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Sommaire

La méthode de subdivision Catmull-Clark ainsi que la méthode de subdivision Loop

sont des normes industrielles de facto. D’autre part, la méthode de subdivision 4-8 est

bien adaptée à la subdivision adaptative, parce que cette méthode augmente le nombre

de faces ou de sommets par seulement un facteur de 2 à chaque raffinement. Cela promet

d’être plus pratique pour atteindre un niveau donné de précision.

Dans ce mémoire, nous présenterons une méthode permettant de paramétrer des sur-

faces de subdivision de la méthode Catmull-Clark et de la méthode 4-8. Par conséquent,

de nombreux algorithmes mis au point pour des surfaces paramétriques pourrant être

appliqués aux surfaces de subdivision Catmull-Clark et aux surfaces de subdivision 4-8.

En particulier, nous pouvons calculer des bornes garanties et réalistes sur les patches,

un peu comme les bornes correspondantes données par Wu-Peters [24] pour la méthode

de subdivision Loop.

Mots clefs:

surface de subdivision, matrice de subdivision locale, patches de surface, paramétrisation.



Abstract

The Catmull-Clark and Loop methods are de facto industry standards. On the other

hand, the 4-8 subdivision method is well suited for adaptive subdivision, because this

method increases the number of faces or vertices by only a factor of 2 at each step. It

is therefore more convenient when trying to achieve a given practical level of precision.

In this thesis we will introduce a method to parametrize the subdivision surfaces

of Catmull-Clark and 4-8 subdivision. As a consequence, many algorithms developed

for parametric surfaces will be able to be applied to Catmull-Clark and 4-8 subdivision

surfaces. In particular, we can produce bounds on surface patches which are both

guaranteed and realistic, similar to the bounds given by Wu-Peters [24] for the Loop

method.

Keywords:

subdivision surface, local subdivision matrix, surface patch, parametrization.
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Chapter 1

Introduction

1.1 Background

The publication of the papers by Catmull and Clark [7] and Doo and Sabin [11] in 1978

marked the beginning of subdivision for surface modeling. A subdivision surface is a

method of representing a smooth surface via the specification of a coarse polyhedral

mesh and a set of rules to refine it.

The limit subdivision surface is generally produced iteratively using a given re-

finement scheme, but most of the limiting subdivision surfaces can also be evaluated

directly in terms of a set of eigenbasis functions which depend only on the subdivi-

sion scheme [21]. Alternatively, a simpler approach, akin to [17], can approximate the

subdivision surface’s basis functions.

Subdivision is becoming increasingly popular as a surface representation in computer

graphics applications. For animation and simulation, subdivision surfaces fill the gap

between polyhedral and spline modeling. Keeping closed seams and tangency between

multiple NURBS patches becomes difficult in places where multiple joints exert influence

over edges of these multiple surfaces [3]. With subdivision surfaces, we can use a single

polygon mesh to define a complex model: there is no need to piece individual patches

together.

1.2 The Idea of Subdivision

The basic idea of subdivision is to define a smooth curve or surface as the limit of a

sequence of successive refinements. This idea can be traced to G. de Rham [9] who used
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“corner cutting” recursively to obtain smooth curves. In 1974, Chaikin [8] introduced a

special case of the corner cutting algorithm. Chaikin’s algorithm became popular and

is often used to illustrate the basic idea of subdivision methods. Chaikin’s algorithm

applies to curves, rather than to surfaces, but it illustrates clearly [2, Sec. 1.1] the idea

of subdivision. We start with a polygon made up of four segments:

1. Two intermediate points are introduced on each segment by taking a weighted

average of the corner points, using weights
(

1
4 , 3

4

)

and
(

3
4 , 1

4

)

, respectively. Con-

necting these new points produces a polygon with eight segments and eight corners.

2. Previous points are dropped from the polygon.

3. Repeating this process, we will have a polygon with 16 segments and 16 corners,

32 segments and 32 corners, etc. In the limit, the polygon will converge towards

a smooth limit curve.

Figure 1.1: Two steps of Chaikin’s algorithm [2, Sec. 1.1].

So we can consider subdivision as a repeated refinement process.

1.3 Classification of Subdivision Schemes

Subdivision schemes are quite varied. Here we just discuss the best known stationary

subdivision schemes generating C1-continuous surfaces on arbitrary meshes [26].

We classify the subdivision schemes according to the criteria frequently used:

1. The type of refinement rule (face split or vertex split [26, Sec. 4.1]).

(a) Face split: Catmull-Clark, Loop, Modified Butterfly, Kobbelt.

