so far at least, the required analyses appear to be intractable. Much research has been

devoted to seeking robust geometric-operation algorithms. Two groups of methods have been

proposed to repair dirty CAD models:surface-basedtechniques andvolumetric techniques.

Surface-based techniques work directly on the input surface, using different methods to detect

and resolve artifacts. These techniques include snapping boundaries to each other, projecting

and inserting one boundary into the other, computing intersections of extended surface patches,

and propagating the normal field from patch to patch [BK97, BW92, BS95, BDK98, GTLH01].

Thevolumetrictechnique converts the input into a volumetric representation, effects the repair

in the volumetric model and extracts a surface as the final result. It contains different techniques

for the B-reps to volumetric representation conversion [NT03, Ju04, FPRJ00], and for the sur-

face extractions [KBSS01, Gib98, JLSW02]. Also, differenthole-filling methods have been

proposed [BK05, ABA02, DMGL02, NT03] for this volumetric technique. It is the surface-

based technique that we will use in the paper in Ch. 5.

Robust operations on subdivision-surface models have recently attracted a lot of attention.

Lai and Cheng [LC07, LC06] presented an algorithm that performs error-controllable Boolean

operations on Catmull-Clark subdivision-surface models,using a volumetric approach. Lan-

quetin et al. [LFKN03] proposed an intersection calculation method for subdivision-surface

models based on triangle-grouping technique. Biermann et al. [BKZ01] used a perturbation

technique to avoid degenerate cases for Boolean operationson Loop subdivision-surface mod-

els. Further Smith and Dodgson [SD07] used symbolic-perturbation methods to guarantee topo-

logical correctness of the computed result of Boolean operations. In one of the following papers

(Ch. 5), we proposed an algorithm performing Boolean operations on Loop subdivision-surface

models using limit-mesh representation, with a verification method designed to guarantee the

well-formedness of the computed result.



Chapter 3

Floating-point arithmetic for

computational-geometry problems

with uncertain data

This chapter presents our work on the application of backward error analysis in the area of

computational geometry. The analysis is relevant in the context of uncertain data, which may

well be the practical context for computational-geometry algorithms.

It has been suggested in the literature that ordinary finite-precision floating-point arithmetic

is inadequate for geometric computation, and that researchers in numerical analysis may believe

that the difficulties of error in geometric computation can be overcome by simple approaches. It

is our purpose of this work to show that these suggestions, based on an example showing failure

of a certain algorithm for computing planar convex hulls, are misleading, and why this is so.

Our exposition illustrates the fact that the backward erroranalysis does not pretend to over-

come the problem of finite precision: it merely provides a tool to distinguish, in a fairly routine

way, those algorithms that overcome the problemto whatever extent it is possible to do so.We

also show that the situation in computational geometry, as mentioned in our principal reference

[2], is exactly parallel to other areas. For example, algorithms for the planar convex-hull prob-

lem were discussed in [2], along with examples of failure of certain of the algorithms. But,

although those failures are spectacular, the situation is exactly analogous to many areas of nu-

merical analysis: there are certain algorithms that are stable, and certain algorithms that are

unstable. If an unstable algorithm is used to solve a problem, then it may produce completely

20
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wrong results, and this without warning. On the other hand, if a stable algorithm is applied,

then, in the case of problems defined in terms of uncertain data, the algorithm produces an an-

swer that is essentially as good as we can hope for. This means, in particular, that one cannot

do better by using exact arithmetic.

Three examples (solving linear equations, the planar convex-hull problem and a three-

dimensional extruded-objects problem) are then presentedto illustrate our method of perform-

ing backward error analysis: how to measure the adequacy, how to perform the perturbation

analysis and how to seek stable solution methods.

Part of the work was first presented at the Sixth Annual International Workshop on Compu-

tational Geometry and Applications, Glasgow, UK, May 8-11,2006, and it appeared inLecture

Notes in Computer ScienceLNCS3980, pages 50-59, 2006. We also invited the authors of our

main reference [2] to reply to our paper; the reply is published together with our initial paper

in the LNCS volume [KMP+06]. It is an interesting discussion that shows different points of

view concerning the same problem in different research domains. The extended version of the

paper presented here, which shows how the results apply in a simple three-dimensional case,

will appear in the International Journal of Computational Geometry and Applications.

The main contributions of this work are:

• we show that the numerical difficulties described in the principal reference [2] are unex-

ceptional.

• we show how to perform perturbation analysis in geometry modeling with three exam-

ples.
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Abstract

It has been suggested in the literature that ordinary finite-precision floating-point arithmetic is

inadequate for geometric computation, and that researchers in numerical analysis may believe

that the difficulties of error in geometric computation can be overcome by simple approaches. It

is the purpose of this paper to show that these suggestions, based on an example showing failure

of a certain algorithm for computing planar convex hulls, are misleading, and why this is so.

It is first shown how the now-classical backward error analysis can be applied in the area

of computational geometry. This analysis is relevant in thecontext of uncertain data, which

may well be the practical context for computational-geometry algorithms such as, say, those for

computing convex hulls. The exposition will illustrate thefact that the backward error analysis

does not pretend to overcome the problem of finite precision:it merely provides a way to

distinguish those algorithms that overcome the problemto whatever extent it is possible to do

so.

It is then shown that often the situation in computational geometry is exactly parallel to other

areas, such as the numerical solution of linear equations, or the algebraic eigenvalue problem.

Indeed, the example mentioned can be viewed simply as an example of the use of an unstable

algorithm, for a problem for which computational geometry has already discovered provably

stable algorithms.

Finally, the paper discusses the implications of these analyses for applications in three-

dimensional solid modeling. This is done by considering a problem defined in terms of a simple

extension of the planar convex-hull algorithm, namely, theverification of the well-formedness

of extruded objects. A brief discussion concerning more difficult problems in solid modeling is

also included.

Keywords:

floating-point arithmetic, robustness in geometric computation, stability, planar convex hull,

backward error analysis.
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3.1 Introduction

This paper is an extended version of a previous paper [1]. It discusses the use of floating-point

arithmetic for the solution of problems in computational geometry that are defined in terms of

uncertain data.

It has been suggested in the literature [2] that ordinary finite-precision floating-point arith-

metic [3] is inadequate for geometric computation, and thatresearchers in numerical analysis

may believe that the difficulties of error in geometric computation can be overcome by simple

approaches. As pointed out in the previous paper [1], these suggestions are misleading2, and it

is the purpose of this paper to show why this is so.

3.1.1 Paper outline

We begin with a slightly modified version of the exposition inthe previous paper [1], which

illustrates how the backward/forward error analysis, fromnumerical analysis, relates to the

study of robustness in computational geometry. This exposition is focused on the problem of

planar convex hulls.

Algorithms for the planar convex-hull problem were discussed in a recent paper [2], along

with examples of failure of certain of the algorithms. But, although those failures are spectac-

ular, the situation is exactly analogous to many areas of numerical analysis: there are certain

algorithms that are stable, and certain algorithms that areunstable. If an unstable algorithm is

used to solve a problem, then it may produce completely wrongresults, and this without warn-

ing. On the other hand, if a stable algorithm is applied, then, in the case of problems defined in

terms of uncertain data, the algorithm produces an answer that is essentially as good as we can

hope for. This means, in particular, that one cannot do better by using exact arithmetic.

Having established these basic facts, we go on to illustratethe implications of this discussion

for applications in three-dimensional solid modeling. We make this link by the simple device

of consideringextruded objects, defined in terms of a two-dimensional contour and a direction

d that defines the path along which the contour should be swept3. Objects of this kind have

formed part of solid modeling systems from the very beginning, since such objects are widely

used in design, and correspond to widely used manufacturingprocesses [4, 5]. The illustration

given here will show how the question of well-formedness of such an object, in the (usual)

2The previous paper [1] includes an invited reply from the authors of the original paper [2].
3Throughout the paper, boldface characters are used to denote vectors inRn, and, in particular, inR2.
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context of uncertain data, can be reliably guaranteed usingalready established results [6], along

with Fortune’s stable implementation of the Graham scan [1,2, 7, 8] implemented in ordinary

floating-point arithmetic. We then conclude with some remarks about the use of such arithmetic

for more general problems in solid modeling.

3.1.2 Comments concerning the failure of an algorithm

As stated in the principal reference [2], “. . . the algorithms of computational geometry are de-

signed for a machine model with exact arithmetic. Substituting floating-point arithmetic for the

assumed real arithmetic may cause implementations to fail.” The paper [2] goes on to say that

“due to . . . [ a ] . . . lack of examples, instructors of computational geometry have little mate-

rial for demonstrating the inadequacy of floating-point arithmetic for geometric computations,

students of computational geometry and implementers of geometric algorithms still underesti-

mate the seriousness of the problem, and researchers in our and neighboring disciplines, e.g.,

numerical analysis, still believe, that simple approachesare able to overcome the problem.” An

incremental scan algorithm (which is related to Graham’s scan [8] and which we will refer to

asGrahamincremental), for planar convex hulls, is then studied in some detail. Inparticular,

examples are given which show the algorithm can fail, and an explanation is given for why it

fails, when executed with floating-point arithmetic.

The examples given in the principal reference [2] should indeed be useful to students and

teachers of computational geometry, in order to illustratewhat can go wrong, and why, when

finite-precision arithmetic is used to solve geometric problems. Furthermore, the paper [2]

presents the results of experiments that are repeatable in every detail. In fact, we have imple-

mented theGrahamincrementalalgorithm for example A1 of the principal reference [2], and

we confirm that the algorithm behaves exactly as described there when applied to the data given.

Briefly, for example A1,Grahamincrementalproduces a completely spurious result.

There are, however, three misleading suggestions in the final sentence quoted above, and it

would be unfortunate if they were communicated to students of computational geometry. One

of these is the suggestion that the approaches of computational geometry and numerical analysis

are somehow adversarial, since in fact they are complementary. Another is the suggestion that

numerical analysts believe that they can “overcome” the problem of finite precision. This is not

true. Whatis true, however, is that in the case where input data is uncertain and a stability result

is available, a backward/forward error analysis, and oftena pure backward error analysis, can
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deal with the problem in a fairly routine way, by showing thata stable algorithm overcomes the

problem of finite precisionto whatever extent it is possible to do so. Indeed, a stable algorithm

provides us with a solution that is as good as the data warrants [9]. (Stability will be defined

below in the context of a combined backward/forward analysis, but we will usually just refer to

a backward error analysis, since this is usually sufficient.)

A third misleading remark in the passage, quoted above, is the reference to the “inade-

quacy” of floating-point arithmetic for geometric computations, which is incorrect as a general

statement. In fact, some algorithms using floating-point will provide adequate solutions, while

others will not, and a backward error analysis will permit usto recognize which algorithms

are satisfactory. On the other hand, itis true that we must begin by defining precisely what

constitutes anadequate, or inadequate, solution to a geometric problem.

We will show below that numerical robustness for the convex-hull problem is analogous to

the case of linear equations, or the algebraic eigenvalue problem, and that when input data is

uncertain, the difficulties documented in our principal reference [2] fit exactly into the paradigm

of the backward error analysis. We emphasize that this does not imply that research into other

paradigms, including exact arithmetic and others, should not be vigorously pursued. Our only

claim is that in the proper context (uncertain input data), the backward-error analysis is a useful

approach, and it should not be neglected.

We also present a brief summary of how the backward error analysis is used in numerical

linear algebra, and a simple example is given to show that breakdowns of methods, of the sort

described for the convex-hull problem, are quite typical inother fields. Then, a description of

the combined backward/forward error analysis is given, andapplied to the planar convex-hull

problem. These ideas were developed several decades ago, but that work [9, 10] is very much

relevant today. As already mentioned, the first task is to define exactly what is meant by the

“inadequacy” of a solution to the convex-hull problem. We are then in a position to do apertur-

bation analysis[10] to examine the effects of perturbations of the input data (whether they are

caused by original uncertainty or by subsequent application of a stable numerical algorithm).

