


Université de Montréal

Visualization and prediction of spatial
deformation using thin-plate splines in the
context of scoliosis

par

Di Jiang

Département d’informatique et de recherche opérationnelle

Faculté des arts et des sciences

Mémoire présenté a la faculté des études supérieures
en vue de 'obtention du grade de
Maitre és sciences (M.Sc.)

en informatique

Aottt 2003
© Di Jiang, 2003



Université de Montréal

Faculté des études supérieures

Ce mémoire de maitrise intitulé

Visualization and prediction of spatial deformation using
thin-plate splines in the context of scoliosis

présenté par

Di Jiang

a été évalué par un jury composé des personnes suivantes :

Max Mignotte

président-rapporteur

Neil F. Stewart

directeur de recherche

Farida Cheriet

membre du jury



Sommaire

La scoliose est une déformation tridimensionnelle de la colonne vertébrale qui
engendre des déformations du torse. Le risque d’un cancer associé a la méthode
de diagnostique actuelle, les rayons X, appelle aux changements dans ce domaine.
Ceci est particulierement important considérant le grand nombre de cas chez les
adolescents. L’ordinateur a pris un role de plus en plus important dans le domaine
médical, au point d’avoir été utilisé pour presque toutes les différentes parties du
corps humain.

Plusieurs techniques de déformation spatiale ont été développées: les déformations
sans contraintes (free-form) et leurs multiples extensions, les modeles de lissage
par splines, la technique “space deformation”, etc. Elles offrent a 'usager un
controle sur la déformation par divers moyens: points marqueurs, treillis de
controle et manipulations directes.

Dans ce projet, pour résoudre le probléeme de visualisation et de simulation
de la scoliose, une méthode de déformation spatiale, les plaques minces (thin-
plate spline models) a été employée. Pour la prédiction de la scoliose, nous tra-
vaillons & la fois sur un ensemble d’indexes de R¢, utilisé pour l'interpolation
et I’approximation spatiale, et un ensemble d’indexes de l'intervalle [0,1] pour
I'interpolation et ’extrapolation dans le temps. Nous testons et validons nos
modeles avec des données de vrais patients. Les résultats des tests sur les données
réelles que nous avons obtenus sont raisonnables, en se basant sur le niveau de
précision des données disponibles: les résultats de déformation externe sont plutot
bons, tant dis que les résultats de déformation interne montrent quelques erreurs.

Des travaux ultérieurs pourraient se concentrer sur ces deux points, augmenter
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SOMMAIRE v

la précision des données réelles et prendre en compte plus d’information interne
physique.

Une contribution particuliere de ce projet est que nous montrons le lien entre
les plaques minces sur un ensemble d’indexes de l'intervalle [0,1] et un ensemble
d’indexes de R%. Il s’agit de deux modeles differents de splines, mais apres tout
le travail mathématique (permutation et comparaison), nous pouvons voir qu’ils

partagent vraiment quelque chose en commun, ce qui est tres utile.

Mots clefs:
simulation médical, visualisation, models de plaques minces, modélisation d’objets

déformarbles, scoliose.



Abstract

Scoliosis is a common 3D spinal deformity that leads to aesthetic deformity of
the torso. The cancer risk associated with the current diagnosis method, X-rays,
motivates modifications of this method. This is especially important because of
the high occurrence of scoliosis among teenagers. The computer has begun to
take more and more important roles in the medical field; it has been used to
study almost every part of the human body.

Many spatial deformation techniques have been developed: Free-form deforma-
tion and its several extensions, smoothing spline models, space deformations,etc.
They offer the user control over deformation by different means: marker points,
control lattices and even direct manipulations.

This project approached the problem of visualization and prediction of scoliosis
with a method of spatial deformation, specifically, thin-plate spline models. For
the prediction of scoliosis, we work on both the R% index set, which we use for
spatial interpolation and approximation, and the time index set, which we use for
time-interpolation and time-extrapolation. We test and validate our models with
real patient data. The real testing results we got are reasonable, based on the
accuracy level of the available data: the external deformation results are pretty
good, while the internal deformation results show some errors. Later work could
extend from these two points, increase the accuracy of the real data and take more
internal physical information into account.

A special contribution of this project is: we show the link between the thin-
plate spline models based on [0,1] index set and R¢ index set. These are two

different spline models, but after some mathematical work (permutation and com-

vi
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parison), we can see that they really share something in common, which is quite

useful.

Keywords:
medical simulation, visualization, thin-plate spline models, modeling of deformable

objects, scoliosis.
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Chapter 1

Introduction

1.1 Background

Medicine is an extremely challenging field of research, which has been — more
than any other discipline — of fundamental importance in human existence. The
variety and inherent complexity of unsolved problems, along with the obvious
intrinsic interest of improved human health, have made it a major driving force for
many natural and engineering sciences. Therefore, the medical field has become
one of the most important application areas with an enduring supply of exciting
research challenges for computer scientists. Computers have been used to study
almost every part of the human body: the head, face, spine, wrist, hand, knee,

foot, even some internal soft tissue organs.

1.1.1 Scoliosis

Amongst all of these research topics, study of the spine has become more and
more attractive because of the intrinsic complexity and invisibility of the spine

(see Fig.1.1). There are four main kinds of disorders concerning the spine [3]:

1. Scoliosis
Scoliosis is a 3D abnormality of the trunk in which the spine loses its normal

left-right symmetry and instead develops a lateral curvature associated with

1
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Figure 1.1: Human spine illustration — lateral view and posterior view [10]

rotation and deformity of the vertebrae, rib cage and torso. It is a condi-
tion involving lateral curve or angular derivation of one or more vertebral

segments, often with twisting of the spinal column.

2. Lordosis
An exaggeration of the posterior concavity of the spine, characteristic of the
lumbar region. It is also called “sway back”, indicating extreme anterior

curvature of the lumbar spine.

3. Kyphosis
An exaggeration of the posterior convexity of the thoracic vertebral column
(humpback). It may be due to the absence of a vertebral body, malforma-
tion by incomplete segmentation of vertebral bodies, absence of a corner or

flattening by compression.

4. Osteoporosis

A disease of the bone due to deficiency of bony matrix.

Amongst all these, scoliosis, especially idiopathic scoliosis, is quite important

due to its frequency among children and teenagers, and it therefore interests many
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computer researchers’.

Figure 1.2: A typical scoliotic skeleton figure [2].

1.1.2 Motivations

The original motivation of our project is partially based on the limitations (the
side effects described below) of current methods in the diagnosis of scoliosis, and
also because of its frequency.

First, the current method of diagnosis of scoliosis is a traditional and still-
reasonable way — X-rays. But many medical researchers have warned that re-
peated exposure to X-ray radiation may lead to an increased risk of breast, bone
and thyroid cancer. This risk is more important to children, among whom scolio-
sis has a higher frequency of occurrence. Also, radiography provides only a planar
projection: for a three-dimensional deformation like scoliosis, a two-dimensional
image can provide only limited information. There has been some work done in
this field, the 3D reconstruction from the 2D radiography (see [1]).

Second, the current method of evaluation of scoliosis uses the Cobb angle (see
Fig 1.3) from posterior-anterior or anterior-posterior radiography. To use the
Cobb angle method, one must first decide which vertebrae are the end-vertebrae
of the curve. These end-vertebrae are the vertebrae at the upper and lower limits

of the curve which tilt most severely toward the concavity of the curve. Once

LThe adjective “idiopathic” means only that the cause is unknown.
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these vertebrae have been selected, one then draws a line along the upper end-
plate of the upper body and along the lower end-plate of the lower body [11]. But
as already mentioned, most scoliosis appears as a distortion of the spine, and the
Cobb angle cannot express such three-dimensional information involving rotation
of the vertebra. Also, the Cobb angle depends on the (horizontal) view direction
of the doctor, which makes the Cobb angle very prone to error: spines with the
same Cobb angle may vary a lot in the real figure. This shows the limitation of

this evaluation method.

Figure 1.3: Cobb angle — (a) Cobb angle based on radiography; (b) Cobb angle

calculation [11].

The computer has already been used for the 3D reconstruction from the 2D
radiography. Here we want to focus on simulating the internal changes based on
the given external data, trying to reduce the use of X-rays. This is what we call
non-invasive visualization, diagnosis and prediction by computer. It would not
only help the doctor to grasp the ongoing progress of the patient’s disease, but

also it could help the patient to fully understand his or her condition.
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1.2 Available deformation techniques

1.2.1 Spatial deformation
Free-form and smoothing methods

e Free Form Deformation(FFD) and its extensions
Free-Form Deformation as a technique for deforming solid geometric models
in a free-form manner was first brought out by T. W. Sederberg and S. R.
Parry in 1986 [20]. From that day on this method has attracted considerable
interest. The method uses a control lattice, which will be described below.
Because of its many advantages FFD has become a standard technique,
known as “virtual clay sculpting” suggesting that target solids or surfaces

can be shaped with flexibility akin to clay in a sculptor’s hands.

Recently, the method of FFD has been more widely used and developed.
Several versions and extensions of the simple FFD have appeared: Ex-
tended free-form deformation (EFFD) [9] and Rational free-form deforma-
tion (RFFD) [13]%. But the key point that interests us here is the most basic
property of the FFD: it gives a way of deforming space. Just based on this,
we chose FFD as our first method to try. Because of its flexibility to simu-
late any form of deformation, we considered this technique for simulation of
the different kinds of deformation of the human torso in the circumstances

of idiopathic scoliosis.

e Smoothing Spline Models
Smoothing splines provide a general method of prediction that permits a
compromise between smoothness of the predictor, and accuracy of the in-
terpolation of given data. The thin-plate spline is a conventional tool for
surface interpolation over scattered data. It involves an elegant algebraic ex-
pression for the dependence of the physical bending energy of a thin metal

plate under point constraints [5]. This is the second method we tried after

2All these methods will be discussed later in Chapter 2.
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abandoning the FFD model.

Deformation by direct manipulation

Direct-manipulation deformation is another group of deformation techniques. It
realizes the control over the deformation by directly manipulating the object with-
out any intermediate control-lattice. Examples are the space-deformation model
defined by Borrel and Bechmann [7] and direct free-form deformation (DFFD)
[12].

1.2.2 Physics-based deformation

In 1975, Versprille proposed the Non-Uniform Rational B-Splines (NURBS) [16].
NURBS quickly gained popularity because of their power to represent free-form
shapes as well as common analytic shapes, and they were soon incorporated into
several commercial modeling systems [21]. However, the drawback of NURBS
also showed up: the user is faced with the tedium of indirect shape manipulation
through a bewildering variety of geometric parameters; shape design to required
specifications by manual adjustment of available geometric degrees of freedom is
often elusive and typical design requirements may be stated in both quantitative
and qualitative terms [21, 17, 18, 17].

Then an extension of NURBS was introduced: Dynamic NonUniform Rational
B-spline (D-NURBS). They extend the basic NURBS to the physics-based mod-
els that incorporate mass distributions, internal-deformation energies, and other
physical quantities. In this way, the behavior of the deformable model is governed
by physical laws, and this on top of the standard geometric foundation makes the

whole method more convenient for use.

1.3 Outline of the thesis

In this thesis we have given:
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1. a theoretical study of certain methods that might be used for visualization

and simulation in the context of scoliosis.
2. a preliminary implementation with a user interface.

3. a generalization of Rohr’s anisotropic error measures that seems appropriate

in the case of scoliosis (affine-affine matching).

New (although not necessarily profound) mathematical results appearing in this
thesis will be indicated within relevant sections, in a footnote.

The rest of the thesis is organized as follows: in Chapter 2, we will discuss
the spatial deformation models, especially focusing on the Free-form deformation,
which is our first test model, and its extensions. We will describe some of our
preliminary test results of the FFD there. Chapter 3 is the theoretical discussion
of the Smoothing spline model, which is our second model. In Chapter 4, we will
give a slight generalization of the models we tried, i.e., the models for simulation
of deformation. We will talk about the interface of our preliminary software in
Chapter 5. All the experimental results will come in Chapter 6, together with the

analysis of the results. We will give our conclusions in Chapter 7.



Chapter 2

Spatial deformation

Spatial deformation is a transformation technique for 3D geometric data [4]. It
has a number of useful traits, such as continuity guarantees (ensuring that the
corrected portion of the model is still “smoothly” related to the uncorrected area),
and local/global control over the transformation, allowing for the preservation of
fine detail in the areas being corrected [15]. It is a deformation technique inde-
pendent of the underlying object representation. Here we separate the techniques
into two groups: deformation using free-form and smoothing methods, which will
be discussed in Section 2.1; and deformation realized by directly manipulating the

object, which will show up in Section 2.2 [4].