Finally, we discuss Fortune’s implementation of the Grahamscan, which we will callGra-

ham Fortune. This implementation is numerically stable for the planar convex-hull problem, as

proved by Fortune [7]. Indeed, a slight modification of the algorithm will produce a sequence

of points that lie on the topological boundary [11] of their convex hull, and this convex set is

the correct convex hull for points that have been relativelyperturbed by a small amount. Thus,
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we can use a pure backward error analysis to affirm thatGrahamFortuneprovides a solution

that is as good as we can hope for, given that the data is uncertain.

The situation for the geometric problem of finding planar convex hulls is, therefore, closely

analogous to the case of solving linear equations. In both cases there exist unstable algorithms

(Grahamincremental, and Gaussian elimination without pivoting, respectively), and in both

cases there exist stable algorithms (GrahamFortune, and Gaussian elimination with total piv-

oting, respectively). Also, in both cases there exist examples for which unstable algorithms

produce complete nonsense, and this with no warning that anything is amiss. In fact, the only

breakdown in the analogy is that in the case of the geometric problem, with the error criterion

used below as an illustration, the situation is muchbetter than for solving linear equations.

This is because the perturbation analysis, mentioned above, shows that the problem iswell-

conditioned, which is not always true for linear equations. Thus, whereas even a stable algo-

rithm may produce an unsatisfactory answer for the problemAx = b (if A is the Hilbert matrix,

for example), a stable algorithm such asGrahamFortunealways produces a satisfactory answer

for the convex-hull problem.

3.2 Backward error analysis for linear-equation solvers

For linear equations, the problem is defined by the pair[A, b], and the solution is defined byx

such thatAx = b. We proceed as follows:

a. Measuring error in the solution space.A measure of the inadequacy of an approximate

solutiony, for the problem[A, b], is the relative error‖x−y‖
‖x‖ , where‖ · ‖ denotes any

convenient vector norm [10].

b. Perturbation Analysis.A simple argument shows that ifδA is a matrix representing

perturbation of the elements ofA, and ifδb is a vector representing perturbations of the

elements ofb, then the solutiony of the perturbed problem[A + δA, b + δb] satisfies

(neglecting second-order terms):

‖x − y‖
‖x‖ ≤ ‖A‖ · ‖A−1‖

{‖δA‖
‖A‖ +

‖δb‖
‖b‖

}

, (3.1)

where‖ · ‖ is now used also to denote a matrix norm subordinate [10] to the vector

norm introduced above. The quantity‖A‖ · ‖A−1‖ is usually referred to as thecondition
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numberof the problem: for a trivial matrix like the identity it willbe equal to1, while for

a Hilbert matrix of even moderate dimension it will be very large. The condition number

represents the amount by which a given perturbation of the input data forAx = b will

be magnified in the solution. A problem with a low condition number is said to bewell-

conditioned, and a problem with a large condition number is said to beill-conditioned.

The two cases are illustrated by the lines linking problems to solutions in Figures 3.1

and 3.2, whereP denotes the class of problems, andS denotes the class of solutions

[12]. In Figure 3.1, a small perturbation in the problem produces a small perturbation

in the solution, while in Figure 3.2, a small perturbation inthe problem produces a large

perturbation in the solution. (The meaning of the unfilled circles in the figures will be

explained immediately below.)

P S

Figure 3.1: Well-conditioned problem.

c. Stability proof. The third step is to seekstablealgorithms, that is, algorithms that pro-

duce a slightly incorrect solution to a slightly perturbed problem [9], as illustrated by

the unfilled circles in Figures 3.1 and 3.2. (This describes acombined backward/forward

error analysis; if the words “a slightly incorrect solution” can be replaced by “the exact

solution”, so that there is no need for the unfilled circle inS, then we have a pure back-

ward error analysis.) Gaussian elimination with total pivoting is stable for the problem

Ax = b. Such algorithms produce answers that are, for practical purposes, as good as the

best answers we can hope for(even using infinite precision), if the “slight perturbation” is
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P
S

Figure 3.2: Ill-conditioned problem.

smaller than the uncertainty already in the data. Furthermore, by the perturbation analysis

of step b, above, the size of the error in the solution can be estimated.

It should be observed that the concept of problem condition,and the corresponding pertur-

bation analysis, are considered prior to any discussion of numerical methods [10]. This reflects

the central idea of the backward error analysis: if the elements ofA contain uncertainty that may

be as large as‖δA‖
‖A‖ , and the elements ofb contain uncertainty that may be as large as

‖δb‖
‖b‖ ,

then the relative error‖x−y‖
‖x‖ may be as large as is indicated in (3.1). This means that even an

exact, infinite-precision algorithm cannot help us avoid a large error in the solution, in the case

of an ill-conditioned problem, because of the effects of theinherent uncertainty in the data (see

Figure 3.2). It also means, however, that if we can find an algorithm that produces a solution

that is the exact solution, of a problem that differs from thegiven problem by an amount smaller

than the inherent uncertainty in the data, then the algorithm has produced an answer that is as

good as the data warrants [9].

We emphasize again that a stable algorithm does not necessarily produce an answer with

small error: it only produces an answer with error on the order of that which we must accept in

any event, due to data uncertainty (see Figure 3.2, where theunfilled circle inS indicates that

the method has done a good job of solving the perturbed problem, but has nonetheless produced

an answer with large error). The backward error analysis does not “overcome” the problem of

numerical error: it merely allows us to identify algorithmsthat produce errors of the same order
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as those that we must accept anyway.

We conclude this section with the remark that computationalgeometry is by no means

unusual in the fact that there are theoretically exact algorithms that produce nonsense when

implemented in floating-point arithmetic. For example, in the case ofAx = b, suppose we

attempt to solve the sequence of problems

[

φ(ρ) 1.0
1.0 0.0

] [

x1

x2

]

=

[

1.0
1.0

]

, ρ = 0.1, 0.2, . . .

whereφ(ρ) = ρ2 − 0.01. Forρ = 0.1, the correct answer isx1 = 1.0, x2 = 1.0, but Gaussian

elimination without pivoting, as implemented in the following program, returns the answer

x1 = 0.0, x2 = 1.0. There is no division by zero, and no overflow or underflow occurs during

the execution of the implemented algorithm. In the evaluation ofb[1], however, the first term on

the righthand side of the assignment statement is shifted off the end of a register and ignored.

double rho = 0.1, phi = rho * rho - 0.01 ;

double A[2][2] = {{phi, 1.0} , {1.0, 0.0}} , b[2] = {1.0, 1.0} ;

double x[2] ;

/********* Triangulate A ***********/

double mult = 1.0 / A[0][0] ;

A[1][1] = A[1][1] - mult * A[0][1] ;

b[1] = b[1] - mult * b[0] ;

/********* Back-substitute *********/

x[1] = b[1] / A[1][1] ;

x[0] = (b[0] - A[0][1] * x[1]) / A[0][0] ;

cout<<" The result is: "<<x[0]<<" "<<x[1]<<endl ;

/*********************************/

The result is: 0 1

3.3 Backward error analysis for planar convex hulls

We will now provide a parallel development for the problem ofcomputing convex hulls of points

in the plane. In this case the problem is defined [2] by a finite set of vectorsS = {a1, . . . ,an},

where eachai lies in the plane4. An algorithm to compute the extreme points ofS will normally

select a subset{i1, i2, . . . , im} of the indices{1, . . . , n} and declare{ai1 , . . . ,aim} to be the

4We denote the points bya in order to increase the parallelism with Section 3.2.
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solution, but since we are envisaging the possibility of uncertainty in the problem data, we will

permit any non-empty finite set of vectorsY = {y1, . . . ,ym} as a solution, where eachyi lies

in the plane.

3.3.1 Step a: measuring inadequacy

If {v1, . . . ,vk} is a finite set of vectors in the plane, defineconv({v1, . . . ,vk}) ⊆ R
2 to be the

convex hull of the set of vectors. We will define the distanced between two distinct solutions

Y 1 andY 2 of the convex-hull problem to be infinite if fori = 1 or 2 the vectors inY i do not

actually lie on the topological boundary ofconv(Y i); otherwise,d is defined to be the Hausdorff

distance betweenconv(Y 1) andconv(Y 2). Definingd(Y 1, Y 1) = 0, the distanced is a metric.

Let {ai1 , . . . ,aim} be a set of points lying on the topological boundary ofconv({a1, . . . ,an}),
and such thatconv({ai1, . . . ,aim}) = conv({a1, . . . ,an}). Theerror E in a solutionY is

defined to be

E = d({ai1 , . . . ,aim}, Y )/M, (3.2)

whereM is a fixed upper bound for the absolute value of any coordinateof any point [7]. (Thus,

for a solution to be considered accurate, its points are required to actually lie on a convex

polygon [13]). In Figure 3.3, the solution to the problem defined by{a1,a2,a3,a4,a5} is

{a1,a2,a4,a5}. The solutionY = {a1,a2,a3,a4,a5} has infinite error, sincea3 is not in the

a2

a4

a5

a3

a1 y

points in solution

Figure 3.3: Example convex-hull problem.



CHAPTER 3. FLOATING-POINT ARITHMETIC FOR... 32

boundary ofconv({a1,a2,a3,a4,a5}), while Y = {a1,a2,a4,a5,y} has error as indicated

by the dashed line.

It is possible to define other measures of distance between solutions of this problem,e.g.,

we might penalize solutions with redundant points on the boundary of the convex hull.

We will use the simple criterion (3.2) to illustrate our point, which is that if we wish to

prove rigorous theorems about the inadequacy of computed solutions, we must give a careful

definition of inadequacy.

3.3.2 Step b: perturbation analysis

If the input data{a1, . . . ,an} is uncertain, then the true problem that we wish to solve is defined

by{a1+δa1, . . . ,an+δan}, where eachδai is a vector in the plane. Suppose that‖δai‖2

‖ai‖2
≤ ∆,

i = 1, . . . , n, where‖ · ‖2 denotes the Euclidean norm. This means that the relative error in the

computed solution could be as large as∆
√

2, due to the uncertainty in the input data alone, since

the Hausdorff distance betweenconv({a1, . . . ,an}) andconv({a1 +δa1, . . . ,an +δan}) has

the achievable upper bound of∆
√

2M . Thus, if criterion (3.2) is used,
√

2 can be taken as a

condition number for the problem of planar convex hulls.

In comparison with the linear-equations case, this is a verysatisfying result: the problem

of computing planar convex hulls is always well conditioned. (In this respect, the convex-hull

problem, with the metric we have used, is closer to the problem of computing the eigenvalues

of a real symmetric matrix than to the problem of solvingAx = b: the symmetric eigenvalue

problem is also always well-conditioned [10]. It should be observed, however, that if a different

metric is used to measure distance, then a different perturbation analysis will result. For exam-

ple, if only the distance between points in the convex hull isincluded in the metric, then the

convex-hull problem would be ill-conditioned.)

3.3.3 Step c: stability of algorithms

Just as in the case of linear equations, there exist both unstable and stable algorithms for the

planar convex-hull problem, when criterion (3.2) is used. In particular, it has been shown [2]

that Grahamincrementalis unstable. This algorithm should therefore not be used (just as we

should not use Gaussian elimination without pivoting to solve Ax = b). On the other hand,

a slight modification of theGrahamFortune algorithm [7] is numerically stable, that is, the

computed answer is such that it is the exact solution for a perturbed problem for which the
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relative perturbation bound in problem space is at mostO(nǫ), whereǫ is the relative error of

floating-point arithmetic. The algorithm uses a function called TriangleTest[7], first to establish

lists of candidates for upper and lower chains, and secondlyto decide whether or not to retain

themiddlepoint of possible triplets in these chains. The proof of stability depends onbothuses

of TriangleTestto show, for example, that slightly perturbed versions of the candidates for an

upper convex chain satisfy the following condition: eitherthey were retained and form part of

an actual upper convex chain, or they were not retained but nonetheless lie above the line deter-

mined by the two points with minimum and maximumx-coordinate. The slight modification,

referred to above, is to use thea priori bounds for finite-precision floating-point arithmetic to

implement the test of a “left turn” inTriangleTestin a fail-safe way, so that an ambiguous point

is considered to be part of a “left turn”, and dropped from thecomputed convex hull. (This

modified test is described in detail elsewhere [13], and a similar test has also been used for

another purpose [14].)