2.1 Thin-plate spline model

Thin-plate spline (TPS) model is one of the deformation models that uses marker
points to control the deformation [19]. Each time the user change the positions of
the marker points, the deformation model changes the coefficient vectors, which
defines the final deformation figure. We will discuss this model in detail in Chap-
ter 3. Kriging is another method, which also realizes spatial deformation [22]. It

is quite closely related to TPS [23].
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2.2 Free-form deformation and its extensions

2.2.1 Theoretical foundation

Free-Form Deformation (FFD) belongs to the group of deformation models requir-
ing a deformation tool, such as a lattice. A lattice is represented by a trivariate
volume regularly subdivided and defined by a three-dimensional array of control
points [20]. The object that has to be deformed is embedded inside the lattice. To
deform an object the user deforms the lattice by moving its control points. Any
point lying inside the lattice is deformed according to the lattice deformation. In
particular, the deformation of an object inside the lattice follows the displace-
ment of the lattice control points [20]. This is the unique aspect of FFD: instead
of deforming the object directly, the object is embedded in a space that is then
deformed and the deformation is realized in an indirect way. A good physical
analogy for FFD is to consider a parallelepiped of clear, flexible plastic in which
is embedded an object, or several objects, which we wish to deform [20]. The ob-
ject is imagined to also be flexible, so that it deforms along with the plastic that
surrounds it [6]. Mathematically, the FED is defined in terms of a tensor-product
trivariate Bernstein polynomial. We begin [20] by imposing a local coordinate
system on a parallelepiped region; then, any point X that has (s, ¢, u) coordinates

in this system is transformed as:
X=Xp+sS+tT +uU. (2.1)

The (s,t,u) coordinates of X can then be found using linear algebra. For any
point interior to the parallelepiped, we have 0 < s < 1,0 <t < 1,0<u <1 and
a vector solution is

(TxU)-(X-Xo) ,_ (UxS)-(X-Xy) _ (SxT)-(X—Xo)

T (TxU-s T (UxS)-T "7 (SxT)-U

(2.2)
Next we impose a grid of control points P;;;, on the parallelepiped. These form
[+ 1 planes in the S direction, m + 1 planes in the T direction, and n 4 1 planes

in the U direction. These control points lie on a lattice, and their locations are
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defined by

s+irity, (2.3)
m n

‘
z

where 1 =0,...,01,5=0,...,m,and £k =0,...,n.

Pijr = Xo +

The deformation is specified by moving the P;j; from their original latticial
positions. The deformed position Xy of an arbitrary point X is found by first
computing its (s,t,u) coordinates from equation (2.2), and then evaluating the

vector

l m n
_ ! =i i m m—j4j n n—k, k
xffd_z<z.>(1—s) s [Z( ; )(1_15) itd lz( k)(l—u) 7
=0 7=0 k=0
(2.4)
where X, is a vector containing the Cartesian coordinates of the deformed point,

and where P;;, is a vector containing the Cartesian coordinates of the control

points [20].

2.2.2 FFD in our application

With the FFD method!, provided two groups of control points which form the
two control lattices (one original and one deformed) and the point-based original
figure, we can get the final deformed figure.

In our application we need one extra step — to get the deformed control
lattice, given the two groups of marker points (one original and one deformed) on
the object. What we want to achieve is to choose the deformed control lattice so
as to deform the whole space containing all the original marker points to either
interpolate or approximate all the deformed marker points. So the whole process

of this method is:

1. Get the deformed control lattice:
Construct the original control lattice for the whole object, and get the co-
ordinates of all the original control points which are just the vertices of the

original control lattice. Match the transformed coordinates of the original

LThe approach described here, for controlling the FFD, is new. It was, however, unsuccessful,

for the reasons given at the end of the subsection.
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marker points and that of the deformed marker points to get the coordinates

of the deformed control points, which form the deformed control lattice, as?:

WiuWia. . Wim
[...f*(Sq,tq,U,q)...]gxM:[...P:...]?,XN 21 22 2M (25)
WniWho.. Wi NxM
where
l m n
_ ! AY m \m—ji4j n _o\n—k, k
qu_'0<z.)(1 s)! s [Z()(j )(1 ™It Lo(k>(1 w)"Fuk ||
1= = =

r=1,...,N=(I+1)(m+1)(n+1),and ¢ =1,..., M; M is the number of
control points. Here the original marker points act as the weight coefficient
for the deformed control points by forming the weight matrix. The unknowns

in (2.5) are the control point P* of the deformed lattice.

2. Get the final deformed figure:
Use the deformed control points to calculate the deformed coordinates of all

the points on the object using equation (2.4).

Advantages of FFD

The advantages of FFD as a method of space deformation are quite obvious. First,
FFD is a representation-independent deformation technique. It can be applied not
only to any solid-modeling system, such as Constructive Solid Geometry (CSG)
or Boundary Representation (B-rep), but also surfaces or polygonal data [20].
Second, the deformation can be formulated in terms of any polynomial basis,
such as tensor-product B-splines or non-tensor-product Bernstein polynomials,
which means the deformation can be applied either globally or locally, based on
need. Each time we can choose the best and most convenient way to express the
deformation. Third, the deformation method works by space deformation. This
is the most important point in our application, because our purpose is to choose

the deformed control lattice so as to deform the line (corresponding to the spine

2This is in effect the inverse of the standard FFD.
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in the application) in the middle according to the degree of deformation of all the
points on the cylinder (corresponding to the torso in the real application). This
can keep the whole deformation space continuous such that both parts can have

consistent deformations.

Disadvantages of FFD

The disadvantage of the FFD method itself is that it is difficult to control [8]. Tt isa
global deformation method in that it takes a space and bends it. According to [25],
it works well in simple cases, but fails when complex, subtle, local deformations
are required over a surface. Plus, this method requires editing a lattice to match a
specific object and deforming it to produce the desired object deformation. This
process may prove difficult, particularly when the object’s shape does not fall into
a simple combination of predefined types of lattices, and when the deformation
is so complex that the correspondence between the lattice deformation and the
object deformation is not straightforward [6].

The disadvantages of FFD in our application are quite crucial and finally led
us to abandon this method. First, as part of our application actually we need the
inverse of the standard FFD; this requires calculation of the inverse of a matrix,
or at least the LU decomposition. In the either case, we have to worry about
matrix singularity, especially in our application: sometimes it is quite possible
that more than two original marker points lie on a line. The second disadvantage
is related to the number M of control points, which may cause (2.5) to be over- or
under-determined. Also, for the method of FFD, the more control points we have,
the better deformation we can get, but there is a practical constraint concerning
the number of marker points (both the original and the deformed ones). The
limited number of marker points led to part of the final deformation being out of
control (in regions where there are no control points)®. The very poor results of
our preliminary experiments with this method led us to change our research to

other methods of deformation. We give a brief description of these experiments

3This will be discussed later in Section 2.1.3.
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in the next subsection.

2.2.3 Preliminary experimental results using FFD

We begin with the local coordinate system (s,t,u) on a parallelepiped region
defined by Xy, S, T and U [20, p. 153]. There are N = (I +1)(m + 1)(n+ 1)
control points P;j; defining the original control lattice grid as equation (2.3).
Here we take [ = m = n =1 so that in total there are 2 -2 -2 = 8 control points.
Within this parallelepiped region, an open cylinder is defined, in terms of the

(s,t,u) coordinates (see Fig. 2.1). In the simplest case, this might of course just

Figure 2.1: Preliminary test model for FFD model — a blue open cylinder, which
represents the deformation target (original cylinder), embedded inside a cube,
which is the original control lattice: white points represent the deformed control
points; green points represent the original marker points; red points represent
the deformed marker points; gray cylinder (not shown here) will represent the
deformed cylinder; the turquoise line is the original spine and the yellow line

represents the deformed spine.
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be the ordinary Cartesian system:
X, =10,0,0],8 =[1,0,0],T =1[0,1,0],U =[0,0,1].

We would then like to find new values of P;j; for all the points on the cylinder
which will cause given marker points on the (original) open cylinder to be trans-
formed into given (observed) values in (s, ¢, u)-space R®. In our experiments, we
chose the number of marker points M = 8 to simplify the calculation, since if the
number of marker points M is smaller than the number of control points IV, the
solution may not be unique. When M is greater than N, the solution may not
exist at all, and the Least Square technique needs to be applied.

Here are some of our preliminary test results:

1. Test case 1: Here we choose the number of marker points M = 8, move
two of the control points outward (see Fig.2.2 (a), showing the two white
control points on the right side) to get some intuitive idea of how the method
works. As we can see just from the figures, the deformation works quite in
the way expected: one side of the lower part of the cylinder moves out, and
the internal vertical line switches to the side of the cylinder, which extends

out a little bit; the rest of the cylinder remains almost unchanged.

Figure 2.2: FFD test case 1 — move two control points outward, (a) is the side-

view; and (b) is the topview.
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2. Test case 2: This is our second test with this model. We use the same number
of marker points, but move four of the eight control points, two outward and
two inward (see Fig. 2.3). The deformation result is pretty good. In the
direction where the control points move, the object is deformed, see Fig. 2.3
(b); the whole cylinder is sheared according to the upper two outward-moved
control points and the lower two inward-moved control points. And, in the

direction where there is no change in the positions of the control points, the

cylinder remains unchanged: see Fig. 2.3 (a).

Figure 2.3: FFD test case 2 — move four control points (two outward and two
inward), (a) is the view from the unchanged side; and (b) is the view from the
changed side. Here, the blue cylinder is the original cylinder and the pink one

represents the deformed one.

3. Problem with the FFD model. During the time we did the preliminary test
for the FFD model, we met very serious problems, which led us abandon
this method finally, namely, there appear large distortions in the deformed

figure (see Fig. 2.4).

2.2.4 Extended versions of FFD model

In spite of the disadvantages of the FFD model as we mentioned in the previous

section, this method is still quite powerful. And several extended versions of the
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Figure 2.4: Problem with the FFD model: there appear large distortions in the

deformed figure.

basic FFD model have appeared:

1. Extended free-form deformation (EFFD)
Extended free-form deformation; this [9] works on the same mathematical
foundations but increases the power of the modeling system by using any

shape of initial lattices or combining them [4].

2. Rational free-form deformation (RFFD)
Rational free-form deformation [13] is another extension of FFD. It allows
incorporation of weights defined at each control point of the parallelepiped
lattice. However, when the weights at each control point are unity, the
deformations are equivalent to the FFD. To control the deformation, the user
either moves the lattice control points or modifies their associated weights.
The coordinates of a point are computed in the lattice parameter space

before editing the lattice control points [4].

3. Direct free-form deformation (DFFD)
Direct free-form deformation [12] is slightly different from the other two ex-
tensions. Part of this method belongs to the category of direct-manipulation
deformation, but since it is also an extension of FFD, we list it here. DFFD

also consists in embedding the object that has to be deformed inside a trivari-
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ate lattice defined by an array of control points. The object deformation
follows the lattice deformation but the displacements of the lattice control

points are computed from actions such as: “move this point of the object to

there” [4].

In summary, free-form deformation, extended free-form deformation, and rational
free-form deformation techniques rely on the same mathematical formulation. The
deformed area as well as the shape of the deformation inside the deformed area
depend on the polynomials. The deformed area is either the whole lattice or a
part of it. To localize a deformation, the original lattice should either include a

limited part of the object or its subdivision in chunks to be modified [4].

2.3 Direct-manipulation deformation

Direct manipulation deformation is the other group of deformation techniques.
Two models belong to this group: space deformation, which will be described
here, and direct free-form deformation, which we have discussed in the previous
section together with other extended versions of free-form deformation [4].
Introduced in 1991, the space deformation model defined of Borrel and Bech-
mann [7] provides direct manipulation of the object. Intermediate tools, such as
lattices, are no longer required. The deformation of the object is simply specified
by the displacement of arbitrary selected points called constraints. The size and
the boundary of a bounding box centered around each constraint point allows
control of the extent of the deformation. Depending on this extent, the whole
object can be included (global deformation) or only a limited area around the
constraint point (local deformation). A large range of deformation shapes such as

arbitrarily shaped bumps can be designed using this technique [4].



Chapter 3

Smoothing Spline Models

Spline models can involve functions based on different index sets 7. Here mainly
two cases interest us: 7 = [0,1] and 7 = R%.

In many practical applications, using only rigid transformations is obviously
far from satisfactory, and the lack of accuracy of the result may cause the whole
method to be useless. This makes elastic transformations, which allow for local
adaptation and which are constrained to some kind of continuity or smoothness,
quite attractive. Thin-Plate Spline (TPS) is one of the methods currently being
used and studied widely.

One of the goals of this thesis is to show how to adapt the TPS methods
presented in the literature to our particular problem, since the link is not always
obvious. This will sometimes involve generalization (for example, increasing the
dimension from 2 to d, d > 2), and sometimes specialization (for example, assum-
ing that data observations are always paired, or, in general, “grouped d-wise”).
We will also sometimes make changes to arbitrary factors (for example, multiply-
ing a matrix by a factor, when this change can be compensated by an arbitrary
weighting factor elsewhere in the formulation). The purpose of doing this is to
arrive at a similar notation for several different methods (originally presented in
the literature using different formulations and notations), so that their similarities

and differences can be observed.

18
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3.1 Note on terminology

Based on the fact that certain technical terms may appear in different situations
with different meanings, in this first section we make a note on terminology which

will help clarify the discussion in later sections.

3.1.1 Interpolation and time-interpolation

A continuous function y = y(z) can be used to represent the n + 1 data values by
passing through all the n+1 points y;,2 = 0,...,n. Then one can find the value of
y at any other value of x. This is interpolation, as opposed to approximation. In
our explanation later on, the same term “interpolation” has a different meaning
(interpolation as opposed to extrapolation). To differentiate these concepts, we

use “time-interpolation” for the second one.

3.1.2 Recapitulation

e Time-interpolation and time-extrapolation
Time-interpolation and time-extrapolation are two terms we used for the
[0,1] index model. Time-interpolation refers to an estimation of a value
within (viewed in the [0,1] time domain) two known values in a sequence of
values. This is opposed to time-extrapolation, which is an estimation of a
value based on extending a known sequence of values or facts beyond the

range in [0,1] that is certainly known; this is often called “prediction”.

e Interpolation and approximation
Interpolation and approximation are terms used for both the [0,1] index
model' and the R¢ model. They are just standard terms: interpolation rep-
resents the case where the continuous function passes through all the given

points, and approximation represents the case where a smoothing parameter

!Interpolation and approximation can be used in our application to do time-interpolation or

time-extrapolation of the torso and spine, given marker points data, over a single time interval.
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is introduced into the function, so that the continuous function just approx-
imates the given set of data. The level of approximation depends on the
value we choose for the smoothing parameter. In the approximation case,

the form of the function usually is more smooth.