3.3.4 Consequence

The consequence of these well-conditioning and stability is this: not only is it true that a stable

algorithm such asGrahamFortunewill always produce an answer that is scarcely more in error

than we should expect because of data uncertainty (this conclusion follows from stability), it

is true in addition that the actual error in the computed solution is small (this follows from

well-conditioning). We are in the situation illustrated inFigure 3.1. The overall situation is

illustrated in Figure 3.4, wherep1 is the true problem to be solved,p2 is the problem presented

p1

p2

p3

P S

Figure 3.4: Overall situation.
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to the method, andp3 is the problem for which the method actually finds an exact solution.

This is a pure backward error analysis, with a well-conditioned problem. Even if (3.2) were

replaced by a criterion that rendered the problem ill-conditioned, however, it would remain true

that the algorithm always produces an answer that is scarcely more in error than we should

expect because of data uncertainty.

3.4 Practical implications for three-dimensional applications

The convex-hull problem discussed in the principal reference [2], and analyzed in our previous

paper [1] and in Section 3.3, above, is only two-dimensional, but it has direct application to a

practical three-dimensional problem. Extruded objects, discussed in Section 3.4.1, are widely

used in solid-modeling systems. (Much more general extrusions than those discussed in Sec-

tion 3.4.1 have been used [16]). We use the example of guaranteeing the well-formedness of

extruded objects to illustrate the rigorous use of floating-point arithmetic in a geometric appli-

cation. Then, in Section 3.4.2, we give a brief commentary onthe use of such arithmetic for

more difficult geometric problems inR3.

3.4.1 A simple application inR
3: extruded objects

For m = 0, . . . ,M − 1, let Rm(t) be a planar Bézier curve of degreeν defined by the control

pointsQm = {Rm
0 ,Rm

1 , . . . ,Rm
ν }:

Rm(t) =

ν
∑

i=0

(

ν

i

)

(1 − t)ν−itiRm
i , 0 ≤ t ≤ 1.

The control points lie inR2, and they are assumed to satisfy the conditionsRm
ν = Rm+1

0 ,

m = 0, . . . ,M − 1, where indices are calculatedmoduloM . Since a Bézier curve interpolates

its first and last control points [15], the sequence of curvesRm(t),m = 0, . . . ,M − 1, defines

a simple closed curveΓ in the plane, provided that no curve self-intersects, no adjacent pair of

curves mutually intersect other than at prescribed endpoints, and no two distinct curves intersect

(see Figure 3.5).

If we are given also a direction vectord with ‖d‖2 = 1, and two scalarsλl andλu, λl ≤ λu,

then these data define the extruded object

E = {x ∈ R
3 : λl ≤ d · x ≤ λu, O[x − (d · x)d] ∈ Int(Γ)},
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R3(t) R2(t)

R4(t) Int(Γ)

R1(t)

R0(t)

Figure 3.5: Simple closed curve formed of Bézier segments (M = 5).

whereO is the rotation matrix that carriesd into [0, 0, 1]T , andInt denotes the interior of the

simple closed curve. An extruded object is illustrated in Figure 3.6.

d

Figure 3.6: Extruded object.

To decide the question of well-formedness ofE , an algorithm must check the three condi-

tions mentioned above:

1. no curveRm(t) may self-intersect;

2. there may be no intersections, other than at prescribed endpoints, between adjacent pairs

of curvesRm(w), 0 ≤ w ≤ 1, andRm+1(v), 0 ≤ v ≤ 1, whereRm
ν = Rm+1

0 ,

m = 0, . . . ,M − 1;
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3. no two distinct curvesRm1(w) andRm2(v), m1 6= m2, may intersect.

Necessary and sufficient conditions for these three conditions to be satisfied have been given

previously [6], along with less sharp but more tractable sufficient conditions. These are, respec-

tively for each case:

1. Let q = {Rm
i+1 − Rm

i : i = 0, . . . , ν − 1}. Then a sufficient condition for non-

selfintersection ofRm(t) is that0 6∈ conv(q) [6].

2. We first make the change of variablesu = 1 − w and rewriteRm(w) as Rm(u) =
∑ν

i=0

(

ν
i

)

ui(1−u)ν−iRm
ν−i, so thatRm(u)|u=0 = Rm+1(v)|v=0. LetQ′

a = {Rm+1
ν−i−j −

Rm
i : 0 ≤ i ≤ ν − 1, 0 ≤ j ≤ ν} andQ′

b = {−Rm
i+j + Rm+1

ν−i : 0 ≤ i ≤ ν − 1, 0 ≤ j ≤
ν}. Then a sufficient condition precluding intersection of thetwo adjacent curves is that

0 6∈ conv(Q′
a) and0 6∈ conv(Q′

b).

3. The classical sufficient condition ensuring that distinct curves Rm1(w) and

Rm2(v) do not intersect is that the convex hullsconv({Rm1

0 , . . . , Rm1

ν }) and

conv({Rm2

0 , . . . ,Rm2

ν }) of their control points should not intersect [15].

Thus, in each case, guaranteeing the sufficient condition involves solving a planar convex-hull

problem. Application of Criterion 2.1* and Criterion 2.2* is simplified by using the correspond-

ing theorems [6] Theorem 2.1* and Theorem 2.2*, which transform the two criteria into state-

ments about the maximal perturbation of the data that will not cause unwanted intersections.

These maximal perturbations are, respectively,dist(0, conv(q)) andmax{dist(0, conv(Q′
a)),

dist(0, conv(Q′
b))}, wheredist denotes the separation between0 and the convex set.

The elements defining the setsq, Q′
a, Q′

b, conv({Rm1

0 , . . . ,Rm1

ν }) and

conv({Rm2

0 , . . . ,Rm2

ν }) might be entered by a user indicating a pixel on a screen. Thus,

the user is uncertain about the exact value of the points presented to the planar convex-hull

algorithm. IfRm
i is the value stored by the system, denote byRm

i + δRm
i a value envisaged

by the user, where the double symbolδRm
i denotes a vector inR2. The user may be ignorant

of (and perhaps indifferent to) the exact value ofRm
i + δRm

i , and capable only of specifying

a bound on‖δRm
i ‖2. In the present context, it is reasonable to suppose that thebest bound

available for‖δRm
i ‖2 is, say,10−3‖Rm

i ‖2.

Additional uncertainty in the input data (i.e., the input data for the convex-hull algorithm)

is added by the numerical calculations necessary to computethe elements ofq, Q′
a, Q′

b,
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conv({Rm1

0 , . . . ,Rm1

ν }) andconv({Rm2

0 , . . . , Rm2

ν }), and to perform the rotation contained

in the definition ofE . Bounding this additional uncertainty can be done using standarda pri-

ori bounds on floating-point arithmetic [10], and in our case, might add relative uncertainty

on the order of10−14, assuming that double-precision floating-point arithmetic (relative error

ǫ ∼= 10−16) has been used. Note that the uncertainty associated with the input data is different

for each of the convex-hull problems to be solved. Similarly, the uncertainty implicitly associ-

ated with the input data, by Fortune’s stability proof, willalso be different for each convex-hull

problem. But if each sufficient condition is satisfied independently, thenE will be well-formed.

Independently of the exact additional uncertainty, the total will overwhelm theO(nǫ) un-

certainty introduced byGrahamFortune(see Section 3.3.3). In the largest of our convex-hull

problems, we haven = ν(ν + 1). Thus, for example, if cubic splines are used,ν = 3 and

n = 12. Use of exact arithmetic would permit us to eliminate theO(nǫ) uncertainty, but not the

input uncertainty, which is larger by a factor of many billions. And the user must live with the

effects of the input uncertainty in any event.

3.4.2 Other problems

The topic of providing an analysis of the sort described in Section 3.3 for floating-point-

arithmetic implementations for more complicated problemssuch as Boolean operations on

trimmed-NURBS representations, has been much studied overthe last two decades; whether

this will prove tractable, however, remains an open question [17, 18]. It is quite likely that

certain parts of the necessary algorithms will require implementation using more expensive

arithmetics. There is no claim in this paper that ordinary floating-point arithmetic will always

be sufficient—as stated in Section 3.1.2, we only claim that it maybe sufficient, in spite of the

existence of unstable algorithms such as those discussed above.

A framework for a backward error analysis, suitable for the case of Boolean operations

on objects represented by internally inconsistent trimmed-NURBS representations, was given

elsewhere [18]. The fundamental difficulty in providing theorems in this case comes from the

problem of topology resolution [19]. There are many good algorithms for computing intersec-

tions between NURBS surfaces [19, 20], but to rigorously account for short intersection edges

between surfaces, and inconsistent decisions based on the use of small numerical tolerances, is

difficult, especially in the case where several surfaces areinvolved. On the other hand, it has

been shown that certain computed intersections of surfacescan be viewed as the exact inter-
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section of slightly perturbed surfaces [21]. This is an essential ingredient for a backward error

analysis for Boolean operations on trimmed-NURBS representations. Furthermore, rigorous

backward-error analyses are more easily obtained in the simpler case of objects represented by

locally-planar subdivision surfaces [22].

3.5 Conclusion

In order to prove theorems about the adequacy of numerical algorithms in computational geom-

etry, we must define how to measure adequacy. Furthermore, inthe case where data is uncertain,

it is worthwhile to do a perturbation analysis, and seek stable solution methods, in order to per-

form a backward error analysis. Carrying out these steps in the context of the planar convex-hull

problem shows that the numerical difficulties described in the principal reference [2] are unex-

ceptional. Furthermore, these results carry over to simpleapplications in three-dimensional

solid modeling. On the other hand, whether it is possible to carry out a backward error analy-

sis for floating-point arithmetic, for problems such as Boolean operations for trimmed-NURBS

solids, remains an open question.
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Chapter 4

Reliable joining of surfaces for

combined mesh-surface models

The joining (or merging) operator is a very important primitive operator for Boolean operations.

It can be applied to different geometric representations, including subdivision-surface models

and trimmed-surface models. In this work, we study the latter representation, which is a com-

posite model containing both a NURBS surface patch and a triangular mesh patch. A naively

designed joining operator can produce very poor results, e.g. triangles along the target joining

curve in the final result (triangular mesh) can be turned upside down by the joining process,

even in the case when maximum auxiliary information is available. Our motivation for this

work is to seek a reliable joining algorithm taking into account a normal error criterion.

To evaluate the result produced by our joining algorithm, and also to guide the joining

process, we first define two error measures, theabsolute errorand thenormal-vector error.

The Whitney extension theorem is then used as a theoretic base to perform the joining. Its use

guarantees that in the joined mesh patch, the absolute errorwill be no greater than that already

present along the boundary of the input mesh patches, and itsslope will be smaller than or equal

to the maximum slope along the boundary of the two input mesh patches. Two different cases

can be treated with our algorithm, based on the availabilityof an explicit common edge curve

which represents the boundary between the two patches to be joined. Implemented results are

also presented.

The preliminary work that deals with a single joining segment was presented in the IMCS

International Symposium on Scientific Computing, ComputerArithmetic and Validated Numer-

41
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ics (SCAN), Duisburg, Germany, September, 2006. The complete work included here was pre-

sented at the 21st European Conference on Modelling and Simulation (ECMS), Prague, Czech

Republic, June 2007, and appeared in the conference proceedings.

The main contributions of this work are:

1. we propose to use the Whitney extension theorem as the theoretical base for our joining

algorithm.

2. a joining algorithm is proposed to merge combined mesh-surface patches, which can deal

with two different cases based on the availability of certain auxiliary information.

3. two error measures (i.e. absolute error and normal-vector error) are proposed to guide the

joining process, and evaluate the quality of the joint result surface.

Small corrections:

1. In page 53 line -3: should read “approximately 30 floating-point operations for each

piecewise linear segment”.

2. Two footnotes have been added (pages 49, 52).
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Abstract

Algorithms to join two mesh patches along an edge are of immediate practical interest in the

context of higher-level operations on models of objects formed by such mesh patches. Such

models are widely used in graphical visualization and simulation, shape interrogation, and other

areas. Thus, there are now available methods to join two subdivision surfaces along a common

edge curve, as well as methods to join mesh patches that approximate given trimmed-surface

patches. The latter problem is studied in this paper.

The auxiliary information available to the algorithm, in the context of surface joining, varies,

depending upon circumstances. In particular, it may or may not be true that an explicit common

edge curve, representing the boundary between the two patches to be joined, is available as

part of the data. Even in the case, however, when maximal auxiliary information is available

algorithms are not necessarily reliable. For example, methods that do not use normal-vector

error criteria, to measure the discrepancy between the surface patch and the associated mesh

patch, can produce poor results, due to large changes in the normal direction of a triangle near

the mesh boundary. It is even possible to give examples wherethe triangles near the joined

boundary are turned upside down by the joining process, so that computed meshes self-intersect.

In this paper an algorithm is presented that uses a proxy for anormal-vector error criterion, and

the Whitney extension theorem, to produce reliable algorithms. Examples are given, and an

implementation is described.

Keywords:

surface mesh, joining, graphical simulation, shape-interrogation models, normal-vector error
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4.1 Introduction

This paper is concerned with the problem of the reliable joining of surface meshes used in

combined mesh-surface models. Such models are of interest for graphical visualization of solid

objects, shape interrogation, computer-aided design, andvision [1, 2, 3, 4, 5, 6, 7]. The joining

process is sometimes referred to assewing[1]. The main novel aspect of the work is the use of

normal-vector criteria, described below, to prevent folding of edges during the joining process.

A mesh patchis a surface made up of non-degenerate triangles lying inR
3. Algorithms to

join two mesh patches along a common edge are of immediate practical interest in the context

of higher-level operations on objects formed by such mesh patches. For example, methods

have been given to join two subdivision patches along a common edge curve, specified inR3.

In particular,combined subdivision surfaces[8] were designed for this purpose, anddynamic

subdivision surfaces[9] may be used to produce subdivision surfaces with hard edges along a

given curve in space. Similarly, methods are available [1],[10, Sec.3.4] to join together mesh

patches that approximate given trimmed-surface patches lying in R
3. It is the latter problem

(surface-mesh joining) that is studied in this paper.

The auxiliary information available to the algorithm, in the context of surface-mesh joining,

may vary. Mesh solids formed by a trimmed-surface model coupled with a triangular mesh are

used in solid modeling [1, 3, 5] and in graphical simulation [1, 2, 4]. In the latter case, the mesh

model may be carried along with the surface model, or computed adaptively during rendering,

given the current camera position. The trimmed-surface model is illustrated in Figure 4.1.

p p′

D D′

F F ′

v

b(t)

Figure 4.1: Two adjoining trimmed patches in surface model,with boundary curveb(t), t ∈
[0, 1].
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The parametric domainD is delimited by a collection of p-curves (a typical p-curve is

denoted here byp), and the restriction of the mappingF to D defines the trimmed patch inR3.

In addition, explicit boundary information may also be present. Sometimes [3, 11, 12] this may

take the form of explicit curvesb(t) taking values inR3, due to the convenience of having such

explicit representations available. This curve is analogous to the common edge curve specified

for combined subdivision surfaces. Alternatively, explicit boundary information inR3 may be

represented in other ways; for example, it may be represented approximately by scan conversion

[1].

Even with an explicit boundary curve provided, joining algorithms are not necessarily reli-

able, and it is this fact that led to the development of the algorithms described below.

We present joining algorithms for both cases: when an explicit curveb(t) is provided, and

when it is not. The algorithms described are based on the use (as a supplement to absolute error

criteria) of normal-vector error criteria [13, 14, 15] for the discrepancy between the surface

patch and the mesh-patch. A difficulty, with algorithms thatdo not use such criteria, is that they

may cause large changes in the normal direction of a trianglenear the joined boundary, which

may in turn introduce undesired visual effects. In fact, it could even happen that triangles near

the boundary are turned upside down, so that computed meshesself-intersect. The nature of

the difficulty is illustrated in Figure 4.2, in the case wherejoining moves mesh vertices on the

basis of interpolation along a polygonal path that is not a straight line. In both illustrations,

vertexl1 is paired with vertexr1, and vertexl4 is paired with vertexr2. The intervening joining

vertices are obtained by joining the midpoints of pairs of points obtained by linear interpolation

along the polylinesl1-l2-l3-l4 andr1-r2. In the first illustration, this leads to a well-behaved

triangulation, but in the second illustration, the position of the vertexl4 is different: it is further

towards the interior of the segmentr1-r2, but still within the joining tolerance, relative tor1-r2.

l4

l3

r2

l2

l1

r1

l4

l3

l2

l1

r1

r2

Figure 4.2: Sewing based on midpoints of pairs of points interpolated along mesh edges.
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This phenomenon is called “folding” [1], and can result in a mesh triangle that has flipped, as in

the second illustration of Figure 4.2. Such phenomena can beavoided by using normal-vector

criteria, and in fact, if the normals of the triangles in the mesh-patch can be bounded, they can

be used to rigorously exclude the possibility of extraneousintersections between neighboring

mesh-patches [16, 17, 18]. In the context of graphical simulation, it is clearly of interest to do

so.

The algorithms presented here use the Whitney extension theorem [19] to ensure that a

proxy for the normal-vector error (defined below), and the absolute error, should not be any

larger than the corresponding errors already present alongthe edges of the patch. Thus, in

addition to avoiding the difficulty described in the previous paragraph, the procedure smooths

the input mesh patches, in the sense just described of error minimization. The algorithms apply

to the case of general trimmed patches, and we describe an implementation.

Whitney extension can be viewed as a way to perform transfinite interpolation between

boundary curves. Amongst many other applications, it has been suggested for use as a meshing

method in [5]. The algorithms below will adjust the verticesof the input mesh patch in a way

that constrains them to lie in a transfinite interpolant defined by Whitney extension.

Numerical properties of one of our algorithms were discussed, in the special case of planar

patches with straight-line boundaries, in [20].

Related areas of work include mesh simplification (finding a “. . . concise, yet geometrically

faithful . . . representation of a surface . . . ” [14, Sec. 1]),remeshing [14, Sec. 1.1] [15], [5, 21]

and mesh fairing [22]. A good overview is given in [14]. Yet other work deals with computation

of meshes over imperfect geometry [3, 23], and methods for mesh repair [2, 4, 24, 25].

Other work on meshing can be related to ours in another way, namely, by examining the

metrics used to compare surfaces. The general concept of theabsolute error in a mesh, relative

to a given surface, is ubiquitous (see for example [26]). Again, the reference [14] gives a good

overview. As already mentioned, other authors [13, 15] haveintroduced normal-vector criteria

similar to ours. For example, in [15], although priority is given to other mesh-smoothness

criteria, it is verified from time to time that a criterion, similar to the mean-square criterion

discussed in Section 4.2, is not above a certain threshold. Somewhat different criteria are used

in other applications. For example, in the context of snakeson triangular meshes, [27] refers to

bending-energy and curvature-distribution criteria thatare different from but nonetheless similar

to the height-field-slope criterion introduced below.
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4.2 Error criteria to measure mesh-patch quality

One measure of the quality of a mesh patchM is theabsolute error. Let ν1, . . . ,νn ∈ R3 be

the vertices ofM , andT1, . . . , Tr its triangles, whereTj =< νi1 ,νi2,ν i3 >, 1 ≤ i1, i2, i3 ≤ n.

We assume that the Jacobian of the mappingF is of full rank, i.e., the rank is equal to 2. Let

n(u, v) = (F u(u, v) × F v(u, v))/‖F u(u, v) × F v(u, v)‖

be the unit normal of the surfaceF at (u, v), and let the heightη(u, v) ∈ R be the scalar such

that

M(u, v) = F (u, v) + η(u, v)n(u, v) ∈ |M |,

where|M | denotes the mesh viewed as a subset ofR3, if a unique suchη exists. We suppose in

fact that for all mesh patches considered, the mapping

M−1 : |M | 7→ [0, 1]2

is well-defined and injective. Thus, it is assumed that for any m ∈ |M |,

|η| = dist(m,F )
.
= min

y∈F
‖m − y‖

is uniquely defined, and furthermore, that the corresponding point (u, v) is well defined and

lies in [0, 1]2. (It follows that the mappingF itself must be injective, at least on the part of the

domain of interest. Note also that the symbolF has been used to denote both the mapping and

the image of the mapping, which is a pointset.)

A possible definition of the absolute error inM is the supremum of|η| over I ⊆ [0, 1]2,

whereI is the inverse image of|M |. Meshes are in practice close enough toF [D] that the

assumption above, that|η| is well defined, does not present a problem, providedI ⊆ [0, 1]2.

(The mesh must be close relative to the local minimum normal curvature ofF .) On the other

hand, there is a theoretical difficulty in simply defining theabsolute error to be

sup
(u,v)∈I

|η| (4.1)

because there is nothing in this criterion to force full coverage of the surface patch by the mesh.

For example, a degenerate meshM consisting of a single vertex lying inF [D] would produce
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an error of zero. As observed in [14, Sec. 2.1], use of (4.1) amounts to using a one-sided version

of the Hausdorff metric. In spite of the difficulty we have just described, this approach is often

used in practice [14], and we will do so here. The coverage of practical meshes is usually quite

good.

We also assume thatD lies strictly inside[0, 1]2, i.e., that the patch is trimmed on all sides.

There is no theoretical problem in the opposite case, since normally [26] the mappingF is

defined outside[0, 1]2. If, however, the inverse image of a point in|M | lies outside[0, 1]2, there

may be numerical difficulties in the calculation ofη.

A second measure of the quality ofM is thenormal-vector error, defined here as the largest,

over all trianglesTj, of the maximum slope (in absolute value) of the height field.Let Ij be the

inverse image ofTj underM , and letLj be the smallest value ofL for which η satisfies the

Lipschitz condition

|η(p1) − η(p2)| ≤ L · ‖p1 − p2‖

for all pointsp1 = (u1, v1) andp2 = (u2, v2) in Ij . Our second criterion is thenmaxj Lj .

To relate this criterion to similar normal-vector measuresintroduced elsewhere [13, 14, 15],

we note that

sup
(u,v)

‖n(u, v) − nj‖

(wherenj is the unit normal of the triangleTj , and the supremum is taken overIj) is analogous

to the mean-square norm [14, Sec. 2.3.1] [15] ofn(u, v)−nj , normalized to allow for the area

of the regionIj :

‖n − nj‖2
.
=

[

1

Area(Ij)

∫

Ij

‖n(u, v) − nj‖2dudv

]1/2

.

It is, however, a more strict criterion, since

‖n − nj‖2 ≤ sup
(u,v)

‖n(u, v) − nj‖.

On the other hand,sup(u,v) ‖n(u, v) − nj‖ and the criterionLj , defined above, are equiv-

alent metrics1, a fact which follows from our assumptions about the Jacobian of F , and the

Implicit Function theorem. This justifies the terminology “normal-vector error” for the maxi-

1Two metrics are equivalent if the unit sphere of each can be contained in the other by multiplying a positive
constant.
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mum slope of the height field.

It was stated in Section 4.1 that our algorithms control onlya proxy for the normal-vector

error. This proxy is obtained as follows. First of all, the slope ofη onIj is replaced by the slope

measured only between the three corner points ofIj. This process can increase the error in the

case of long thin triangles, but the difficulty can be avoidedby mesh-edge splitting. (The error

estimates given below, in Section 4.3.4, take account of thepotential error introduced in this

way, i.e., it is not assumed that mesh-edge splitting has been used to reduce the error.) Secondly,

in order to reduce computational cost, we estimatemaxj Lj by using the Whitney theorem with

the ordinary Euclidean norm ofp1 − p2, over all ofI =
⋃r

j=1 Ij, which could in principle (see

Section 4.3.1) lead to the minimization not ofmaxj Lj but, rather, the minimization of a certain

upper bound formaxj Lj.