3.2 The case T =[0,1]

3.2.1 Mathematical outline

The bivariate Thin-plate spline model based on the [0,1] index set is described as
[14, 24]:
Yki :fk(tki)-i-Gki,k: 1,2;i= 1,...nk, (31)

where the i'® response of the k™ variable vy, is generated by the k** function f
evaluated at the design point #;; plus a random error €;. Here it is assumed that
exi "N (0,0%) for fixed k = 1,2 and Corr (e, €25) = p if y1; and ys; are a pair and

zero otherwise; also the domain of both functions is [0, 1] and fi € W5, where
Wy ={f: f, ' absolutely continuous, fol(f”(t))Zdt < o0}

This method can be quite easily extended to multi-response data: just let & =
1,2,---,d, where d is the dimension. In our case?, the data corresponds to the
coordinates of points in space, so ungrouped data (“unpaired data” in the bivariate
case) is not relevant. Therefore, here we assume the variable d (dimension) has
the value 3, and that the number of observations n; and the trade-off parameter
Ak (see below) for the three groups are the same for each k& = 1,2, 3. Therefore we
may then use n instead of n;, and A instead of A;. Plus, we sometimes use z, y, z to
represent the three components of each observation, which may be more intuitive
for understanding of our particular application. Denote t; = (tx1, ..., txn) T, fx =
(Fe@r1)s s Soen))Ts Y& = Wty s Ubn) T &6 = (€k15r k)™, £ = (1,15, £5)7,

and y = (y1,y2,y3)", where the superscript © refers to transpose. We will take

2The development in this section, showing how [24] can be adapted to our problem, is new,

including the derivation of (3.6), (3.7) and (3.10), and the treatment of the case A = 0.
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the inverse of the co-variance matrix W' to be the direct sum of three matrices

of the form

o? 0

. (3.2)

0 o2
This matrix can be obtained from the matrix W~! in [24] by assuming that the
correlation p = 0, that the matrix there is multiplied by the factor § = 0,09, and
that the dimension has been raised from 2 to 3. The multiplicative factor can be
compensated by a change in the arbitrary constant A discussed below. In general
it may be useful to permit non-zero off-diagonal elements, and different values for
the o; in each of the three blocks. In this case the nine values corresponding to
the i** row and the j** column of each of the three blocks should form a 3 x 3
covariance matrix (see Section 3.3.2).

The function f; can be estimated by solving the following penalized weighted

least-squares problem:

min_ {(y—£)TW(y—£)+A /0 (F(t))%dt+ A /0 (f2(2))%dt+ A /0 (f2(t)%dt}, (3.3)

f1,f2,f3€EW>
where the first term is the weighted least-squares and the remaining terms are
penalties for the roughness of the functions. The parameters A control the trade-
off between goodness-of-fit and the smoothness of the estimates and are referred
to as smoothing parameters [24]. Now the solution giving the prediction function

is [23]
de,,¢,, Zc,ﬂ (t,tri) ke =1,2,3; (3.4)

it can be expressed in vector form as [ z(t),y(?), 2(t) | =

dzladyladzl Cz1,Cy1,Cz1
|: ¢1(t)7"' >¢m(t) ] + |: Rl(t7t1)7"' aRl(tatn) :| ’ (35)

daﬂm dym: dzm Cxns Cyn; Can

in which
o,(t)=t""/(v—1)v=1,....m

defines the m-dimensional space of polynomials of degree m — 1 or less, spanned

by d)la"' 7¢m: and
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RY(s,t) = ka(s)ka(t) — ka(s — t)
where k,(-) = B,(-)/v!, and B, is the v’th Bernoulli polynomial: By(z) = 2% —
z + &, Bi(z) = 2* — 223 + 2® — 55. The vectors
d=(dg1, - dgm,dy1, - dymy dy1, -+ dymn)T
c = (Ca:la e Cany Gyl Cyny Caly * ;Czn)T
which are chosen to minimize (3.3) when
f=Sc+Td.
are stated in [24] to be the solutions® to
TTWT T™WS \ ( d TTWy
( SWT SWS+AS )<c>:< SWy ) (3:6)

m
v=1’

where Ty, = ¢, (i)

Since for us the data represents the components of a position on the torso or spine,

k = 1,2,3; in our special case T}, is independent of k.

at a specific time, we have t1; = to; = t3;, (data paired, or “grouped 3-wise”) and

we just use t; for all three. Here,

¢1(t1) p2(t1) - - Pm(t1) 1
¢1(t2) p2(ta) - - Pm(t2) 0 0
¢1 (tn) ¢2 (tn) e ¢m(tn)
¢1(t1) p2(t1) ... dm(t1)
T— 0 p1(t2) d2 (t?? Pm (t2) 0
¢1 (tn) ¢2 (tn) ¢m (tn)
$1(t1) 2(t1) - - Pm(t1)
0 0 ¢1(t2) P2(ta) - - Pm(t2)
L ¢1 (tn) ¢2(tn) o ¢m(tn)

Also, S = diag(Sk) where Sy = R'(tyi, tg;)i=1 /o1, k = 1,2,3, and, similarly, Sy is
independent of k. Using the same simplification for #;,

R (t1,t1) RM(t1,t2) ... R ' (t1,tp)
Rl(t2,t1) R (ta,t2) ... R (ta,tn) 0 0
RY(tn,t1) R (tn,t2) ... Rl (tn,tn)
R(t1,t1) RY(t1,t2) ... R (t1,tn)
= 0 Rl(tg,tl)Rl(tg',.t?) ... RY(ta,tn) 0
RY(tn,t1) R (tn,t2) ... R (tn,tn)
R(t1,t1) RY(t1,t2) ... RY(t1,tn)
0 0 R (ta,t1) RY(t2,t2) ... R (ta,tn)
RY(tn,t1) RY(tn,t2) + - R (tn,tn)

and c and d are chosen to minimize (3.3) when

3To avoid a conflict in notation in the later comparison between different methods, we changed

the notations here, writing S instead of X.
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f=Sc+Td.

Here fis 3nx1), S'is (3nx3n), cis (3nx 1), Tis (3n x3m), and d is (3m x 1).

Then, the objective function in (3.3) can be written
[y — (Se+Td)|"W[y — (Sc+ Td)] + c"' \Se. (3.7)

Expanding this, dropping the term y” Wy (which does not depend on ¢ or d),
and dividing by 2 gives:

—y"WSec—y"WTd+ Lc"\Sc+ "SWTd + 1d"T"WTd + i SW Se.
Differentiating with respect to ¢ and setting the derivative to zero gives:
—SWy + [SWS+ ASle+ SWTd =0,
and differentiating with respect to d and setting the derivative to zero gives
~T"Wy+T"WSc+T"WTd = 0.

These equations are exactly those of (3.6).

It is also stated in [24] that a solution to

{ (S+ W hHe+Td=1y

T'e=0 (3.8)

provides a solution to (3.6)*. To see this, multiply the first equation of (3.8) on
the left by SW, to obtain the second equation of (3.6). Now, multiplying the

same equation on the left by 77W, we obtain
TTWTd+ (TTWS + XM e=TT"Wy

which, given the second equation of (3.8), yields the first equation of (3.6).

To calculate the coefficients ¢ and d, we use the following transformations:

S=1SA#0

¢ = )c.

4Equation (3.7) is simplified relative to equation (6) of [24], since A\; = Ag = A3.
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If A = 0, then, revising the derivation following (3.7), (3.8) will be replaced by
the single equation Se + T'd = y, which guarantees (3.6). These equations are
apparently inconsistent for n > 2.

If A # 0, then equations (3.8) can be expressed in matrix-vector form as:

- 4 1 _
dccm
Si/A 0 0 wyloo 0 [ ca) } [ L 0 o0 } dy1
0 S/ 0 + 0o wy! 0 A |+ 0o oo : =
( |: 0 0 53//\ :| [ 0 0 Wz_l :| ) Cc A 0 0 T3 dy.m
dzl
L dzm - L
7 0 077 [ ear
0 T, 0 c,A | =o0. (3.9)
0 0 T3 CyA
Here all the W', W', W ! are n x n matrices. Let
R
Tk = (leanZ)( 0/0 >ak = 152a3
be the QR decomposition of T}, and let
Q1 = diag(@ll; Qzl)
Q2 = diag(ng, Q22)
R = diag(Rl, R2)
B=Y+W
The solution finally is [24]
c = Qu 2TBQ2)_1Q2TY,
Rd = Qf(y— Bg). (3.10)

3.2.2 Permuting variables for later comparison

As illustrated in the previous section, all the matrices for the functions in the case
of [0,1] index are ordered based on components, which means they are formed
with the order of x, y and z coordinates in our special case. In this section we

will show how these matrices can be permuted to another form which is based

Z1

Tn
Y1
Yn
21

2n
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on each single point. Our main purpose for doing this is for the later comparison
of the model using [0,1] index and the model using R? (see Section 3.4). All the

components in the equations

{ (S+ MW he+Td=1y (3.11)

TTe=0

can be permuted to give:

[ $1(¢t1) 00 ¢2(t1)00 Gm(t1)00
0¢1(t1)0 0¢2(t1)0 -+ 0¢m(t1)0
00 ¢1(t1) 00 ¢2(t1) 00 ¢m(t1)

T= : : : )
$1(tn)00  2(t,)00 Gm(tn) 00
0¢1(tn)0 0¢2(tn)0 O¢m(tn)0

L 00¢1(tn) 00¢2(tn) 00¢m(tn) i

[ RY(t1,t1)00  Rl(t1,t2)00 R(t1,t,) 00 ]
ORY(t1,t1)0  ORYt1,t2)0 ---  OR t1,t,)0
00 R (t1,t1) 00 R(ty,ts) 00 R(ty,t,)

S = ,
RY(tn,t1)00  R(t,,t2)00 R(t,,t,) 00
O0R (tn,t1)0  ORYtn,t1)0 -+ ORY(tn,tn)0

| 00R(tn,t1) 00 R(ty,t2) 00 R (tn,tn) |

[ dml | [ Cz1 ]
dyl Cy1
dzl Cz1 [ z; -‘
d= ,C= Yy = .
dzm c.’,CTL '
dym Cym Yn
| dzm h | Czn _

Later on we will use this permuted version for the comparison between the [0,1]

index model and the R? index model.

3.2.3 Time-interpolation

Time-interpolation is our first application of the Thin-plate spline model on [0,1]
index. Our goal is to get some idea of what is going on in between two given
states. This is especially useful in our real application — scoliosis. Given the two
different states of the patient body, this model can help both the doctor and the

patient know how the disease changes.
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With the function®

qubu Zcz (t,tr), k=1,2,3,

each time we input the time index list and the coordinates list of one body point
(a point in R?) at all the time points to calculate the coefficient arrays ¢ and d
of this body point. Then by changing the value of ¢ we can get its coordinate at
any corresponding in-between time.

There is more than one choice for the time index list [t1, to, - - - , ¢,]. First, since
in the time-interpolation situation, only the start and the final state are involved
in the model, we could use these two groups tsr+ and te,q, plus the data at the
closest time point, as constraints for the calculation of the deformation®. This
method, appropriate in a test situation, has the advantage that we still have some
given data at hand with which we can do some comparison. But its shortcoming
is that only using three time points as constraints may actually reduce the overall
accuracy of the whole method (if there are more available). Because less available
data involved means less information counted, and some state that has a big
influence in the interpolation problem may be ignored. Another approach is to use
all the available data to do the time-interpolation, that is, all the [t,t,- - ,t,]
time points participate in the calculation of time-interpolation. So no matter
which state is appointed as the start state and which is the final state, each time
the algorithm uses exactly the same group of data as constraints. This method
is what we would use when working with the real patient case. But, still for
test purposes, we ignore one group of available data to test the accuracy of our
method.

Concerning the W~! matrix which contains the variance parameter 0]2-, in our
application, we arbitrarily set all the values of 032- to be 1, and for the smoothing

parameter \ which appears as part of the W ™! matrix, we change it as necessary.

5For our application, all the data are grouped: the time index lists are the same for all three

components.
6The inequality n > m is one of the conditions for the model; since m = 2, the smallest value

for n is 3.
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As we discussed before in Section 3.2.1, in the case of [0,1] index Thin-plate spline
model, interpolation, in which A = 0, is impossible when m = 2.
Later in Chapter 6, we will show experimental results for this model, including

both the preliminary and real-data test cases.

3.2.4 Time-extrapolation

Time-extrapolation is another application for which we tested the Thin-plate
spline model on the [0,1] index set. By definition in the previous section on
terminology, extrapolation is just to get something based on what we have, at
some future point in time. And this is what attracts us most: prediction. The
main idea under this model is to obtain, from certain groups of data, some trend
information which helps us to know what will happen next (prediction). Applying
this to our scoliosis application, the use would be quite interesting: we might help
the doctor to do some prediction of the form of the spine at some later time point.