4.3 Joining algorithms

As mentioned in the introduction, joining algorithms that do not use normal-vector criteria may

cause large changes in the normal direction of a triangle near the boundary. The nature of the

difficulty was shown in the second illustration in Figure 4.2. Thus, even though the input mesh

patches satisfy the assumptions of Section 4.2, and have small height η along the edges of the

two patches, folding may occur within (or approximately within) the curvilinear surfaceF . In

this section we present algorithms that avoid this problem,and which, at the same time, smooth

the mesh. Both of these are of obvious importance in graphical simulation. An example will be

given below, in Section 4.4, which shows the possible ill effects of folding.

We begin by giving a brief summary of Whitney extension, which is used in both of the

algorithms presented. We then give an algorithm in the case when the boundary curveb(t) is

provided as part of the input, and in a subsequent subsection, we deal with the opposite case, by

constructing ourselves a boundary curveb(t) based on the input mesh patches. The algorithms

adjust the mesh vertices to ensure that the proxy, mentionedabove, for the normal-vector error,

and the absolute error, should not be any larger than the errors already present along the edges

of the input patch. In fact, they will not be any larger than those associated with the boundary

curvesb(t) bordering the mesh patch. This of course represents onlypart of the error present

in the input data: the error in the edge of the input mesh patchitself could in principle be even

larger (and this fact makes our bound even more attractive).
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4.3.1 Whitney extension

As mentioned at the end of Section 4.1, our algorithms adjustthe vertices of mesh patches in a

way that constrains them to lie in a transfinite interpolant defined by Whitney extension. This

process is referred to asreprojection in the algorithm outlines given below. The reprojected

mesh interpolates the curvesb(t), and the assumption of injectivity ofM−1, at the beginning

of Section 4.2, includes in particular the assumption that we can compute the heightη(u0, v0)

corresponding to a givenb(t0) ∈ R3, where(u0, v0) = M−1(b(t0)). This is done, as for

vertices in a given mesh patch, by computingdist(b(t0),F ). (As in Section 4.2, the assumption

requires thatb(t0) be close toF [D], relative to the local minimum normal curvature ofF .)

Now, suppose given a mesh patchM with m edges, and corresponding boundary curves

bk(t), k = 0, . . . ,m − 1, t ∈ [0, 1]. Let ǫ(p) be the heightη(M−1(bk(t)) defined for a point

p ∈ ∂R, the inverse image of{bk(t) : k = 0, . . . ,m − 1, t ∈ [0, 1]}. We suppose that∂R is

the boundary of a well-defined regionR ⊆ [0, 1]2.

The optimality of the reprojection obtained by Whitney extension can be described as fol-

lows. We view the height associated with the curvesbk(t) as a discrepancy between the surface

dataF and the boundary data. Letǫ(p) be the discrepancyη(p) defined byM−1(bk(t)) = p,

i.e., the discrepancy defined by the boundary curvesbk(t) for k = 0, . . . ,m − 1 andt ∈ [0, 1].

Then, if the reprojected mesh (denoted̄M ) is to interpolate the boundary curves, the maximum

absolute discrepancy|ǫ(p)| of M̄ , measured overall of R, cannot be less thanmaxp∈∂R |ǫ(p)|,
and the maximum slope of the reprojected mesh over all ofR cannot be less than the slope on

∂R, defined by

L = sup
p1,p2∈∂R,p1 6=p2

|ǫ(p1) − ǫ(p2)|
‖p1 − p2‖

. (4.2)

This follows from the fact that∂R ⊆ R.

Now, a continuous extension ofǫ(p) from ∂R to R will be calledWhitneyif it satisfies the

Lipschitz condition

|ǫ(p1) − ǫ(p2)| ≤ L · ‖p1 − p2‖

everywhere onR (and not just on the boundary∂R). There exist [29] a bracketing pair of

extensionsl(p) andu(p) that are Whitney, and such that for any extensionǫ(p) that is Whitney,

we have

l(p) ≤ ǫ(p) ≤ u(p), p ∈ R.

(The explicit definitions ofl(p) andu(p) are given below, in (4.3) and (4.4).) Furthermore, if
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we take the average

a(p) =
1

2
[l(p) + u(p)],

thena(p) is Whitney, and

|a(p)| ≤ sup
q∈∂R

|ǫ(q)|, p ∈ R.

Thus, usinga(p) to reproject the mesh, as we do below, provides an extension that has absolute

error no greater than that already present along the boundary ∂R, and which has slope2 no

greater than that already imposed by the slope ofη(p) on ∂R. It is therefore optimal (and the

errors minimal) in the sense that we cannot do better.

In [28, Sec. 3.5] an alternate but computationally more expensive version of the Whitney

theorem is given, appropriate for severely non-convex domains. There is a possibility in such

cases, if the ordinary Whitney theorem is used, of over-estimation ofmaxj Lj. The practical

risk is small. Also, there exist [19] extensions that are smoother than theC0-continuous ex-

tension described above, when the data along the boundary issmooth. These might be used

to permit specification of joining with a given level of continuity. We have not explored this

possibility.

4.3.2 Case 1: Thebk(t) are provided as input

The outline of the joining algorithm, in the case when the boundary curvesbk(t) are provided

as part of the input, is as follows:

1. Project the verticesνi of the input meshM into [0, 1]2 in the u-v domain, to produce

a projected mesh. (There is of course an approximation involved here, since the inverse

images of trianglesTj are typically curvilinear sets in theu-v domain.)

2. Project a piecewise-linear approximation of eachbk(t) into [0, 1]2 in theu-v domain.

3. Remove a sufficient number of peripheral triangles from the projected mesh (in theu-v

domain) to guarantee that the projected mesh does not extendbeyond the projection of the

boundary curvesbk(t), but with at least one layer of triangles removed from the periphery

of the projected mesh. The remaining part of the projected mesh will be referred to as the

central mesh. See Figure 4.3.

2Here the slope is not the slope along the boundary: there could be variation across the interior ofR.
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4. Triangulate the region between the projection of the boundary curves and the central

mesh. (This will be referred to as the triangulation of theexternal region. See Figure 4.3.)

5. Reproject the vertices of the combined mesh (the central mesh and the triangulation of

the external region) toR3 using Whitney extension, as described in Sec. 4.3.1.

6. Merge the reprojected combined mesh, along the joint boundary (inR3) between the two

parts of the combined mesh, to obtain̄M .

central mesh projection of
boundary curves

external region

u

v

Figure 4.3: Meshing domain.

The projection of the input mesh (step 1), and of the curvesbk(t) (step 2), can be dealt with

in several ways [6, 30, 31, 32]; here we simply used the Fletcher-Reeves gradient algorithm

provided in the GNU Scientific Library [33].

The reprojection (step 5) requires calculation of the functions l(p) andu(p), mentioned in

Sec. 4.3.1. The functionsl(p) andu(p) are defined by

l(p) = sup
q∈∂R

{ǫ(q) − L · ‖p − q‖}, p ∈ R, (4.3)

and

u(p) = inf
q∈∂R

{ǫ(q) + L · ‖p − q‖}, p ∈ R, (4.4)

[29]. Due to the use of the piecewise-linear approximation (step 2), the calculation of the

supremum in the definition ofl(p), and the infimum in the definition ofu(p), together require

only 8 floating-point operations for each piecewise-linear segment.

The triangulation of the external region (step 4) is done using a slightly modified version

of Ruppert’s Delaunay refinement algorithm [34], namely thevariant [35]. Suppose that the
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triangulation producing the projection mesh is done using the same algorithm. Then, be-

cause we remove at least one layer of triangles in step 3, it follows that the minimum angle

in the boundary of the external region is at leastθ = 26.45 degrees, provided that this con-

dition is also satisfied by the projections of thebk(t). Consequently, it follows [35] under

these hypotheses that the minimum angle in the triangulatedexternal region is no smaller than

arctan[(sin θ)/(2 − cos(θ)], which is approximately21.96 degrees.

The merging required in step 6 refers to triangle splitting when there are extra vertices along

the boundary, between the two parts of the combined mesh, arising from the triangulation of the

external region.

4.3.3 Case 2: Certain of thebk(t) are not provided as input

The procedure in the case when certain of thebk(t) are not provided is exactly the same as in

Sec. 4.3.2, except that before projecting a piecewise-linear approximation of the curvesbk(t),

it may be necessary to calculate surrogates for the missing boundary curves. Note that we need

bk(t) (or a surrogate) for allk, even if no mesh patch is to be joined along certain edges.

If a curvebk(t) is present, for a givenk, it is used as in Sec. 4.3.2.

If bk(t) is not present, for a givenk, then there are two possibilities. If there is not an

adjoining mesh along edgek, then we simply use the boundary of the input mesh to compute

∂R along that edge. If there is an adjoining mesh along edgek, then we compute a piecewise-

linear median polyline, deleting loops if necessary. Folding causes no problem here: there is no

requirement that the external region be convex in order to triangulate it.

4.3.4 Error estimates

Use of the Whitney theorem (step 5) in Sec. 4.3.2 guarantees that the slope of the reprojected

mesh points, between corners of the combined-mesh triangles, will be less than or equal to the

value ofL along the boundary of the mesh. It does not, however, guarantee that the minimum

slope of the actual triangles in the combined mesh will be less than or equal toL, as can be

seen by consideration of a long thin triangle. On the other hand, if the triangulation in the

u-v domain has minimum angle equal to21.96 degrees, then it can be shown that the cosine

of the angle of inclination, of a triangle in the reprojectedmesh, is greater than or equal to

{(1 + L2)[1 +
(

2L
sin 21.96

)2
]}−1/2. This follows from a straightforward trigonometric argument

using spherical coordinates. The value ofsin 21.96 is approximately0.384.
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The problem just mentioned, related to long thin triangles,can be avoided if a long edge

of such a triangle is split, and the Whitney reprojection calculated at the inserted vertex. Note

however that the worst-case risk of neglecting to do the mesh-edge split is that the slope of the

triangle could be unnecessarily large. There is no danger ofa flipped triangle (Figure 4.2).

4.4 Computational examples

4.4.1 Examples illustrating the two algorithms

In the accompanying figures, examples of the use of the joining algorithms are given. The

examples involve joining of trimmed patches: the trimmed patch illustrated in Figure 4.4 is

exactly the input patch shown in the upper right corner of each of Figure 4.5 and Figure 4.6.

The second input patch, in the upper left corner of Figure 4.5and Figure 4.6, is, similarly, a

trimmed patch obtained from a larger untrimmed surface (notshown). The joined patches are

shown in the lower part of Figure 4.5 and Figure 4.6, respectively.

Figure 4.7 shows two input patches with folding present. Theresult of joining by means

of linear interpolation along polylines, as described in Section 4.1, is shown in Figure 4.8. The

result of using the algorithm of this paper is shown in Figure4.9.

The triangulations of the input trimmed patches were obtained using Maya [4]. The trian-

gulations of the exterior regions were obtained, as explained in Section 4.3.2, using a variant of

the Ruppert algorithm.

Figure 4.4: Trimmed patch together with its original surface.
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Figure 4.5: Example withb(t) not provided. Top: the input trimmed patches; bottom: the result
of joining.

Figure 4.6: Example withb(t) provided. Top: the input trimmed patches; bottom: the result of
joining.
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Figure 4.7: Input patches with folding present.

Figure 4.8: Result with flipped triangles.

Figure 4.9: Sewing result with Whitney extension.
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4.4.2 Computational cost

Let σ be the number of segments in the piecewise linear approximation of the boundary curves

bk(t) (step 2 in Section 4.3.2). The time required to do the joining, including the projection

and reprojection, varies directly withσ · n, wheren is defined (Section 4.2) to be the number

of vertices inM . The constant of proportionality in our experiments (run ona 2.2 GHz AMD

Athlon 64 3500+ processor), was approximately0.5 ·10−4. Thus, for a pair of meshes compris-

ing 2.1K nodes, withσ = 80, the total time required was8.16 seconds. (The examples shown

in Figures 4.5 - 4.9 had fewer nodes, and required less time.)Whitney reprojection accounts for

65-85% of the total time cost.

4.5 Conclusion

Our first conclusion, as suggested in Section 4.1, is that normal-vector criteria will be necessary

if we wish to devise reliable algorithms. Note that the purpose of presenting examples like those

of Figure 4.2 and Figure 4.8 is not to suggest that such examples will occur frequently when

using any particular algorithm but, rather, to illustrate possibilities that must be excluded if we

want provably reliable methods. One of the two main contributions of the paper is to set out the

minimal requirements for an eventual proof of reliability.

Our second conclusion is that it is possible to devise algorithms, operating at reasonable

cost, that will join given mesh patches together while maintaining a proxy for the normal-

vector error, as well as the absolute error, at a level below that already present in the given

mesh. Furthermore, the mesh in theu-v domain is not disturbed by the reprojection process,

and the triangulations of the central mesh and the external region in theu-v domain can be done

using the best available method. In this paper the central mesh was triangulated using Maya,

while the external region was triangulated using a variant of Ruppert’s algorithm, but if better

methods become available, they can be used directly. Similarly, the u-v coordinates of any

previously-applied mesh-fairing or smoothing algorithm will not be disturbed—only the height

field is modified in order to ensure that its slope over the whole patch will not be larger than the

slope along the edge of the patch.

The advantage of using normal-vector criteria for graphical simulation is clearly evident

from the example of Figure 4.8. Further research should focus on the estimation of normal-

vector error by using the mesh itself.
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Chapter 5

Robustness of Boolean operations on

subdivision-surface models

Boolean operations on standard trimmed-NURBS geometric models are still notoriously diffi-

cult problems, and the associated difficulties manifest themselves in the appearance of artifacts

such as cracks and gaps. On the other hand, subdivision-surface models as a representation are

rapidly gaining popularity in the field of geometric modeling. More and more frequently they

are used in place of trimmed-NURBS representations due to their simplicity, and efficiency for

smooth surface construction. Also, based on our previous experience with the merging oper-

ation on combined mesh-surface models (Ch. 4), the availability of both NURBS information

and the mesh data is not easily satisfied. In addition, pure mesh representation (polygon soup)

usually does not contain enough topological and geometrical information about the model for

the explicit shape control. As an alternative, we can extract subdivision topology from arbitrary

meshes using some existing methods [LDW97, EDD+95], to convert arbitrary meshes into

subdivision-surface models. But even though the fundamental theory underlying subdivision-

surfaces has been widely discussed in the domain of mathematics, there does not exist any

theoretical guarantee about the robustness of the implemented applications,i.e., at which pre-

cision level we can safely use these models. Based on these observations, we move our focus

from trimmed-NURBS representations to subdivision-surface representations, and the target

operation is enlarged from a simple merging operation to complete Boolean operations.

An algorithm performing Boolean operations on subdivision-surface models is proposed

first. It is based on the use of limit meshes, rather than a refined version of the control meshes.

62
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Limit meshes have intrinsic advantages: they contain fewertriangles than refined control meshes

of comparable accuracy, and they are closer to the limit surfaces than the control meshes of the

same subdivision level. In this work we restrict our discussion to the Loop subdivision scheme,

but the ideas are more generally applicable. We still put ourfocus on robustness: this includes

error bounds and numerical methods for thea posteriorivalidation of topological form of the

computed result. In this work, we also use some of our previously published results, for ex-

ample, the reliable three-dimensional orientation test inCh. 3 is used in the triangle-triangle

intersection procedure.

The preliminary part of this work was presented at the Dagstuhl Seminar in January, 2008,

and later appeared in the Dagstuhl seminar proceedings (Dagstuhl Research Online Publication

Server). It contained some early-stage bounding results related to the use of the limit mesh,

which turned out to be insufficient for our purposes. In the final submitted version of the paper

presented here, a different bounding technique is used.

The main contributions of this work are:

• the use of limit mesh for Boolean operations on subdivision-surface models is proposed.

• an error bound is presented for the use of limit mesh.

• a checking method for the well-formedness of the computed result is presented to guar-

antee the quality of the models produced by our algorithm.
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Abstract

This paper describes an algorithm to perform Boolean operations, based on the use of limit

meshes, in the case when input objects are defined in terms of triangular meshes and Loop

subdivision. The focus of the paper is on robustness, including error bounds and numerical

methods for thea posteriorivalidation of topological form.
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5.1 Introduction

Boolean operations on standard trimmed-NURBS geometric models [1] are still notoriously

difficult problems, and the associated difficulties manifest themselves in the appearance of ar-

tifacts such as cracks and gaps [2]. The framework necessaryto prove that algorithms work

rigorously is available [3], but, so far at least, the required analyses appear to be intractable.

On the other hand, subdivision-surface models are more and more frequently being used

in place of trimmed-NURBS representations due to their simplicity, generality, and efficiency

for smooth surface construction [4]. In this paper we describe an algorithm for computing

Boolean operations on objects defined by their boundaries, represented as subdivision surfaces.

The algorithm is similar to the one described in [5], but useswhat is called the limit mesh to

perform the initial boundary intersection calculation rather than a refined version of the control

mesh. The focus of the paper is on robustness: for example, wedo not discuss fitting operations

[5] in detail. We do, however, consider several robustness issues: integration of Fortune’s

α-predicate into the code for triangle-triangle intersection [6], new error bounds for the limit

surface, and, at least in the regular case, simple and rigorous methods to verifya posteriorithat

the polyhedral computed solution has the same topological form as its corresponding boundary

surface. Finding such bounds, and performing sucha posteriorivalidations, are essential steps

in providing ana posterioribackward error analysis [7] for a Boolean-operation algorithm.

Previous work on robustness for Boolean operations on subdivision surfaces includes [8]

and [9]. In [8], voxelization representations were used to calculate the Boolean intersection of

sets defined by Catmull-Clark subdivision surfaces. In [9],symbolic perturbation methods were

used to guarantee topological correctness of the computed result of a Boolean operation.

The algorithm presented here has been implemented, and to some extent we have been

concerned with questions of efficiency and triangle count, as described below. In this paper,

however, we restrict our attention for the most part to the robustness issues mentioned above.

We suppose that the reader has a general familiarity with subdivision-surface methods for

the representation of solids [10].

Boolean operations on solids defined using a subdivision-surface representation are usually

carried out on a piecewise polygonal mesh (thecontrol mesh), rather than thelimit surfacethat

defines the true geometry of an input operand [11]. Such an approximation might not be ac-

curate (nor, in the context of collision detection, safe) [12]. The accuracy can be improved,

however, by using thelimit mesh, a polyhedral approximation formed by driving each of the
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control points in the control mesh to its limit position [13,14]. This representation better ap-

proximates the limit surface while maintaining the same topological form as the control mesh.

The algorithm discussed in this paper is based on the use of the limit mesh. The discus-

sion refers to the Loop subdivision scheme, but the ideas aremore generally applicable. As

already mentioned, we do not discuss fitting procedures, butwe note here that thea posteriori

validation is applicable both before and after such fitting procedures have been applied. Also,

we often phrase the discussion in terms of regularized Boolean intersection [15] (there is no

loss in generality in doing so: different Boolean operations merely change which segments of

the original meshes should be retained). The input solids may be denotedS andS′, and the

operation studied isS ∩∗ S′, where∩∗ denotes regularized intersection. The input solids are

represented by subdivision surfaces defining their boundaries.

The remainder of the paper is organized as follows. In Section 5.2 we discuss the represen-

tation of solids using subdivision surfaces. In Section 5.3we describe the Boolean intersection

algorithm. This is followed by the discussion of error bounds and validation of topological form

in Section 5.4, and by a short concluding section.

5.2 Representations of solids

A typical solid will be denotedS. It is defined by its boundary surface∂S, a two-manifold

without boundary embedded inR3, and a directed normal vector specifying which side of∂S

corresponds to the inside of the object. The surface∂S is defined by a polyhedral mesh(M,P ),

whereM is a (logical) locally-planar triangular mesh,P T is a 3 × L matrix containing the

control pointspi ∈ R
3, i = 1, . . . , L, and the limit surface is defined implicitly by Loop

subdivision. We call the polyhedral mesh acontrol mesh, and denote itM̆ .

Loop subdivision was proposed in [16] and extended in [18, 17, 19]. Triangles are subdi-

vided by splitting each edge, and joining the new vertices created by this split with an edge. The

weight for a newly introduced edge point is given by the mask in Figure 5.1 (lower left), and ex-

isting vertices are modified using the mask in Figure 5.1 (upper left), withβ = β(n) = a(n)/n,

anda(n) = 5/8 − (3 + 2 cos(2π/n))2/64 [17]. Sinceβ(6) = 1/16, for regular triangular

meshes (i.e., meshes for which the valencen of each vertex is equal to6) we have1−nβ = 5/8.

Figure 5.1 (right) is discussed below.

The limit surface defined by Loop subdivision is a box spline surface [20], and∂S can be
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Figure 5.1: Subdivision masks (left) and limit mask (right).

expressed as

∂S = ∂S(u, v) =
∑

i

pibi(u, v) (5.1)

where on regular parts of the mesh the basis functions1 bi are piecewise polynomials.

The range of the indexi in (5.1) was left undefined. In the case of a box spline defined on all

of R
2, the range ofi could be taken to be the entire gridZ

2. Both in this case and in the case of

a finite locally-planar mesh without boundary, however, it is sufficient to consider only vertices

in a one-ring neighbour of a triangular patch, as illustrated in Figure 5.2 (right), provided that

at least one step of subdivision has been carried out, so thatthere are no adjacent non-regular

vertices.

This can be seen as follows. If we consider the domain of thebi(u, v) to be all of R2,

the functionsbi(u, v) can be found by substituting a scalar control point withpi = 1 for i

corresponding to a particular grid-point labelledi in hZ
2 ⊂ R

2, andpj = 0 for j 6= i, and then

applying the subdivision process until convergence. If we do this by using the masks given in

Figure 5.1 (left), it can be shown that the support ofbi(u, v) lies in the convex hull of the set

of vertices at distance2 from i, where distance is measured as an integer quantity in the graph

formed by the triangulated grid embedded inR
2 (see Figure 5.2, left). Figure 5.2 (right) is the

consequence of looking at this fact from the opposite point of view: the value of the surface on

the patch corresponding to a single triangle is determined by the control points that are 1-ring

neighbours of the patch. Similarly, if the local parametricdomain is supposed to be embedded

1In fact, in contrast to the tensor-product B-spline case, these functions do not form a basis for the spline space.
A better name would be “nodal functions” [21].
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support of bi(u.v)
h

i

Figure 5.2: Loop subdivision

in R
2 as shown in Figure 5.3 (left) [12], then the corresponding nodal function can be found in
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72
8

9

1

3

Figure 5.3: Left: a base mesh used to generate the basis functions for the triangle0-1-2 (regular
case: vertex with valencen = 6) [12]; right: the resulting basis function at node1 evaluated at
subdivision level four.

the same way. It is illustrated for the regular case in Figure5.3 (right).

Finally, to deal with creases introduced due to design considerations, or due to Boolean

operations, it is necessary to introduce additional subdivision rules for crease edges and corner

vertices [18, 17, 19]. The implementation described below permits crease edges in the input

objects, and produces crease edges along intersection curves.

By using the limit mask in Figure 5.1 (right) we can drive any control point to its position on

the limit surface. If we take the set of such limit points, andlink them together into a polyhedral

mesh with the same connectivity as̆M , we obtain thelimit mesh, denotedM̄ . BothM̆ andM̄

depend on the level of subdivisionι, but sinceι is the same for both meshes, and fixed, we do

not show it explicitly.
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5.3 The Boolean algorithm

The goal of the Boolean-operation algorithm is to apply the operation to two subdivision-surface

models, and to form the result, made up of the desired boundary segments. The algorithm takes

the boundaries∂S and∂S′ of two solids, as described in Section 5.2, and produces a single well-

formed object boundary as output. The algorithm introducesmodifications of ideas previously

suggested by other authors,e.g., thetriangle-triangle-intersectionprocedure of [6] is modified

by theα-predicate [22] to ensure robustness. The overall idea of the algorithm is similar to

[5], but we use the limit meshes̄M andM̄ ′, rather than refined control meshes (which have

more triangles), for the intersection-curve calculation.The limit meshM̄ is generally closer to

the limit surface than the control mesh̆M , with fewer triangles than a refined control mesh of

comparable accuracy, which makes the calculation less expensive. An example (in this case, a

union operation) produced by the implemented algorithm is given in Figure 5.4.