This time-extrapolation model is not much different from the time-interpolation
model since they share the same [0,1] index model. We have the time index list
and coordinates list as input, and get the coefficient vectors ¢ and d. Then each
time we only need to input a value of ¢ which represents the time point at which
we want get the extrapolated figure. The only difference here is that under the
time-extrapolation model, this input ¢ is greater than 1. For testing purposes,
there are two options available for the specification of the time index list. One is
simply using the original value of ¢t which is great than 1 as input, and get the
coordinates of the point at the extrapolated state. The other one is to compress

all the values down within the [0,1] interval:

tinew = tiold /tiemtrapolated7 t= 0’ t n

where, ;... is the “compressed” value of ¢; for extrapolation, ¢; ,, is the original

value of t; for the current model”, and ¢ is the value of ¢; that is greater

lextrapolated

"Since for this method, extrapolation will use all the available data, therefore, the time index

list is fixed for each test case.
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than 1, which represents the target time point. This is the method we used.
Similar to the time-interpolation model, there are also two ways available to get
the extrapolated result, either based on all the given data or only the last three
data points. We chose the former one for reasons similar to those given above the
time-interpolation model.

Later, in Chapter 6, we will show the experimental results of this model in-

cluding both the preliminary and real-data test cases.

3.3 The case 7 = R

Our original motivation for the use of the Thin-plate spline model based on the
R? index was to do some prediction of the internal spine information, given some
marker points around the external patient body and the full point-by-point orig-
inal patient body. But the real application is much more complicated than the
simple simulated test model, and there are serious problems with the real data8.

We have, however, got some conditional good results.

3.3.1 Mathematical outline
Interpolation

Thin-plate spline model for interpolation can be stated as a multivariate interpo-
lation problem [19]: given a number® N of corresponding marker points p, and
g;, © = 1,...N in two images of dimension d, find a continuous transformation
u : R — R? within a suitable Hilbert space H of admissible functions, which
1) minimizes a given functional J : H — R and 2) fulfills the interpolation
conditions

q; =u(p;),i=1,..., N, (3.12)

8We will discuss the problems with the real test data later on, in Chapter 6.
9To avoid a conflict with the notation n we used for the [0,1] index model, which represents

the number of marker points, here we use N for the number of marker points.
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while minimizing the functional which represents the bending energy of a thin

plate separately for each component ux, k=1,....d

Th(w) = 3 T (). (3.13)

Here, the single functional is

Aw= Y Mo (%)de. (3.14)

aql...ay! a 0x...0x
a1+...+ag=m 1 d R 1 d

The solution of minimizing the functional can be written as [19]

@) = adi(@)+ ) wl(@p), (3.15)

and this is the function used for prediction. It can also be expressed in vector

form as :
A1z,01y,012 Wiy, Wiy, Wiz
[uzauyauz] = [ ¢1(X)7"' 7¢M(x) :| +[ U(xapl)a"' aU(xapN) ] :
AGMz, AMy> AM 2 WNz, WNy, WN2
(3.16)

The set of functions @, span the space II™~!(R?) of all the polynomials on R? up
to order m — 1, which is the nullspace of the functional in (3.14) [19] with values:

d1(x) = 1, pa(x) = z, ¢3(x) = y and @4(x) = z in the case m = 2. The dimension

(d+m—1)!
d!(m—1)!

of the space is M = and M must be not greater than N. This is because
later on, to get the solution to the prediction function, we need to have the QR
decomposition of the P matrix which is of dimension N x M, so a larger value of
M does not work here. The basis functions U(x, p;) depend on (1) the dimension
of the domain, (2) the order m of the derivatives in the functionals, and (3) the
Hilbert space H of admissible functions [19, 24]. It can be expressed as follows
[19]:

z — p|*™ %n|z — p|, 2m — d even positive integer
r—pl’™ ¢ otherwise.

Ulz,p) = { Om.d (3.17)

em,d

The constants @ = (ay, ..., ap)” and w = (wy, ..., wy)T corresponding the specific

column in (3.16) satisfy the following system of linear equations:
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Kw+Pa = v

P'w = 0
in which
Ulp,p1) U(py,py) U(p,,Py)
K = U(py,p1) U(py,py) U(p2, Pw)
Ulpy,p1) Ulpy;ps) Ulpy,Pn)
and
¢1(p1) da(py) onm(py)
pP— $1(p)  d2(py) o (P2)
¢1(py) P2(Pw) om(Py)
Now equation (3.18) can be transformed into matrix form as:
K Kyp---Kin W1z W1yW1z P Py---Piy 1 G1201y012
Ky Ko --- Koy x Wz W2y W2, + P Py --- Py x G202y 022
Kni1Kn2---KnN WNz WNyWN 2 Pn1Pno---Pyy | AMeAMyaM2
P Pig--- Py W1z W1yW1,
Py Py -+ Poyy W2aWayW2z | _ g
Pyni1Pyng-++- Py WNzWNyWN 7

Let

P-@i:i( ()

be the QR decomposition of P. The solution finally is [23]

w = QQ; KQ2) Q5.

Ra = Qf(v— Kuw).

Approximation

30

(3.18)

Q1zq1yq1z
G292y 422

gNzdNyqNz

(3.19)

(3.20)

When we want to take into account landmark localization errors, we just extend

the basic interpolation approach by weakening the interpolation condition. This

can be achieved by introducing a quadratic approximation term in the functional
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(3.13) as [19, 23]:

In(w) %Z la: - ";pi) I® A2 (). (3.21)

(3

The first term of the functional in (3.21), which is called the data term, measures
the sum of the quadratic Euclidean distances between the deformed marker points
p; and the given marker points g,. Each distance is weighted by the variances
o? representing landmark localization errors. The second term in (3.21) measures
the smoothness of the resulting transformation. The minimization of the func-
tional yields a transformation w which (1) approximates the distance between the
marker point set and (2) is sufficiently smooth. The relative weight between the
approximation behavior and the smoothness of the transformation is determined
by the regularization parameter A > 0. If A is small, we obtain a solution with
good adaptation to the local structure of the deformations and if X is large, we
obtain a very smooth transformation with little adaption to the deformations.
There are two limiting cases: for A — 0 we obtain the original interpolating Thin-
plate spline transformation, and for A — oo we have a global polynomial of order
up to m — 1, which has no bending energy at all [19].

The computational scheme to compute the coefficients of the transformation

u is:
(K+N\W Hw+Pa = v
Plw = 0 (3.22)
where
o? 0
W= : (3.23)
0 o3

So now if we use K to represent K + NAW ™!, then we get

U% U(plaPQ) U(plapN)

i— | Upyup) 03 - Ulpypy)

U(PN>P1) U(PN,pz) ‘712\/
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We get:
KKy Ky W1 W1yW1z PPy Piy | A1201y017 Nz Qiyqz
K> Ko --- Kon x| WeaWayWaz | P Py --- Py y Q2502402 _ (2292492
KniKno---Knn WNz WNyWN 2 Pn1Pno--- Py | AMeAMyaMz dNzdNyqNz
T
PPy Py W1z W1yW1y
P21P2%"" Py w2w7'1)'23yw2z _o. (3.24)
Pyn1Pyno -+ Py WNzWNyWNz
Let
R
P:(QliQQ)( 0 )
be the QR decomposition of P. The solution finally is [23]
T 1T
w = Q2(Q2 KQZ) Qyv,
" -

3.3.2 Anisotropic marker points

The approximation scheme described in the previous section uses scalar weights
to represent marker point localization errors [19]. This, however, implies isotropic
localization errors and is only a coarse error characterization. Generally, the errors
are different in different directions and thus are anisotropic. A further extension
of the approach is obtained by replacing the scalar weights o? with matrices ¥,
representing anisotropic marker point localization errors [19]. Now the functional
is: N

_ Ty—1 d
D) =+ ;(qi —u(g;)) I (g — ulg;) + Ay (u). (3.26)
But the computational scheme to compute the coefficients of the transformation

u is the same as before:

(K+N\W Hw+Pa = v

T _ .
Prw = 0 (3.27)
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the only change here is concerning the W ! matrix which becomes:

P 0
W= : (3.28)

0 YN
Note!® that the ¥; represent the localization errors of two corresponding marker
points. A typical £; ! in (3.26) will be a 3 x 3 symmetric, positive-definite matrix
with real eigenvalues ﬁ, ﬁ and ﬁ This corresponds to using a norm that
has a unit sphere in the shape of an ellipsoid. The principal axes of this ellipsoid
are n', n? and n?, the eigenvectors of ¥; . The half-length of the ellipsoid in the

direction n? is 0, j = 1,2, 3.

A large value of o; means that the error in this direction is unimportant. So
if it is only the error in the direction w that is important, we would choose a
pancake-shaped ellipsoid with w as the normal to the surface of the pancake.
Similarly, if it is the error in the directions v and w that are important, we would

choose a long thin ellipsoid with major axis equal to v X w.

The matrix X7 ' has an orthonormal basis of eigenvectors n', n? and n?.

Ei_l — [n1n2n3] ) 0 L . [n1n2n3]T
where | n/ ||=1, 1 =1,2,3.

Since after introduction of the matrix ¥J;, the value of errors on each direction
changed according to different values in the ¥ matrix, we must make a minor

modification on the overall data structure. That is, the dimension of w is dV x 1,

a is dM x 1, and q is dN x 1. Now the modified version is:

W1y A1g iz
Wiy A1y qiy
W1, Q1 q1z
(K] ¢ |+lP)| s =]
WNg Gprx 4Nz
Wy Ay gnNy
_wNz_ _aMz_ _QNz_

10The details on ellipsoidal norms given here are new.
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and

where K = (K + NAW™1), i.e,

NAZY
NAZL,
NAZL,

K21

=
Il
o

and

NATL,
NAZL,
NAZL,

NS,
NS,
NS,

[P]"-

Here, the ¢ = are the components of ¥;, 1 < m,n < 3. Let

be the QR decomposition of P. The solution finally is [19]

w

Ra

Q> (QQTKQz)_ng’U,

QT (v - f('w)

34
Wiy
Wiy
W1z
: =0, (3.29)
WhNg
WnNy
e wNz =
K12 0 0 KlN 0 0
0 Kio 0 0 Kin 0
0 0 K12 0 0 KlN
N)\Efl N)\Z%Q N)\E%3 Kon 0 0
N/\Egl NAE%Q N)\E§3 0 Kon 0
N/\Egl NAE%Q N)\E§3 0 0 Kon
Kyy 0 0 NAZN NAZN  NAXH
0 Ko 0 N/\EQ{ N)\E% N)\Eé\[3
0 0 Ko N/\Eé\{ N)\E{,\g N)\Eé\g
$2(p1) 0 0 ém(Py) 0 0
0 #2(p1) 0 0 dm(py) 0
0 0 #2(p1) 0 0 o (py)
$2(ps) 0 0 énm(P2) 0 0
0 #2(p2) 0 0 dn(P2) 0
0 0 #2(ps) 0 0 b (Po)
0 ¢a(py) 0 o 0 om(P,) 0
0 0 ¢2(pn) 0 0 ¢m(Py,)
R
= (Q 1- Qz) ( 0 >
(3.30)

In the implementation, it was still possible for us to keep the same data struc-

ture for this anisotropic marker points case and this will be a memory-saving
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technique. We can store the error direction information in an independent matrix

called AW-1

Y11 Xip Xis
AW = | Sy Ygp T
Y31 Y3z Xs3

then what we need to do is some more additions based on what we get for the

two previous models (interpolation and approximation) as:

xanisotropic = (211 X x+ E12 Xy + E13 X Z) + Told;
yanisotropic = (221 X x+ E22 Xy + E23 X Z) + Yolds

Zanisotropic - (231 X x+ E32 X Yy + E33 X Z) + Zold-

where X4, Yoia and zyq represent the coordinates before change, that is used
for both the interpolation and approximation case, and Tgnisotropic; Yanisotropic and

Zanisotropic Tepresent the transformed anisotropic values of the coordinates.

3.4 Comparison between [0,1] index model and
R? index model

One of the goals of this thesis was to show the link between the Thin-plate spline
models based on [0,1] index and R index!!. Even though they are two completely
different spline models, after the permutation of variables done in Section 3.2.2
and the mathematical development in Section 3.2 and 3.3, we can see that they

really share something in common, which is quite useful in our application.

3.4.1 Similarities

Both the [0,1] index model and the R? model can act as prediction functions. The
objective function of the [0,1] index model can be written as

n

D (Y= FE) S (g — F(1) + Z/\/O (f¥ (®)%dt, (3.31)

=1

Showing the similarity between the two models is new.
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where
Y, — () = [y — f1(t), yoi — fo(t), vz — f3(ta)]"

Then the spline model based on [0,1] index model may now be easily compared

with the R% model which is, for k = 1,...,d

ug(r) = Z auedy(x) + ZwikU(x,pi), (3.32)

=1

by minimizing the functional

N d
> (g —w()" S (@ —ulp) + YA - T (un), (3.33)
i=1 k=1

where
drN m! Om 9

Tm1) = Z aq!...ag! x Rd(ax(fl...axgd) dz.

a1+..tag=m

Comparing (3.31) and (3.33), the methods have very similar structure.

It is easy to verify that, after permutation of variables, the (nd x md) matrix
T for the [0,1] index model has exactly the same form as each (n x m) matrix 7,
with each element ¢, (;) replaced by ¢, (t;) - I(axa), where I is the identity matrix.
Similarly, the (nd x nd) matrix S has exactly the same form as each (n x n)
matrix S, with each element R'(t;,t;) replaced by R'(t;,t;) - I(4xa). Analogous
statements apply to the matrices involved in the equations to be solved the RY

model [19], and they may be solved using the QR approach.