(a) (b)

Figure 5.4: (a) control mesh (b) union.

Here is the overall description of the algorithm.

1. Surface intersection. This step computes the intersection curves of two limit meshes

M̄ andM̄ ′ and maps them to the control meshesM̆ andM̆ ′. The computation uses a

triangle-triangle-intersection test, and takes floating-point roundoff error into account.

2. Cutting. This step takes the mapped intersection curves as a reference to construct cutting

curves, and separates the original control meshes into cut meshes.

3. Merging. This step combines the desired parts to form a well-formed object; the inter-

section curve is tagged as a crease.
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4. Fitting. This is an optional procedure that aims to reduce the difference between the

computed result and true solution [5].

The Boolean intersection algorithm involves two main procedures,triangle-triangle inter-

section, andrefinement, which is used in the cutting and merging steps. Asnappingprocedure

is also used in [5] (if a vertex in the mapped intersection curve is within a certain threshold

of a vertex in the control mesh, the latter vertex is moved, and all segments of the intersection

curve within a one-ring neighbourhood of the displaced control point are updated). Based on

our observation in the context of an algorithm based on the limit mesh, such a procedure has

little influence on the number of triangles in the computed result, but a large (negative) effect

on the geometric form of the result. Consequently, we did notinclude it. This reduces both the

amount of work and potential robustness problems.

Our first comments on robustness concern thetriangle-triangle-intersectionprocedure. This

procedure is largely based on the work of Guigue and Devillers [6]. For our implementation, we

downloaded their source code (available online); modifications were made in order to introduce

the equivalent of Fortune’sα-predicate, for robustness reasons. The hypothesis [6] that there are

no degenerate triangles in the input will always be satisfiedin practice if the input objects have

been provided by means of a coarse control mesh. Otherwise this condition must be checked.

Similarly to [33, 22], we defineǫ to be an upper boundǫ > |δ|, for all x, y, wherex∗̂y =

(x ∗ y)(1 + δ) and ∗̂ is a set of operationŝ+, −̂, ×̂, /̂ defined on the representable reals with

relative errorǫ.

The intersection computation relies exclusively on the sign of certain4 × 4 determinants,

wheresign is a three-valued function taking values in{−1, 0, 1}. Consider first theabove-

predicate, which determines whether the pointt is above (positive), below (negative), or on

(zero) the plane throughp,q andr:

Definition 1. Given four three-dimensional pointsp = (px, py, pz), q = (qx, qy, qz), r =

(rx, ry, rz), andt = (tx, ty, tz), we define the above-predicate

ap[p,q, r, t] := −

∣

∣

∣

∣

∣

∣

∣

∣

px qx rx tx
py qy ry ty
pz qz rz tz
1 1 1 1

∣

∣

∣

∣

∣

∣

∣

∣

= (t − p) · ((q − p) × (r − p)). (5.2)

The evaluation of this predicate is error-prone due to the use of finite precision arithmetic

[5]. Consequently, a perturbationδ′ is introduced similar to theα-predicatein [22], and the
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classification of point positions is modified as follows:

t ↔







above△ : ap[△, t] ∈ (δ′,∞) (sign(ap[△, t]) = 1)
on△ : ap[△, t] ∈ [−δ′, δ′] (sign(ap[△, t]) ⇐ 0)

below△ : ap[△, t] ∈ (−∞,−δ′) (sign(ap[△, t]) = −1)
(5.3)

where⇐ meansconsideredto be zero. With these modifications, the plane through△pqr is

thickened to contain an ambiguity zone withδ′ = 160M3ǫ, neglecting higher-order terms ofǫ,

andM is a fixed upper bound for the absolute value of any coordinateof any point.

We assume that not all points are coplanar. If all the vertices of one triangle have sign equal

to zero with respect to the other triangle, we are in the coplanar case, and we can ignore the

potential intersection, since the edges of neighbouring triangles will produce the desired result.

To eliminate ambiguities in the opposite case, the first stepis to perturb the point having sign

equal to0 by an amountρ, whereρ > 2τ , in a direction away from the edge opposite the point

[6]. The vertices of the two trianglesT1 andT2 are then permuted to form the layout shown

in Figure 5.5, where a simple comparison of intervals determines whether there is a non-empty

intersection.

L

q2

r2

π2

j

p2

lπ1

i

k

p1

T2

r1

q1

T1

Figure 5.5: Triangle-triangle intersection.

Given two trianglesT1 : (p1,q1, r1) andT2 : (p2,q2, r2), suppose that at least one of the

vertices ofT1 has a non-zero sign for theabove-predicate, say,sign(ap[T2, r1]) 6= 0, and that

at least one of the vertices ofT1 has different sign from vertexr1, e.g., sign(ap[T2,p1]) 6=
sign(ap[T2, r1]). Thus, we are in the case where there is a potential intersection.

Without loss of generality, letsign(ap[T2, r1]) = 1. Then there are two possibilities for the

position of pointp1 in the case of intersection:

1. sign(ap[T2,p1]) = −1; in this case there is definitely an intersection, and we apply the

original Guigue-Deveillers algorithm [6].
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2. sign(ap[T2,p1]) = 0; this means that the pointp1 falls in the ambiguity zone, and an

α-arithmetic modification must be applied in order to remove this ambiguity. The ρ

perturbation is applied: let the perturbed point bep′
1 = p1 +ρn, wheren is the direction

of perturbation, determined by the direction throughp and orthogonal to the opposite

edge ofT1. Here,‖n‖ = 1.

Our version of the algorithm as described here fails safe, inthe sense that if there is actually

an intersection, it will be detected, but errors of the opposite type may occur. The maximum

error in the case of errors of opposite type can be determinedby applying the standarda priori

bounds [33, p. 107] to the Guigue-Devillers algorithm [6].

The arguments presented here clearly do not constitute a proof of the correctness of the

overall process: in particular, such a proof would have to involve consideration of multiple

perturbations of a single vertex; the merging step, described below; and take into account the

classical steps described in [24] to obtain a regularized result. Note also that, given the fail-safe

nature of our algorithm, it might be decided to implement a postprocessing step to eliminate

small thin sets (slivers) [9]. This, however, lies outside the domain of numerical analysis.

The goal ofrefinementis first to guarantee that the mesh remains valid (merging step), and

secondly, that the cutting curves conform to the shape of themapped intersection curves (cutting

step). A triangle containing a part of the intersection curve is refined if it is detected as “bad”,

i.e. the curve intersects the triangle boundary more than twice,does not intersect at all (the

curve is completely inside the triangle), or intersects theboundary twice but on the same side.

The refinement is done using quadrisection (midpoint insertion on the triangle edges).

The steps just summarized make up a large part of the implemented Boolean operation

algorithm, but since they are not directly concerned with the robustness questions we discuss,

we omit the details (the main requirement, from the robustness point of view, is that the process

should not modify the topological form of the meshes).

In order to improve the approximation to the true intersection result, an optional fitting step

can be applied [5]. This step is applied after execution of the complete Boolean operation. We

have used a modified fitting procedure which minimizes the functional formed by the sum, for

the two objects, of the terms
∑

j

||f(p̃ι
j) −Lpι

j||2, (5.4)

wherej indexes the vertices in the mesh at subdivision levelι, pι
j is one vertex in the mesh

at level ι, p̃ι
j is its corresponding position in the original coarse control meshM̆ , f(·) is the
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limit-surface evaluation function, andL is the limit matrix that determines the limit position of

the vertexpι
j . Other constraints can be added to obtain better fitting.

5.4 Error estimation and verification of well-formedness

5.4.1 Error estimation

Using the limit mesh as an approximation to the limit surfacefor the intersection calculation

implies potential errors in the final result. In this section, we will give a bound on the possible

error, based on the work of [14], followed by some possible improvements.

Bounds of this type were discussed in a preliminary way in [25]. Other work on this topic

includes [13, 12], as well as earlier work [26] on B-splines that used derivatives to bound the

surface.

Each faceF̄ in the limit meshM̄ is defined by the cornersq0, q1, andq2, which can be

obtained by limit-surface evaluation

qj = ∂S(uj , vj) =
n+5
∑

i=0

pi · bi(uj , vj), j = 0, 1, 2, (5.5)

where thepi are the control points in the control mesh̆M that affect the position ofqj , thebi

are the nodal functions, and(uj, vj) is the coordinate forqj in the parametric domain illustrated

in Figure 5.3 (left).

Letn denote the face normal of̄F . An upper and lower bound at each of these three vertices

can be obtained:

ℓj ≤ nT qj ≤ µj (5.6)

where

ℓj =
n+5
∑

i=0

(nT (pi − qj))
+ b−i +

n+5
∑

i=0

(nT (pi − qj))
− b+

i

µj =
n+5
∑

i=0

(nT (pi − qj))
+ b+

i +
n+5
∑

i=0

(nT (pi − qj))
− b−i (5.7)

as illustrated in Figure 5.6 for a two-dimensional case, and
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pj+1
pj

pj−1

pj+2

qj+1

qj

Figure 5.6: A 2D illustration for the upper and lower bound construction.

(nT (pi − qj))
+ = max{nT (pi − qj), 0}

(nT (pi − qj))
− = min{nT (pi − qj), 0}

(see [14]). It is necessary here to estimate the range[b−i , b+
i ] of the basis functionbi, where

b−i = min
u,v

bi(u, v), b+
i = max

u,v
bi(u, v),

and the minimum and maximum are taken over the triangle0-1-2 in Figure 5.3 (left). As

suggested in [14], this can be done by estimating the basis function by applying the subdivision

process to the Dirac polygon described above (pi = 1, pj = 0 if j 6= i). Since this only

gives an estimate, however, it is necessary to iterate the process [14], beginning with the coarse

estimate of the range[−1, 1]. In this way we get a bounding volumeV defined by the offsets of

limit-mesh vertices (see Figure 5.7):

qj +
ℓj

nT ñj
ñj, qj +

µj

nT ñj
ñj (5.8)

whereñj is the normal vector at each vertexqj.

Possible improvements on the bounding volume can be obtained by using the fact that the

limit mesh is a down-sampling of the limit surface, which means that all of its vertices lie on

the limit surface (except for floating-point error). We willmodify the bound above for a tighter

enclosure of the limit mesh by exploring this idea.

Using the tangent mask, a tangent planePj , j = 0, 1, 2, at the three vertices of each limit
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upper bound

lower bound

F̄qj

Figure 5.7: Upper and lower bounds for a single face in the limit mesh.

face can be obtained as:

Pj = (qj, ñj) (5.9)

whereqj is vertex of the limit face that lies in the plane, andñj is its vertex normal, given as

ñj = u1 × u2 (5.10)

u1 = c1p1 + c2p2 + . . . + cnpn

u2 = c2p1 + c3p2 + . . . + c1pn,

wherep1, p2,. . . ,pn are the neighbours of vertexqj, andci = cos(2πi/n) are the limit-mask

coefficients. Let

θj =
nT ñj

||n||||ñj||
, j = 0, 1, 2, (5.11)

and

θ = min{θj , j = 0, 1, 2}. (5.12)

We can adjust each vertex normalñj outward from the center of the limit face, by rotating the

vectorc − qj around the axis formed bỹnj × (c − qj) wherec is the center of the limit face,

until the new vertex normal̃n′
j satisfies

nT ñ′
j

||n||||ñ′
j||

= θ, j = 0, 1, 2. (5.13)

Then for each vertexqj we get a new plane

Pj = (qj, ñ
′
j). (5.14)
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By reflecting each of these three planes with respect to the limit face F̄ , we get three other

planesP ′. Intersecting each of these planes with the bounding volumeV previously calculated,

Pj with the upper bound, andP ′ with the lower bounds (see Figure 5.8), we can get a tighter

closure for each face in the limit mesh.

original upper and lower bounds

tangent plane

a tighter bound

limit mesh patchvertex normal

tangent plane

Figure 5.8: Illustration for the tighter bound construction.