3.4.2 Differences

Since the [0,1] index model and the R? index model are two different models, some
differences are obvious: for example, the different definition of the coefficient vec-
tors for (3.31) and (3.33). But here, what interests us most is the relation between
different body points in the model. For the [0,1] index model, the deformation
of each point is only related to its own position at different time points: there
is no interactive relation between points. For the R? index model, the deforma-
tion is defined by the relation between body points and the marker points. The
deformed position of a certain body point is decided by the positions of all the
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marker points and the weighting factor of the distance of this body point from all
the marker points. This explains why the coefficient vector generalization test (in
Section 6.3) can work with the R? index model, while for the [0,1] index model,

it does not.



Chapter 4

Models for simulation of

deformation

In the previous chapters, we discussed three different models for deformation;
now, based on these models, we extend a little to a model called “Affine-affine
matching”, which will be described in Section 4.1. Then, in Section 4.2, we will
give some general discussion concerning all the prediction models®. The method of

affine-affine matching was not, however, implemented in our prototype interface.

4.1 Affine-affine matching

In Chapter 3, we discussed the Thin-plate models based on both the [0,1] index and
the R? index, to do time-interpolation or time-extrapolation, and deformation,
respectively. But in both of the two cases, we are working with individual 3-
dimensional points, which is quite limited in the sense of deformation: we do not
include, for example, any information about the plane in which the deformed point
should be. Plus, consider the size of the difference between a given point y; on the
boundary surface and its predicted values f(¢;) (Section 3.2, [0,1] index), or the
size of the difference between the desired position g; of a point on the boundary

surface and the transformed position u(p;) of the initial position p, (Section 3.3,

IThe material in this chapter is new.

38
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R? index). In both cases, we may wish to relax the requirement that closeness
be measured using the ordinary Euclidean metric. For example, we may want
a one-dimensional set (part of a line in R?) on the object surface to be close to
another given one-dimensional set, or, a two-dimensional set (part of a plane in
R?) on the object surface to be close to another given two-dimensional set.

We describe the matching done by the use of criteria which we will refer to as
“affine-affine matching”. An m-dimensional affine set in R? is specified by choosing
m +1 affinely independent points in R3. It is the cases m = 0,1 and 2 that are of
primary interest: point-point matching (m = 0), line-line matching (m = 1), and
plane-plane matching (m = 2). For example, three affinely independent points
x1, ¢ and 3 € R? define a (locally) planar section of the object surface; then,
the middle point xy = 6121 + oo + B33, (01 + 02 + 035 = 1,0 < 0y, 65,05) is to
be compared with another point y, on a surface having specified outer normal
n. Suppose that error in the direction n is much more significant than errors in
the other two orthogonal directions. In this case, we may use a metric that has
a pancake-shaped ellipsoidal unit sphere with its flat side orthogonal to m, and
compare the three points x;, x5 and 3 with three suitably chosen points in the

plane n”(y — y,) = 0 (see Fig. 4.1).

(CBQ — Cl?l) X (2133 — Cl?l)

T3

Ly

Lo

Figure 4.1: Plane-plane matching
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This idea is quite similar (a slight generalization) to the idea of the anisotropic
error measurement of the Thin-plate spline based on B¢ model introduced by [19]
and discussed above in Section 3.3.2. Specification of the error unit sphere is
technically straightforward. A typical Z;l will be a 3 X 3 symmetric, positive-

definite matrix with real the eigenvalues (01)2, (Ué)Q and (ai)Q. This corresponds

to using a norm that has a unit sphere in the shape of an ellipsoid. The principal
axes of this ellipsoid are n!, n? and n?, eigenvectors of ;. The half-length
of the ellipsoid in the direction n’ is 0;, 7 = 1,2,3. Thus, for the flat ellipsoid
described above, we choose n! equal to the given n and complete the orthonormal
basis with two vectors in the plane n’(y —y,) = 0; then, o' is chosen to be small

relative to 02 and o®. The matrix ;! is obtained as

e 0 0
[n1n2n3] . 0 ﬁ 0 . [n1n2n3]T
0 0 =

where || n? ||=1,5=1,2,3.

Similarly, in the case of line-line matching (m = 1), if errors in the directions
v and w are important, where v | w, but errors along the line defined by v x w
are not, then we choose v, w and v X w as eigenvectors, with the eigenvalues
corresponding to v X w chosen to be large relative to the other two.

This “affine-affine matching” model could be quite useful in practice. By
defining the three error directions, it well defines the shape of the deformation,
while keeping the overall figure of the object unchanged. This would be especially
helpful in our special medical application, because we model our deformation
based on the pictures we took for the patient, but the postures of the patient may
bring errors inside the deformation, especially on the plane of the skin, which
corresponds to skin slippage. By defining the special direction for the error, we

can reduce this kind of error as much as we can.

4.2 Other prediction models

1. Prediction on time index set
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The prediction model based on time index set [0,1] was discussed in Section
3.2. There are two different kinds of prediction in time: time-interpolation
has the time point inside the time interval; time-extrapolation is the time
point outside of the time interval. This model gives either an interpolation
or an approximation result, depending on whether it tries to match the exact
values at a certain time point. But in the case of R¢ values, the model can
only give us approximate values, as we discussed in Section 3.2: the case
when the smoothing parameter A = 0 does not work under this situation.
And the result of the how good the approximation is still depends on the

value of ).

With both time-interpolation and time-extrapolation, we may trace all the
progress of the deformation, given the status of the object at (at least) three

time points, and the time index list.

2. Prediction on R¢ index set
Prediction based on R¢ index set was our original motivation for this project.
We want to get some prediction tool for our medical application — prediction
of the deformation due to scoliosis. The theoretical illustration part of this
model was given in Section 3.3. It can have two different forms: interpolation
and approximation. The choice largely depends on our needs, whether we
want our deformed figure to exactly fit all the given deformed marker points,
or whether we want it just to approximate those given marker points, while

keeping a relatively smoother shape.

3. Combination of the two models
As we mentioned, the more related information involved, the better the
deformation result will be. So here is another deformation model, a combi-
nation of the two previous models. Since with the prediction on time index
set we can get some future figure of the model, and with the prediction on
R? index set, we can get the internal figure from the external ones, then
what we can do is (see Fig. 4.2): first, get the external data of the object at

a future time point %, using [0,1] index model (the first row in Fig. 4.2);
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choose the external marker points in the usual way; third, based on these
generated external marker points, we can get the internal figure with the
R? index model (the second row in Fig. 4.2, represented by the full arrows).
So with the combination of the two models, we can get the full figure (both
internal and the external) of the object at any time point (the two models

inside the ellipse in Fig. 4.2).

The most attractive feature of this is concerning our scoliosis application:
since in our special application, external data is relatively easy to get (be-
cause there is no harmful effect on the patient), so we can get a list of the
external data with quite short time intervals (just to have as many data as
possible); then we can work out all the internal data with these external
data with the prediction model on R? index set. Now we have a list of the
full figure of the patient, and we can use our prediction model on time index

set to get the full figure at any future time point.
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INTERNAL PATIENT SPINE

PREDICTION

- REALIZED BY THE [0,1] INDEX MODEL
—_— REALIZED BY THE R"d MODEL

Figure 4.2: Illustration of the combination of the two models; the first row rep-
resents the external patient trunk, and the second row represents the internal
patient spines. Models linked with the open arrows can be realized by the [0,1]
index model (either by time-interpolation or time-extrapolation), and those linked
with full arrows are realized by the R¢ index model (either by interpolation or
approximation). The two models inside the ellipse are the predicted results by the
models. Other combinations of methods are possible if partial data (e.g. internal

X-ray data at infrequent time points) is available.



Chapter 5

System interface

Part of the purpose of the project is to obtain a software implementation of spline
interpolation and extrapolation model on [0, 1] index [24] as well as the Thin-plate-
spline prediction model on R? index [19]. The latter method could be enhanced
by a marker-point-specification method which we call “affine-affine” matching?.
The goal of the software is to see whether the above two methods can be used
to provide a convenient visualization tool in the context of deformation due to
idiopathic scoliosis. The same methods could theoretically be used for prediction
of internal deformation, given data on external deformation, but so far we are
still constrained by the problem of inaccurate data. We have, however, obtained
some conditional good initial results, which will be presented in Chapter 6. In

this chapter we describe the system interface.

5.1 The data

We have three test cases namely: Test case A, B, and C, corresponding to the
three patients available. Each Test case comprises n Internal/External models

(“IE models”), where “Internal” refers to the spine and rib-cage and “External”

!These implementations were done from scratch, but they are not new in the sense that
previous implementations exist [19, 24]. Affine-affine matching is a slight (but useful) general-
ization of the anisotropic error criteria of [19]. As already mentioned, this idea was not actually

implemented.
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refers to the external trunk. The n models represent views of the same patient at
different time points ¢;, 2 = 1, ..., n. Each such model is made up of approximately
14,000 data points in R? including both the internal and external data. Each
patient has n + 1 independent files with all the available data.

For the R¢ index model, besides the coordinates of all the internal and external

points, there is also other information:

d the dimension of the object; for the scoliosis case, d = 3, but our model will

also work for the case of a 2D plane, for which d = 2;

m the order of largest derivative in the R¢ case; we tried both the case of m = 2

as in [19] and the case of m = 3;
N the number of external marker points;

totalpoints the total number of external and internal points of the current model.

For the [0,1] index model, each patient has only one file: it contains the coor-
dinates of all the points, including both the external and the internal, at all time
points. To be more consistent with our application in scoliosis, we ordered the
time-point data based on time. For example, for the first test case, patient2116957,

the order of data inside the file is: Nov98, May99, Nov99 and May00.

5.2 The operations

Depending on the model, the main operations can be separated as:

For the [0,1] index model:

1. Time-interpolation
This operation corresponds to the time-interpolation of the [0,1] index model
described in Section 3.2. Given a list of time points within the interval [0,1],
and the coordinates of all the points in R? of each model at every time point,
we can get the full point-by-point interpolation over the interval [0,1]. The
input value of ¢ is the target time point, which can be specified easily by the

user.



CHAPTER 5. SYSTEM INTERFACE 46

2. Time-extrapolation
This operation is quite similar to the operation in item 1, since they share
the same [0,1] index model. But here the difference is that instead of input
of a value of ¢t between 0 and 1, we need a ¢ bigger than 1 to represent the

time point for which we want to predict.
For R% index model:

1. Alignment
The alignment? mentioned here is only a simple method. It is a prerequisite
operation for the deformation operation (item 2). It permits the user to
apply a rigid motion (rotation plus translation) to any one of the n IE
models, viewed on top of one of the other models in a two-color overlay, and

transformed in the same coordinate system.

2. Deformation
This is the core operation of the Thin-plate spline model based on the R?
index. Given two groups of marker points and a complete figure in terms
of coordinates of points, it permits us to get the deformed figure. To make
sure the final result is comparable with the given data, we require item 1 to

be its prerequisite operation.

5.3 The interface

The form of the interface is shown in Fig. 5.1.
There are three windows, each with associated buttons and/or sliders: TopLeft

(Fig 5.2(a)), TopRight (Fig 5.2(b)), and Bottom (Fig 5.3).

1. TopLeft acts as an initialization window. It sets the initial figure for the

deformation, which will be displayed in the TopRight window, and it permits

2The general problem of calibration in this context is likely to be very difficult: the patient
may have grown, gained weight, and/or suffered further scoliotic deformation; marker points
may have been placed at slightly different positions, cameras may have changed or moved, and

so on. These problems are beyond the scope of this thesis.
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Time-Extrapolate
Time-Interpolate

Figure 5.1: Interface which contains 3 sub-windows, each with associated buttons

and /or sliders.



CHAPTER 5. SYSTEM INTERFACE 48

specification of the patientID that will be the target of the time-interpolation
and time-extrapolation. The last will be displayed in the Bottom window.

It has 2 buttons as follows:

Open Display of a file of form idtimepoint.dat in the TopLeft window, by

means of a pop-up menu giving access to such files;

Save Save the data displayed in the TopLeft window after modification.

2. TopRight is the window for the display of the deformation. It has the same

basic buttons as the TopLeft window, plus the functional buttons:

Qverlay Overlay the figure in the TopLeft to the TopRight window;

Alignment Transform the overlayed figure into the same coordinate system

as the final figure which is opened in this window;

Deform Deform the registered figure in the window.

3. Bottom is the window for time-interpolation and time-extrapolation. It has
a slider across the bottom to permit display of interpolated values. It also

has the buttons:

Time-interpolation Get the interpolation result for the patient that has
been chosen in the TopLeft window: the default value of ¢ is set to be

0.5;

Time-extrapolation Get the extrapolation result for the patient that has
been chosen in the TopRight window: the default value of ¢ is set to be
1.3.

The four operations described above are available with this interface, in the fol-

lowing way:

1. Registration is implemented by the Alignment button in the TopRight win-
dow. First the user may open a file, using Open, to define the initial figure
and display it in the TopLeft window. When the user opens a different
file in the TopRight window, he may also use the QOverlay button in the
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TopRight window to automatically load the figure from the TopLeft into the
TopRight window. Thus, two different figures will be shown in the same
window (TopRight) in different colors. By clicking the Alignment button,
the two figures in the TopRight will be automatically aligned.

2. Deformation is implemented by the Deform button in the TopRight window.
Once the user has chosen the original marker points, the deformed marker
points, and the start figure that he wants to deform, then clicking the button
Deform will cause the Thin-plate spline model based on R? index model to
be invoked, and the deformed figure will show up the TopRight window.
At this time, if the user does not click Time-interpolate then the Bottom

window remains black.

3. Time-interpolation is done by the Time-interpolate button in the Bottom
window. Before clicking this button, the user must choose an initial figure,
which is shown in the TopLeft window, and a target figure, which is shown
in the TopRight window. Then, once the Time-interpolate button is clicked,
the user can view the time-interpolated figures by means of the slider at
the bottom of the Bottom window. (Once the initial figure is chosen by the
user, all the information concerning this particular interpolated case is fixed

including the patientID, the number of time points, etc..)