For now, these modifications provide only approximate bounds, and more work is required

to transform them into provable bounds that are guaranteed to enclose the limit surface.

5.4.2 A posteriori verification of well-formedness

It is of interest to be able to confirm that the limit mesh̄M (respectivelyM̄ ′) has the same

topological form as the corresponding input set, represented by its boundary∂S (respectively

∂S′). Similarly, suppose thatM c is the mesh corresponding to the computed approximation

of the result of the Boolean operation,i.e., M c is intended to approximate the boundary of

SI = S ∩∗ S′. (The meshM c is obtained from refined control meshes corresponding to each

input operand.) Again, it may be of interest to confirm thatM c has the same topological form

as∂Sc
I , the actual surface associated with the computed mesh. We will phrase the discussion of

these questions in terms of the first of the examples just given.

Given the limit meshM̄ , the fact that two of its faces are disjoint does not imply that the cor-

responding faces of∂S are disjoint. Similarly, it may happen that̄F1 andF̄2 are adjacent faces

sharing an edge or vertex, but that the corresponding facesF1 andF2 of ∂S have extraneous

intersections,i.e., intersections other than those along the designated edge or at the designated

vertex. A completely robust algorithm should be able to perform a posteriori validations of

computed results that exclude the possibility of inconsistencies of this kind. (Note that there
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is no practical inconvenience in assuming that faces in a well-formed mesh do not share more

than a single edge or vertex.)

Detection of intersection between patchesF1 andF2 that are supposed to be disjoint can

be detected on a fail-safe basis by comparison of convex hulls (i.e., non-intersection of convex

hulls is a sufficient condition for non-intersection of patches). Excluding the possibility of

self-intersection of a patchF1, and of extraneous intersections of adjacent patchesF1 andF2,

was discussed in [28], where the method of [27] was used. We extend that work as follows.

First of all, we conclude that in the regular case, it is not necessary to compute the projection

direction required in [27]. This means, in particular, thatin the regular case there is no need to

omit verification of the second condition in [27], which was suggested as a possible approach

in [28]. Secondly, [28] detects extraneous intersections by applying the criterion of [27] to

the union of adjacent patches. It was shown in [29], however,that there is a supplementary

condition to be satisfied if this method is used, and we show how to verify this supplementary

condition in the regular case.

The details for the following extensions can be found in [30]. The first extension follows

from the fact that if the corners of̄F1 andF̄2 all have valence6 (the regular case), then the cor-

responding patchesF1 andF2 can be expressed as Bézier surfaces, and the Bézier coefficients

are explicitly available [31, 32]. This means that extraneous intersections can be detected by the

convex-hull criterion [30, Crit. 3.2.1*] (common edge) and[30, Crit. 3.2.2*] (common vertex).

Furthermore, it is easy to extend this approach to work in a fail-safe manner, once the separation

plane specified in these criteria has been found, by applyingthe standarda priori bounds for

floating-point arithmetic to the calculation of the inner products defining the separation planes.

Similar remarks apply to the case of self-intersection of a patch, sayF1, using [30, Crit. 3.1*].

The second extension, mentioned above, concerns the fact that application of the criterion of

[27] to the unionF1 ∪F2 of adjacent patches requires verification of a supplementary condition

along the common boundary, namely that the mapping defining the combined patch must be

locally one-to-one along the common boundary [29, Prop. 2.2]. This is true in both the regular

and non-regular case. In the regular case the condition can be verified, using the fact that the

common boundary is a Bézier curve, and using [30, Crit. 2.1*]. Again, this result can be made

fail-safe when ordinary floating-point arithmetic is used.
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5.5 Conclusion

We have given a summary description of an implemented algorithm that computes Boolean

operations on objects represented by their subdivision-surface boundaries. The algorithm is

based on the use of the limit mesh, rather than a refined control mesh, for the computation of the

intersection between the surfaces defining the two operands. Most of the discussion in the paper

was concerned with three robustness issues of interest in the context of this algorithm, namely

the robustness of triangle-triangle intersection, approximation of the limit surface by the limit

mesh, anda posterioriverification of well-formedness. While the nature of the mathematical

arguments necessary to resolve these issues was described,the paper did not give proofs. Thus,

future work should include integration of the analysis outlined above into a combined whole,

to produce a unified robustness result for Boolean intersection, including validation results in

the non-regular case. Such a result would include, in particular, procedures permitting thea

posteriorivalidation of topological form.
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Chapter 6

Conclusion

“During the 1991 Gulf War, the United States used a missile defense system called Patriot to

defend its troops. The system was largely effective but on one occasion, it failed badly. An

analysis after the event explained what happened. The internal clock of the computer that con-

trolled the defense system stored the time as an integer value in units of tenths of a second, and

the computer program converted this to a floating point valuein units of seconds, rounding the

expansion accordingly. Because the program was an old one that had been updated to account

for new technology, the conversion to floating point was donemore accurately in some places

in the program than in others. To calculate a time interval, the program took two snapshots of

the clock and subtracted them. Because of the round inconsistencies, the system failed to work

when it had been running for more than 100 hours.” [Ove01]

The above example may help explain the importance of reliability, as it is said “There is

one thing that is even more important than lightning speed, and that is reliability” [Ove01].

This is especially true because many critical matters todayare dependent on complex computer

programs, and much of this code depends, in one way or another, on floating-point computing.

They can be greatly affected by its reliability.

In this thesis, we presented our work on the problem of reliable computation for geo-

metric models. It covered three individual but related problems: floating-point arithmetic for

computational-geometry problems, especially with the application of backward error analysis in

different geometric problems; the combined mesh-surface-model repair problem, with focus on

the joining procedure; and the robustness of Boolean operations on subdivision-surface models.
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6.1 Summary

Floating-point arithmetic is very convenient for most practical work because of its numerous

engineering advantages, but naively applied floating-point arithmetic can cause disasterous re-

sults. The now-standard backward error analysis provides us a tool to distinguish those algo-

rithms that overcome the problem towhatever extent it is possible to do so. Three examples

were presented to illustrate how to carry out error analysisin different geometric application

contexts. We showed that floating-point arithmeticmay be sufficient, provided that a stable

algorithm is applied, in the case where uncertainties are present in the data.

Trimmed-NURBS surfaces have been widely adopted in most geometric modelers, and ge-

ometric operations on this representation are very important. We proposed an algorithm for

the joining operation for combined mesh-surface patches, with guidance based on the use of

two error measures. The joined result is guaranteed to satisfy both the absolute error criterion

and the normal error criterion. The necessity of these two error criteria has also been proved,

if we wish to devise a reliable algorithm. Two different cases are considered for the proposed

algorithm, based on the availability or not of an explicit joining curve.

Trimmed-NURBS get their advantage from being able to model complex geometrical ob-

jects, but the trimming difficulties and the error-prone conversion procedure hinder their appli-

cation. Subdivision-surface models, as an alternative to trimmed-NURBS, have rapidly gained

popularity as a geometric representation due to their simplicity and efficiency for smooth sur-

face construction. But even though the fundamental theory of these models has been well

discussed and understood, few theoretical guarantees about the robustness of the implemented

applications are available.

Amongst these applications are the Boolean operations. Boolean operations are one of the

most important facilities of geometric modelers. Their application on trimmed-NURBS models

are known to be difficult, and care has to be taken to handle special and degenerate cases.

We have studied the problem of applying Boolean operations to subdivision-surface models.

An implemented algorithm that computes Boolean operationson objects represented by their

subdivision-surface boundaries was presented. The proposed algorithm is based on the use

of the limit mesh, rather than a refined control mesh, for the computation of the intersection

between the surfaces defining the two operands. Our focus hasremained on the robustness

issues of interest in the context of this algorithm.
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6.2 Future work

A first possible extension to the current work is a theoretic justification for the use of the

limit mesh of subdivision-surface models, as an operand forBoolean operations, in place of

a finer control mesh. Some empirical results have been presented in [HW07] for Catmull-Clark

subdivision-surface models, but no theoretical result is available on this subject.

A framework for a backward error analysis, suitable for the case of Boolean operations on

objects represented by internally inconsistent trimmed-NURBS representations, was given in

[ASZ07], but no such framework has been given for subdivision-surface models. Therefore,

an immediate extension of our work would be to generalize thecurrent validation results to

the non-regular case, and to integrate all of this analysis into a combined whole, to produce a

unified robustness result for Boolean intersection for subdivision-surface models. This result

would include, in particular, procedures permitting thea posteriori validation of topological

form.

The impact of nonrobustness in the domain of geometric modeling is well known, especially

its effects on economics and productivity, e.g. it is the principal barrier to the full automation

of the modeling system [Yap01]. Over the past twenty years much progress has been made on

the precision and robustness problem. Methods to enhance the precision of intersection com-

putation, to monitor numerical error contamination and to find alternate means of performing

arithmetic, have been explored in some detail [Muk05]. Further, more attention has been paid to

improving robustness, e.g. the birth of Computational Geometry Algorithms Library (CGAL)

project [g-c], which is a joint effort by a number of researchgroups in Europe and Israel to

produce a robust software library of geometric algorithms and data structures [Hal02]. The goal

of CGAL is to make available a carefully designed and implemented library with an emphasis

on robustness and generality.

From a long-term view, unfortunately, no satisfactory general-purpose solution has been

found for the robustness problem, especially in geometric modeling [Sch99]. Robustness issues

are still critical in the passage from theory to practice in geometric algorithms. Ignoring these

issues can result in unreliable or incorrect programs. Transforming a geometric algorithm into

an effective computer program is particularly difficult because of the basic assumptions made

on most theoretical geometric algorithms, concerning complexity measures and the handling of

robustness, namely issues related to arithmetic precisionand degenerate input [Hal02]. For the

CAD community, one of the biggest challenges today is still robustness related issues [KBF05].
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Translation of geometries from one CAD system into another is far from stable: holes, trans-

lation errors, and other problems often arise. The major sources are: floating-point arithmetic

and tolerances. Floating-point arithmetic can be dealt with theoretically but not yet practically.

Digital arithmetic and current mathematical theory are insufficient to perform reliably for com-

plex geometric operations and to interoperate well with CADdownstream analysis software

[Far99, KBF05, BAA+99]. Other problems include mesh-based techniques: major problems

are reliability and difficulty in preserving small featureswhose size is of the same order of error

due to some user-specified global distance threshold [PM08].

As “the availability of greatly improved computational techniques and immensely faster

computers allows the routine solution of complicated problems that would have seemed im-

possible just a generation ago” [Ove01], we hope, one day, nonrobustness will be resolved as

well.



Appendix

Permission has been obtained from the publishers for the following two articles (one to appear,

and one published) in this thesis:

1. Permission fromInternational Journal of Computational Geometry and Applications

(IJCGA) for the paper “Floating-point arithmetic for computational-geometry problems

with uncertain data”.

2. Permission fromEuropean Council for Modelling and Simulation(ECMS) for the paper

“Reliable joining of surfaces for combined mesh-surface models”.
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Notes on the implementation

The implementation of all of this Ph.D. work was carried out in C++. OpenGL and qt were used

for visualization and interface design.

For the work on reliable joining of surfaces for combined mesh-surface models (Ch. 4):

• Software Maya [g-ma] was used to generate 3D trimmed-NURBS models and the corre-

sponding triangular meshes.

• GNU Scientific Library (GSL) was used for the construction ofcorrespondences between

trimmed-NURBS and triangular meshes.

For the work on robustness of Boolean operations on subdivision-surface models (Ch. 5):

• The halfedge data structure was used for subdivision-surface models (OpenMesh [g-o]),

both for the data storage and the mesh manipulation.

• The Axis-Aligned Bounding Box (AABB) hierarchy was used in the subdivision surfaces

intersection calculation procedure for optimization purposes.

• The GNU Scientific Library (GSL) was used for the minimization problem in the fitting

procedure.

Software such asmatlab[g-mb] andmathematica[g-mc] were used for prototype and veri-

fication purposes. Xfig [g-x] was used to draw the illustration figures in the thesis.
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