4. Time-extrapolation is implemented by the Time-extrapolate button in the
Bottom window. This is quite similar to Time-interpolation. The difference
here is that this time, the user needs to select only one state of the patient
as the end state (corresponds to the time point ¢,) of a list of states, based

on which the time-extrapolation will work.



CHAPTER 5. SYSTEM INTERFACE 90

[=](00[]
o]
o]

[e]

=/ 0l
pen
erla)
ar
e

(a) (b)
Figure 5.2: Interface— (a) is the TopLeft window which contains the Open and
Save buttons, and (b) is the TopRight window which contains Open, Overlay,

Alignment, Deform and Save buttons.

Figure 5.3: Interface — the Bottom window which contains Time-Interpolation,

Time-Eztrapolation buttons, and a slider.



Chapter 6

Experimental Results

In this chapter we will show the experimental results we got with the models
described in previous chapters. The experimental results consist of two parts.
The first one is a preliminary test, namely, the result we got with some simple
simulated test cases for our models. We have two main purposes for this: to
test how well the model works in an ideal situation and to obtain a reference
for comparison with the quality of results for the real data. The second part
involves the real data. The real data comes from Ste-Justine Hospital. The
chapter is organized as follows: we will devote one special section (Section 6.1) to
a description of the data-related topics. Then we will give the results for the [0,1]

index model in Section 6.2 and those for the R% index model in Section 6.3.

6.1 Test case analysis

6.1.1 Preliminary test case

For the preliminary test cases, usually we choose simple models simulating our
real-data cases.

For the [0,1] index model, we chose four co-centric cylinders with radius 1, 2,
3 and 4 respectively to simulate the change in the figure of human body as time
passes (see Fig. 6.1).

We choose a certain value of ¢t which is between 0 and 1 to simulate the time-
51
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Figure 6.1: Preliminary test model for [0,1] index model — four co-centric cylin-
ders representing the four models at different time points with radius 1, 2, 3 and

4 respectively; (a) is the topview and (b) is the sideview.

interpolation case, and a ¢ which is greater than 1 to simulate time-extrapolation.
The advantage of this simulated test model is that we can easily figure out where
a certain time-interpolated or time-extrapolated cylinder layer should be by com-
paring the values with all the given time points.

For the R% model (d = 3), we use a cylinder to simulate the human trunk, and
one internal vertical line which is located quite close to the side of the cylinder

to simulate the internal spine (see Fig. 6.2). Since the ultimate goal of the R?

Figure 6.2: Test model for the 3-dimensional object with m = 2 (where m was

defined on p. 29) N = 12 for R? index model; (a) is the straight sideview, (b) is

the topview and (c) is the sideview at a slight angle.

model is to get the internal spine deformation information provided the external
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body deformation, we can deform a certain part of the cylinder as scoliosis does
and see what will happen with the vertical internal line which is supposed to be

the spine.

6.1.2 Real-data test case

In contrast to the preliminary test case, which we defined by ourselves, we do not
have so many choices in the case of the real data, since all the data comes from
Ste-Justine Hospital, Montreal. Later we will list all the contraintes and problems

of these real data.

1. Information contained in the test data
Totally we got 48 test cases (the number of patients) and several groups
of data at different time points for each patient. Fortunately we got very
detailed medical information concerning the physical condition of each pa-
tient, specified by 126 parameters. This helped us in the selection of test
cases. The parameters include patient height, growth velocity, ever braced
or not, primary curve type, Cobb angle for major curve, etc... Among all
these parameters, 15 of them are quite related to our project including the

coordinates of all the points that form the patient trunk.

2. Criteria for test-case selection
Not all the 48 test cases are suitable for our application. After consultation
with Dr. Hubert Labelle who is an expert in this field, we got some criteria

for our test-case selections:

(a) mcobbttl — Cobb angle for major curve in T/TL zone [3] from clinical
chart (degrees, + to right).
Its absolute value should be greater or equal to 40, and the change in
values between different time points should be greater than 10. This is
to make sure that the change in form of the patient figure is big enough

for our model to simulate.
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(b)

mcobbl — Cobb angle for major curve in L zone [3] from clinical chart
(degrees, + to right).

Its absolute value should be greater or equal to 40, and the change in
values between different time points should be greater than 10. This is
to make sure that the change in form of the patient figure is big enough

for our model to simulate.

mcurvetype — Primary curve type, 1-8 (LuT, RuT, LT, RT, LTL, RTL,
LL, RL) [3], 0 if N/A, from chart.
Here the types of interest to us are either RT or RTL;

mclincobb — Cobb angle of primary curve, from chart (degrees, + to
right).

Its absolute Cobb angle should be greater or equal to 40, and the change
in values between different time points should be greater than 10. This
is to make sure that the change in form of the patient figure is big

enough for our model to simulate.

t; — Time points available.

Both for the [0,1] index model and the R¢ index model, we hope to have
as many time points as possible, especially for the [0,1] index model.
Since the number of time points n must be greater than the index m of
the highest derivative, for the possible test case, we must have at least
3 times points available, because we still want to have one in-between

for comparison purposes.

Based on all these conditions, we finally got 3 test cases from all the 48

which have the same type of scoliosis, and a similar degree of change in the

figure. These offer us the opportunity to do the test of “coefficient vector

generalization” of our model'. For the first test case, we got data for 4 time

points, but only 3 for the other 2 test cases. The information is listed in the

following tables:

I This will be discussed later in Section 6.3.2.
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Table 6.1: Physical information available for each patient
PatientID | Sex | Age | Surgery | mcobbttl mcobbl mcurvetype | mclincobb
tl t2 t3 t4 tl t2 t3 t4 tl t2 t3 t4
patientl F | 16.3 F 43 56 56 62 | -34 -34 -38 -45 4 43 56 56 62
patient2 F | 13.5 F 38 44 47 — 38 44 47 — 4 38 44 47 —
patient3 F | 13.0 F 32 40 48 — -26 0 0 - 4 3240 48 -
Table 6.2: Modeling information available for each patient
PatientID NumberOfPoints NumberOfContours | NumberOfPoints
t1 t2 t3 t4 t1 t2 t3 t4 /Contour
patientl | 14040 12600 13680 14040 39 35 38 39 360
patient?2 14400 14400 14760 — 40 40 41 — 360
patient3 14040 14400 14040 — 39 40 39 - 360

Here, F for the Surgery means till the time the scans were taken, the patient

did not undergo any surgery; and the Points represent points in R3.

3. Testing data treatment

(a) Problems with the test case

As we can see from the tables above, there are several problems con-
cerning the test cases. The first and quite obvious one is that the
number of points in R? that form the same patient at different time
points is not the same, which means that there are some points that do
not have their corresponding points available at some other time point.
This may cause the method to fail. Second, since the data are produced
at different time points, it is impossible for the patient to keep exactly
the same posture as the previous time and the camera to be exactly in
the same place with the same orientation. So this means it is unlikely
that we will have the same coordinate system for the same patient at
different time points. Third, as we mentioned at the very beginning, we
got, our external patient trunk data and the internal spine and rib-cage
information separately from Ste-Justine Hospital. Thus, we have the
problem of the alignment of the external and internal data, i.e, bringing
all the data into the same coordinate system. Fourth, for the R¢ model,

we need to have certain number of marker points around the patient’s
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body, which is part of the external model for both the start figure and
the final deformed figure. The problems concerning the marker points
are two: finding the correspondence marker points of the original figure
and the final figure and the number of marker points. In the original
data from Calgary, we have a list of marker points, but their number
is far from enough. As we will discuss in later sections, the number of
marker points is quite important for the final result of the model: the
more and the better distributed the marker points, the better the final

result.

Cleaning process
The cleaning process is the process that we implemented to solve our

first two problems described above.

For the external data, the process contains two steps: first, by doing a
rigid transformation, we brought the central contours of all the models
at different time points for the same patient to the same place. To do
this, we used our ¢, time point as reference, transforming all the later
models into its coordinate system. Then, the second step was to cut off
several contours of certain models to make all the models have exactly
the same number of points (actually, because the numbers of points of
each contour is the same, we just need to ensure that all the models

have the same number of contours around the patient trunk).

For the internal data, since the data around the rib cage are not sorted,
it is impossible to process it based on the contour parameter which does
not exist, so, what we could do was to cut the points from both sides

of the rib cage.

Internal and external data registration

This process is for the third problem described above. For the internal
and external data registration problem, it is a little bit complicated. We
wrote a small program to do the internal and external data registration

process. Here the main idea was to use the positions of certain marker



CHAPTER 6. EXPERIMENTAL RESULTS o7

points as reference, transforming the external to the same coordinate
system as the internal one. For the R? model, this process is not really
necessary, because for the B¢ model, all the points (both the internal
and the external) share the same coefficient vectors a and w. Instead
of doing the registration, we still can get the coefficient matrices based
on the external marker points, and apply them to the internal data.
The disadvantage of doing this is that when we do the display, the
internal and external are not in the same system which is inconvenient
for viewing. But meanwhile, we increase the accuracy of the data we
get, since we do not need to do any kind of transformation calculation

on the coordinates of the points.

(d) Marker-point generation
To solve the fourth problem, we wrote another small program to gen-
erate marker points at certain intervals around the patient trunk. This
helps us solve the problem of the lack of marker points. But the problem
of lack of the exact corresponding relationship between marker points
remains, even though we tried to line up the two models as much as

we could before we generated the marker points.

6.2 The case T =0, 1]

6.2.1 Preliminary experimental results

Now we are going to present the preliminary experimental results for the Thin-
plate spline models based on the [0,1] index. This includes both the time-interpolation
and time-extrapolation model results. Here we used four co-centric cylinders with
radius 1, 2, 3 and 4 respectively as models for different time points (this test case

is illustrated with no deformation in Fig. 6.1).



CHAPTER 6. EXPERIMENTAL RESULTS o8

Test results

The results for the Thin-plate spline model on [0,1] index are quite satisfying both
for the time-interpolation and the time-extrapolation (see Fig. 6.3, 6.4, 6.5 and

the related discussion on validation).

(a)

Figure 6.3: Preliminary test results for [0,1] index model — Time-interpolation,

four co-centric cylinders representing the given data, with a turquoise one repre-
senting the interpolated model at ¢ = 0.5 and A = 1; (a) is the topview and (b) is

the sideview.

Validation

1. Result
For the validation of our [0,1] index model, what we did with the preliminary
test case was this: we ignore the given data at a certain time point ¢; between
to and t,, which will be the interpolated time point, use our model to get that
data, and compare with the available data which has been ignored. For the
time-extrapolation test, we ignore the data at the last time point, and try
to extrapolate from all the other given data. The parameters we use for the
validation are: totaldistance is the sum of the errors (the error is the distance
between two corresponding points), totalpoints is the total number of points
including both the external and the internal data and averagedistance RMS

is the average error (see Fig. 6.6 for time-interpolation and Fig. 6.7 for
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Figure 6.4: Preliminary test results for [0,1] index model — Time-interpolation,
four co-centric cylinders representing the given data, with a turquoise one repre-
senting the interpolated model at ¢ = 0.8 and A = 1; (a) is the topview and (b) is

the sideview.

Figure 6.5: Preliminary test results for [0,1] index model — Time-extrapolation,
four co-centric cylinders representing the given data, with a turquoise one repre-
senting the extrapolated model at t = 1.3 and A = 1; (a) is the topview and (b)

is the sideview.
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time-extrapolation). We define

N
_ Ei:1 \/(xical - ‘/I’ligive'n)2 + (yical - yigiven)Z + (Zical - Zigiuen)Q .
= N ;

RMS

here, N is the total number of points, (z;_,, ¥i.,,, %,,,) represents the coordi-
nates of the calculated result (either time-interpolated or time-extrapolated)
point and (T4, Yigiven» Zigiven ) T€PTESENES the given coordinates of the point
(either time-interpolated or time-extrapolated respectively), with the units

are C.

2. Analysis
Time-interpolation: RM S = 0.107 at ¢ = 0.35; at this moment, the radius of
the time-interpolated cylinder is 2, and the outermost cylinder has a radius
of 4; compared with these, the average distance (RMS) between the two
corresponding points. which is 0.107, is acceptable.
Time-extrapolation: RMS = 0.830 at ¢ = 1.3; at this moment, the radius
of the time-extrapolated cylinder is 4. Even though compared with the

interpolation case, this result is worse, the overall result is still reasonable.

Figure 6.6: Validation of the time-interpolation result of the preliminary test
case for [0,1] index model, ¢ = 0.35. Analysis result: totaldistance = 17.047,
totalpoints = 160, averagedistance RM S = 0.107.
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Figure 6.7: Validation of the time-extrapolation result of the preliminary test
case for [0,1] index model, ¢ = 1.35. Analysis result: totaldistance = 132.280,
totalpoints = 160, averagedistance RM S = 0.830.

6.2.2 Real-data test

In this subsection we will present the real-data test results for the Thin-plate spline
model based on the [0,1] index including both the time-interpolation and time-
extrapolation models®. In all tests described in this subsection, the smoothing

parameter A is equal to 1.

1. Test case A: patient 1
This patient is a 16 year old girl (year 2000), 160.2cm in height and 54.7kg
in weight. Also, she has been identified as a scoliotic patient and has used a
brace before all the scans were taken. We have four groups of data available
for her. Based on the time intervals, the time index list of this test case is

[0,0.35,0.71,1]. All of her available data is displayed in Fig. 6.8.

We tried 3 different tests with our first real test case. The first two are
concerning time-interpolation, one at ¢ = 0.35 (see Fig. 6.9) and one at ¢t =
0.5 (see Fig. 6.10). Test 1 is just for validation purposes because we already
have the data available at ¢ = 0.35; we want to know how well our model can
work out on the real data. As we can see from the analysis: RM Seziernar 1S

0.175 based on the minimum distance around the patient trunk at ¢t = 0.35

2Tn this section, when we discuss the real test data, we use the term “Test case A”, “Test
case B” and "Test case C” to represent the 3 patients, and use "Test 17 or "Test 27 etc.. to

represent the different tests we did for each patient.
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Figure 6.8: Available data for Test case A — patient 1, (a) is the figure at the first
time point which is Nov 1998, (b) is the figure at the second time point which is
May 1999, (c) is the figure at the third time point which is Nov 1999, and (d) is
the figure at the fourth time point which is May 2000.
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of minDistance gierna = 2.051, so the external time-interpolation result is
quite good; while for the internal data: RM Siuterna 18 0.585 based on the
minimum radius size of the vertebra minDistance;pierna = 0.143, the error
is big.

Test 2 was just to get some sense of time-interpolation (see Fig. 6.10). Test
3 is concerning the time-extrapolation at t = 1.3. Test case A is the one and
only one available for the time-extrapolation test, because as we mentioned
before, we need at least three time points for either time-interpolation or
the time-extrapolation. We did the same validation for extrapolation on the
real test cases as for the preliminary test cases: we ignore the group data at
the last time point, get the data with our model, and then compare the two.
The result is shown in Fig. 6.11; similar to the time-interpolation result,
the external time-extrapolation is quite good: we have RM Sy terna = 0.283,
based on the minimum distance around the patient trunk at ¢ = 0.35 —
minDistanceegpierna = 2.263. But the internal time-extrapolated result is
quite bad, we got RM Sipterna = 1.229 based on the minimum radius size of

the vertebra minDistance;nierna = 0.131.

(b)

Figure 6.9: Time-interpolation result 1 for Test case A for [0,1] index model at

t = 0.35 which is exactly the second scan; (a) is the figure of the external body,
(b) is the figure of the internal rib cage. Analysis result: RM Segterna = 0.175,
RM S;pierna = 0.585, minDistance gierna = 2.051, minDistance;pierna = 0.143.
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(b)

Figure 6.10: Time-interpolation result 2 for Test case A for [0,1] index model at
t = 0.5 which means 2.5 months after the second scan (around mid Aug 1999);
(a) is the figure of the external body, (b) is the figure of the internal rib cage.

Figure 6.11: Time-extrapolation result for Test case A for [0,1] index model at
t = 1.3 which is exactly the fourth scan, (a) is the figure of the external body,
(b) is the figure of the internal rib cage. Analysis result: RM Segterna = 0.283,

RM S;nterna = 1.229, minDistanceogierna = 2-263, minDistance;pierna = 0.131.
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2. Test case B: patient 2
This patient is a 13 year old girl (year 2000), 160cm in height and 37.4kg in
weight. She has been identified as a scoliotic patient and has used a brace
before all the scans were taken. We have three groups of data available.
Based on the time intervals, the time index list of this test case is [0,0.35, 1].

All of her available data is displayed in Fig. 6.12:

Figure 6.12: Available data for Test case B — patient 2, (a) is the figure at the
first time point, which is Nov 1998, (b) is the figure at the second time point,
which is May 1999, and (c) is the figure at the third time point, which is May
2000.

For Test case B, we did two tests; the first was for time-interpolation at
t = 0.35 with the validation results (see Fig. 6.13). The RM Scyternai of
the time-interpolation test is 0.085, based on the minimum distance around
the body of 1.444; this is a very good time-interpolation. Still, the internal
result is not good: RM S;pierna = 0.646 and minDistance;pierna = 0.138.
Test 3 is for the time-extrapolation at ¢ = 1.3 (see Fig. 6.14).

3. Test case C: patient 3
This patient is a 13 year old girl (year 2000), 149c¢m in height and 49.8kg
in weight. She has been identified as a scoliotic patient and has used brace
before all the scans were taken. We have three groups of data available.

Based on the time intervals, the time index list of this test case is [0, 0.35, 1].
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Figure 6.13: Interpolation result for Test case B for [0,1] index model at ¢t = 0.35
which is exact the second scan, (a) is the figure of the external body, (b)
is the figure of the internal rib cage. Analysis result: RMS.sterna = 0.085,
RM S;niernar = 0.646, minDistanceopierna = 1.444, minDistance;pierna = 0.138.

Figure 6.14: Extrapolation result for Test case B for [0,1] index model at ¢ = 1.3,
(a) is the figure of the external body, (b) is the figure of the internal rib cage.
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All of her available data displayed in Fig. 6.15:

Figure 6.15: Available data for Test case C — patient 3; (a) is the figure at the
first time point, which is May 1999, (b) is the figure at the second time point,
which is Nov 1999, and (c) is the figure at the third time point, which is May
2000.

For Test case C, we did the same thing as for Test case B: the first test is
for the time-interpolation at ¢ = 0.35 with the validation results (see Fig.
6.16). The RM Sepierna of the time-interpolation test is 0.300, based on
the minimum distance around the body minDistancecgzierng = 1.321. The
RM S;,iernar = 0.770 and the minDistance;ierna = 0.127. The other test is

for the time-extrapolation at ¢t = 1.3 (see Fig. 6.17).
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Figure 6.16: Time-interpolation result for Test case C for [0,1] index model at
t = 0.35 which is exactly the second scan; (a) is the figure of the external body,
(b) is the figure of the internal rib cage. Analysis result: RM Sezterna = 0.300,

RM Sipternar = 0.770, minDistance gierna = 1.321, minDistance;pierna = 0.127.

Figure 6.17: Time-extrapolation result for Test case C for [0,1] index model at
t = 1.3; (a) is the figure of the external body, (b) is the figure of the internal rib

cage.
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6.2.3 Possible applications for the [0,1] index model

From all the tests we have done with our data, the following applications of this
model seem reasonable:

For time-interpolation, what the model can provide us is: given two groups of
data specifying the start and the final status (either direction), then we can get
any in-between status. This can help us to trace the process of the deformation
between two time points. For example, in the medical application, it can help the
doctor to better see how the internal spine changes as time passes, and meanwhile,
this helps reduce the number of X-rays, since we can prolong the time interval
between two scans, and use this model for the in-between information.

For extrapolation, what the model can provide us is: given a list of data at
several time points (at least 2), we can predict the figure at a certain time point
after that. Of course, the closer the time point to those available ones, the better
the result will be. This application is quite interesting: it can help us to predict
what will happen after a certain time period. This is especially useful in the
medical context, since it may help the doctor to choose the most appropriate

treatment for the patient.

6.3 The case 7 = R

6.3.1 Preliminary experimental results

In this section we will present the preliminary experimental results of the Thin-
plate spline model that has been implemented for both the cases of interpolation
and approximation. We tried the model with both two-dimensional and three-
dimensional objects. For the case of 2D, we use a 14 x 14 plane as the target (see
Fig. 6.18), and a cylinder of radius 2 with a vertical line inside for the 3D case
(see Fig. 6.19). Our goal here was to obtain some intuitive understanding of the

behavior of the method.
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Figure 6.18: Preliminary 2D test case for R? index model — 2D plane, N = 12
marker points with white dots representing the original marker points, and green

dots representing the deformed ones.

Figure 6.19: Preliminary 3D test case for R? index model — 3D cylinder, N =
12 marker points with white representing the original marker points, and green

representing the deformed ones.
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e Two—dimensional Test (d = 2)

When m = 2 (where m was defined on p. 29) (M = 3), A =0, a small num-
ber of marker-points (N = 5) permits the interpolation of marker points to
work well, but the overall deformation behaves badly: the small quantity
of marker points makes some part of the deformation out of control, which
leads to unexpected changes in the final figure. But when we test with the
data similar to [19] with N = 12, the whole image looks almost the same as
shown in [19, p. 528]. Introducing values of A which are not equal to zero
(we used the values 0.001, 0.01 and 0.1) changes the overall method from
interpolation to approximation. Besides getting the same visual results as
in [19] (see Fig. 6.20), we also found out that the larger the value of A the
smoother the lines appear. In particular we tried with A = 1 which accord-
ing to [19] is a quite large value and the grid contains almost straight lines
only. A value of A equal to 500, which causes the w vector to have only zero
values, leads to almost no visible change in the figure, but the quality of
the approximation of marker points decreases slightly (see Fig. 6.20 (f)). In

summary, our implementation appears to reproduce the results given in [19].

When m = 3 (M = 6), A = 0, we used the same group of data as for
m = 2, only changing the value of m (see Fig. 6.21). The case m = 3 is
not discussed in [19], so we cannot compare results. The interpolation of
marker points presents no problem, but concerning the overall figure, the
deformation causes very bad distortion. Introducing non-zero values of A
again makes the overall deformation look more reasonable. Still, when we
increase the value of A\ from 1 to some large value like 500, the image shows
no obvious change, but this large A makes the smoothing part weigh more
and more, and finally the w vector contains zeroes only. As in the case
m = 2, when we increase the number of marker points, the deformation
works better in all cases. The more uniform the distribution of the marker

points, the smoother is the overall deformation. The method with m = 3
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(a) (b)
(c) (d)
(e) (f)

Figure 6.20: Test results for the 2-dimensional case with m=2 for R¢ index mode,

d = 2. Two different marker point sets (original and deformed) represented by
green dots and white dots respectively. (a) original 2D plane; (b) interpolation
A = 0; (c) approximation A = 0.01; (d) approximation A = 0.1; (e) approximation
A = 1; (f) approximation A = 500.
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seems to be more sensitive in this respect than the method with m = 2.

e Three-dimensional Test (d = 3)

The case m = 2 (M = 4), A = 0, with 12 marker points (see Fig. 6.2) is
the prototype for the test model. Both the interpolation and the overall
deformation work pretty well. The only shortcoming is that the deformed
cylinder is not smooth enough (see Fig. 6.22 for interpolation). When we
increase the value of A\, the method changes from interpolation to approx-
imation. This is quite visible in the results (see Fig. 6.23 — 6.25 ). As for
the overall deformation, the result is not so good because the smoothing
factor has made the figure (the external cylinder which corresponds to the
patient body in our application) include only straight lines. This is true in
particular when the value of A becomes quite large, e.g. 100 (see Fig. 6.25),

in which case the w array has zeroes everywhere.

When m = 3 (M = 10), the minimum number of marker points is N = 10.
We started our test with 11 marker points. When A = 0, the interpolation
of the marker points is quite good, while the overall deformation, on the
contrary, for some cases, shows very large distortions. The spine which is
located inside the cylinder now appears outside of the original cylinder (see
Fig. 6.26). While for some examples, the deformation is quite acceptable,

the badly deformed part comes from the very small number of marker points.

After testing with several groups of data, we found that the quality of the
deformation is largely decided by the location of the marker points. A
well-located set of marker points can maintain a very nice deformation,
although the number of marker points is also very important. We even
tried a test case of 54 marker points distributed around the whole cylinder
(see Fig. 6.27). But meanwhile we also found another solution for this
problem (uncontrolled deformation) — put some marker points, at least one,
inside the cylinder. Such marker points can help to realize the constraint

on the final transformation; this is especially useful for us concerning the
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(a) (b)
(c) (d)
(e) (f)

Figure 6.21: Test results for the 2-dimensional case with m=3 for R? index model,

d = 2. Two different marker point sets (original and deformed) represented by
green dots and white dots respectively. (a) original 2D plane; (b) interpolation
A = 0; (c¢) approximation A = 0.01; (d) approximation A = 0.1; (e) approximation
A = 1; (f) approximation A = 500.
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(a) (c)
Figure 6.22: Test result for the 3-dimensional object with m = 2, N = 12 and

A = 0 — interpolation for R% index model.

(a) (b) (c)
Figure 6.23: Test case for the 3-dimensional object with m = 2, N = 12 and

A = 0.01 — approximation for R¢ index model.

(a) (b)

Figure 6.24: Test case for the 3-dimensional object with m = 2, N = 12 and

A = 0.1 — approximation for R index model.



CHAPTER 6. EXPERIMENTAL RESULTS 76

Figure 6.25: Test case for the 3-dimensional object with m = 2, N = 12 and
A = 100 — approximation for R? index model, a deformed cylinder, in which the

smoothing parameter makes the external cylinder almost straight.

deformation of the spine inside the cylinder. But this solution is often not
reasonable in practice, for example, in our application, it is impossible for us
to put a marker point inside the patient’s body (but see the remark on trend

data, below). Finally, when we change the value of A, the whole result goes

from interpolation to approximation, similar to the case of 2D (see Fig. 6.27

(b) and (c)).

(a) (b) (c)
Figure 6.26: Test case for the 3-dimensional object with m = 3, N = 11 and

A = 0 — interpolation for R? index model, deformation shows large distortions.

In summary, the method of TPS works quite well in both cases of d = 2 and
d = 3 when m = 2 for both interpolation and approximation. But the number
of marker points and their locations matters a lot. Usually the more the number
of marker points the better the final result, and the better the distribution of the

marker points the better the final result. But we have to point out that when



CHAPTER 6. EXPERIMENTAL RESULTS 7

(a) (b) (c)
Figure 6.27: Test case for the 3-dimensional object with m = 3, N = 54 for R¢ in-

dex model, (a) is the interpolation result in which A = 0, (b) is the approximation

result with A = 1 and (c) is approximation with A = 10.

more than two marker points lie in one line the whole method will crash. For the
cases when m = 3, the validation of the TPS is largely based on the location and
the number of the marker points. For m = 3, the deformed figure looks better
than in the case when m = 2, in the sense that it is more smooth, because of the
second derivatives in the objective functions.

There appear to be two ways to obtain a well-behaved overall transformation.
The first is to distribute the marker equally points throughout the space of interest.
We did the test with 108 marker points uniformly distributed around the cylinder,
and the deformation behaves very well; even in the case of 54 marker points on
half of the cylinder only, we still get quite reasonable results. All of this showed
that it is quite possible to obtain a good deformation when m = 3. The second
solution (in the context of human trunk) is to have marker points located in the
interior of the trunk (in practice, a possible way is to get this interior information
from the X-rays). For purposes of developing a method to predict the spinal
deformation from external data, it appears that we should well-locate the marker
points, and distribute them uniformly over the patient’s back. We should also try
to obtain some data related to the interior of the trunk, perhaps obtained from
the trend data or time-series data of the spine. Finally, we should also make the

number of marker points as large as practically possible.
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6.3.2 Real-data test

In this subsection we will present the real-data test results of the Thin-plate spline
model based on the R? index including both the interpolation and approximation
models together with the validations for the interpolation test. In this subsection,
in each result display, there are two images: the orange one represents the initial
figure and the yellow one represents the deformed result. These two images should

be the same, or as close as possible.

1. Test case A: patient 1
For Test case A, we tried 3 different tests. The first one (Test 1) is inter-
polation with 40 marker points around the trunk. We get the RM S¢zterna =
0.247 based on the minimum distance around the body minDistanceczierna =
2.041; and for the internal spine interpolation result: RM S;,ierna = 0.695
with minDistance;pierna = 0.143 (see Fig. 6.28). Again the external inter-

polation result is pretty good, while the internal one is bad.

Figure 6.28: Interpolation test 1 for Test case A for R index model from Nov98
to May99, with the orange one representing the given final figure, and the yellow
image the figure as deformed by the model, 40 marker points, A = 0; (a) is the
figure of the external body, (b) is the figure of the internal rib cage. Analysis
result: RM S, zierna = 0.247, RM Sipternat = 0.695, minDistancecgierna = 2.041,

minDistance;pierna = 0.143.

Another test (Test 2) involved increasing the number of marker points
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around the body to 76 marker points. Here as we expected, the error for both
the internal and external interpolation decreases: RM Seypterna; = 0.180 based
on the minimum distance around the body minDistance . ierna = 2.262;
and for the internal spine interpolation result: RM S;,ierna = 0.495 with
minDistancepterna = 0.131 (see Fig. 6.29).

Figure 6.29: Interpolation test 2 for Test case A for R¢ index model from Nov99 to
May00, 76 marker points, (a) is the figure of the external body, (b) is the figure of
the internal rib cage. Analysis result: RM Seiterna = 0.180, RM Sinternar = 0.495,

manDistancecgierna = 2-263, minDistance;piernag = 0.131.

The third test we did involved approximation, with exactly the same group

of test data, only changing the value of A from 0 to 0.1 (see Fig. 6.30).

2. Test case B: patient 2
For Test case B, we worked with 40 marker points on all the groups of data,
and the performance of the model is relatively stable. Fig. 6.31 is the test re-
sult of our first test for interpolation case. Here, RM Scyierna = 0.329 based
on minDistanceepternag = 1.361, a quite good result. And RM Sinierna =

0.656 based minDistance;,ierna = 0.131.

For the rest of the interpolation test cases, we will not show all the figures

here, but only the validation results.



CHAPTER 6. EXPERIMENTAL RESULTS 80

Figure 6.30: Approximation test for Test case A for R? index model from Nov98
to May99, 40 marker points, A = 0.1, (a) is the figure of the external body, (b) is

the figure of the internal rib cage.

Figure 6.31: Interpolation test for Test case B for R? index model from Nov98
to May00, 40 marker points, A = 0, (a) is the figure of the external body, (b)
is the figure of the internal rib cage. Analysis result: RM Septerna = 0.329,

RM S;pierna = 0.656, minDistancecgiernag = 1.361, minDistance;pierna = 0.131.
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Table 6.3: Test results of Test case B

| Parameter | May99-May00 | May00-Nov98 |
ExternalRMS 0.282144 0.193.83
Internal RMS 0.646784 0.704741
ExternalMinDistance 1.361056 1.24849
InternalMinDistance 0.130843 0.152557

Similarly, the last test we tried with this test case was approximation, with

A = 0.1 (see Fig. 6.32).

Figure 6.32: Approximation test for Test case B for R? index model from Nov98
to May00, 40 marker points, A = 0.1, (a) is the figure of the external body, (b) is

the figure of the internal rib cage.
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3. Test case C: patient 3
For Test case C, we worked with 40 marker points on all the groups of
data. Fig. 6.33 is the test result of our first test for the interpolation
case. Here, RM S.zternai 18 0.270 based on the minimum distance around
the body minDistancecgierna = 1.263. And RM S;pierna; = 0.779 based on

minDistance;pierna = 0.127.

Figure 6.33: Interpolation test for Test case C for R¢ index model from May99
to May00, 40 marker points, A = 0; (a) is the figure of the external body, (b)
is the figure of the internal rib cage. Analysis result: RM Seyierna = 0.270,

RM S;pnierna = 0.779, minDistance pierna = 1.263, minDistance;pierna = 0.127.

Finally, the last test we tried with this test case was approximation, with

A = 0.1 (see Fig. 6.34).
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Figure 6.34: Approximation test for Test case C for R? index model from May99
to May00, 40 marker points, A = 0.1; (a) is the figure of the external body, (b) is

the figure of the internal rib cage.

4. Test case D: “Special coefficient vector generalization” test
A special test we did for the Thin-plate spline model on R? was a “coefficient
vector generalization” test. In contrast to the [0,1] model, in the R? model,
all the space points in one model share the same two coefficient vectors a and
w. This fact interests us a lot, since all three test cases are of the same type
of scoliosis and similar degree of change in figure (see Table 6.1), and there
should be some similarities amongst these vectors. And if we extend this
idea further, there may be some possibility of characterizing the coefficient

vectors for each kind of deformation.

Based on this motivation, what we tried was to apply the coefficient vectors
a and w of Test case A (patientl from Nov98 to May99) to the latter two test
cases (Test case B and C). The results for Test case B — patient2 are not bad,
especially for the internal result (see Fig. 6.35 and 6.36). Here RM Sepierna =
0.619 and RM Sinternat = 0.489, based on minDistance.gierna = 1.361,
minDistancepierna = 0.131 respectively for Test 1. And RMS.pterna =
0.640 and RM S;nternat = 0.477, based on minDistanceezierna = 1.361,

minDistance;pierna = 0.131 respectively.

Another special test we did for this case was to use the same coeflicient vec-
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Figure 6.35: Test 1 with Test case B for B¢ index model — patient 2 from Nov98
to May00, 40 marker points with the coefficient matrices of Test case A (patientl
from Nov98 to May99); (a) is the figure of the external body, (b) is the figure of
the internal rib cage. Analysis result: RM Seyternat = 0.619, RM Sinterna = 0.489,

minDistance gzierna = 1.361, minDistance;piernag = 0.131.

Figure 6.36: Test 2 with Test case B for R¢ index model — patient 2 from May99
to May00, 40 marker points with the coefficient matrices of Test case A (patientl
from Nov98 to May99); (a) is the figure of the external body, (b) is the figure of
the internal rib cage. Analysis result: RM Septerna = 0.640, RM Sinternar = 0.477,

minDistanceeyterna = 1.361, minDistance;pternag = 0.131.
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tors as the previous tests, which are those of patient1 from Nov98 to May00,
for the case of patient2 from May00 to Nov98. Since the two deformations
are in the opposite time direction, we expected the RMS to have a quite big
value, and this was confirmed: we got RM Seziernat = 0.725 based on 1.736,
and RM Sinternar = 0.482 based on 0.131 (see Fig. 6.37).

Figure 6.37: Test 3 with Test case B for R? index model— patient 2 from May99
to May00, 40 marker points with the coefficient matrices of patientl from Nov98
to May99, (a) is the figure of the external body, (b) is the figure of the in-
ternal rib cage. Analysis result: RM Seiierna = 0.725, RM Sipiernat = 0.482,

manDistance giernag = 1.361, minDistance;piernag = 0.131.

Similar test results (using the coefficient vectors of Test case A) with Test
Case C patient 3 are not that promising for the case of interpolation. The
value of RMS is quite big, RM Seyiernar = 0.649, RM S;nternat = 0.719 based
on minDistanceepierng = 0.126 and minDistancepierna = 0.127 respec-
tively (see Fig. 6.38). For the approximation case, however, when A = 0.1,
the result is much better, RM Seyiernat = 0.270, RM Sipierna = 0.779 based
on minDistanceepterna = 1.263 and

minDistanceipierna = 0.127 respectively (see Fig.6.39).

Generally speaking, the Thin-plate spline model on R¢ works quite well, especially

for the simple deformation case. For the “coefficient vector generalization™ case,
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Figure 6.38: Test 1 with Test case C for R? index model — patient 3 from
May99 to May00, 40 marker points with the coefficient matrices of patient1 from
Nov98 to May99; (a) is the figure of the external body, (b) is the figure of the
internal rib cage. Analysis result: RM Seierna = 0.649, RM Sipierna = 0.719,

minDistancecgierna = 1.262, minDistance;pierna = 0.127.

Figure 6.39: Test 2 with Test case C for R? index model — patient 3 from May99
to May00, 40 marker points with the coefficient matrices of patientl from Nov98
to May99, both are in the case of approximation at A\ = 0.1; (a) is the figure
of the external body, (b) is the figure of the internal rib cage. Analysis re-
sult: RM S, zierna = 0.270, RM Sinternat = 0.779, minDistance gierna = 1.262,

minDistance;pierna = 0.127.
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our tests indicate that the situation is at least promising, since Test case A and

Test case B have quite similar forms.

6.3.3 Possible applications for the R? index model

There are two main possible applications for our R¢ index model.

The first one, which was our original motivation, is to avoid X-rays as much
as possible. By applying the B¢ model, what we can have is with two groups of
marker points and one group of complete figure points containing one of the two
groups of marker points, we can predict the other group of complete figure points.
In this way, we might predict the form of the internal rib cage from the external
figure. Again, in our medical application, the external figure is much easier to get
than the internal, and this can largely reduce the number of X-rays that need to
be taken. But the data accuracy problem may be a limitation here.

The second application is classification of different kinds of deformations by
means of the coefficient vectors. This may help a lot with medical research, and

it also reduces the number of X-rays that the patient needs to take.



Chapter 7

Conclusions

This research was devoted to scoliosis predictions, including those based on the
external data to get the internal spine information, and those based on a series
of data at different time points to get information at a future point. The main
conclusions from this work can be summarized as follows.

Scoliosis, with its high occurrence among teenagers, has become one of those
subjects that interest medical researchers a lot. The limits of current diagnosis
methods induce us to find some prediction models, in order to avoid potentially
harmful X-rays. Based on all the information available for the patient, we pro-
posed two different models: Thin-plate spline based on R index model and based
on [0,1] index model.

For the R? index model, the main working process can be summarized in
Fig. 7.1: given two groups of marker points and a complete point-based figure, we
can hope to get the deformed figure including both the internal spine and external
trunk.

For the [0,1] index model, the main working process can be summarized in
Fig. 7.2: given a list of time points and the complete point-based figure, we can
get the figure at any in-between time point (corresponds to time-interpolation),
and later-on time points (corresponds to time-extrapolation).

The validation we did with our experiments, which was illustrated in Chapter

6, shows that for the R? model: when d = 2, the method works very well; when

88
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Figure 7.1: Illustration of the working process of Thin-plate spline model on R¢

index set.
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Figure 7.2: Illustration of the working process of Thin-plate spline model on [0,1]

index set.
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d = 3, for the preliminary models, the result is still quite good; but for the real
test data, the deformation results for the external trunk is pretty good, while that
for the internal spine is not that good. But if we look at the figure, we can see
part of the RMS comes from the position of the deformed model, while the shapes
of the figure are quite close actually. And for the [0,1] index model, the ideal
preliminary test gave us a very good result. But for the real test case, similar
results to those of the R? model show up again: the external time-interpolated
and time-extrapolated are both quite good, but the internal result shows large
errors. For the time-extrapolation test, since we only have one real test case, Test
case A, the result is not that convincing. Part of these large errors come from the
problems intrinsic to the real test data, as we described in early Chapter 6. Since
we are constrained by the inaccuracy of the data, the final results are reasonable.

We used the programming language C++ and OpenGL to implement the
models. And for part of the mathematical calculation, we used Matrix Template
Library (MTL).

The models described here could be quite useful in medical applications. They
can reduce the frequency of the X-ray taken for the patient, it can help the doctor
to trace the in-between deformation between any two states, plus, it also provides
the function to do prediction at a future time point.

The problems of data accuracy must be resolved, however, and future work
could focus on this problem. For example, as we described in Chapter 3, the
“Affine-affine matching” model, and in Chapter 4, the combination of the two
models, are promising ideas to explore. All of these could increase the accuracy of
the results; also, we can work on the real data, and improve increase its quality.

The less good deformation results of the internal rib-cage may be due to the
absence of markers, but also because the deformation of the bone structure is not
the same as that of the soft tissues of the trunk. Then a possible solution could

be to characterize both types of deformation.
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