(b) Vertex split: Doo-Sabin, Midedge, Biquartic.

2. The type of generated mesh (primarily triangular or quadrilateral).
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(a) Triangular: Loop, Modified Butterfly.

(b) Quadrilateral: Catmull-Clark, Kobbelt.

(c) General: Doo-Sabin, Midedge, Biquatric.

3. Whether the scheme is intrinsically approximating or interpolating.

(a) Approximating: Loop, Catmull-Clark, Doo-Sabin, Midedge, Biquatric.

(b) Interpolating: Modified Butterfly, Kobbelt.

4. Smoothness of the limit surfaces for regular meshes (C1, C2, etc.).

(a) C1-continuous: Modified Butterfly, Kobbelt, Doo-Sabin, Midedge.

(b) C2-continuous: Loop, Catmull-Clark, Biquartic.

Here, we find that the 4-8 subdivision scheme is a special kind of subdivision scheme

with respect to the above classification. It uses bisection refinement as an elementary

refinement operation rather than face or vertex splits and the subdivision surfaces pro-

duced by the 4-8 scheme are C4-continuous except at extraordinary vertices where they

are C1-continuous. In this thesis we focus on the Catmull-Clark and 4-8 subdivision

methods.

1.4 Outline of the Thesis

The remainder of the thesis is organized as follows. A short overview of the research

area of geometric modeling is given in Chapter 2. The main part of the thesis is

contained in Chapter 3 and Chapter 4. A detailed introduction to the Catmull-Clark

and 4-8 subdivision schemes is given in Chapter 3. In particular, we make several useful

comments about the in-place implementation of methods. In Chapter 4, a method

extending Wu-Peters [24] is introduced showing how to parametrize the Catmull-Clark

and 4-8 subdivision surfaces in a way that permits accurate approximation of the limit

surface. This is the main contribution of the thesis. We conclude and mention promising

possibilities for future work in Chapter 5.



Chapter 2

Literature Review

2.1 Geometric Modeling

Geometric modeling has rapidly become a central area of research and development

that involves diverse applications. It is important in the traditional fields of engineering,

general product design, and computer-aided manufacturing. It is also indispensable in a

variety of modern industries: computer vision, robotics, medical imaging, visualization,

as well as computer graphics, including computer games and animation for films.

2.1.1 Geometric Representations

There are two major representation schemas that are often used: Constructive Solid

Geometry (CSG) and Boundary representation (B-rep). In CSG a solid is represented

as a set-theoretic Boolean representation of primitive solid objects. In B-rep the solid

surface is represented explicitly as a quilt of vertices, edges, and faces [14].

Non-Uniform Rational B-splines (NURBS) have become a de facto industry standard

for the representation, design, and data exchange of geometric information processed by

computer. Their excellent mathematical and algorithmic properties, combined with suc-

cessful industrial applications, have contributed to the enormous popularity of NURBS.

This method of representing solids is, like the method of subdivision-surface models, a

B-rep representation.
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2.1.2 Subdivision-Surface Models

Currently, the most common way to model complex smooth surfaces in the domain

of geometric modeling is by using a patchwork of trimmed NURBS (trimming simply

means that a subset of the domain of the B-spline or NURBS surface is delineated as the

part of the surface to be used [2, Sec. 1.1]). One of the reasons why trimmed NURBS

continue to be widely used is because they are readily available in existing commercial

systems and in the kernels on which they are based [1]. However, they suffer from at

least two difficulties [10]:

1. Trimming is expensive and prone to numerical and approximation errors.

2. It is difficult to maintain smoothness, or even approximate smoothness, at the

seams of the patchwork.

Subdivision surfaces have the ability to overcome these two problems: they do not

require trimming, and smoothness of the model is automatically guaranteed.

As already mentioned, the basic idea of subdivision is a repeated refinement process.

In a paper titled Exact Evaluation of Catmull-Clark Subdivision Surfaces at Arbitrary

Parameter Values by Jos Stam [21], it was however shown that subdivision surfaces

can alternatively be evaluated directly without explicitly subdividing. Therefore, many

algorithms, such as interference detection, developed for parametric surfaces can be

applied to subdivision surfaces. This makes subdivision surfaces an even more attractive

tool for free-form surface modeling.

2.2 Evaluation of Subdivision Surfaces

We will now give further details concerning subdivision-surface evaluation. The first

evaluation method was introduced by Stam [21]: this method parametrizes the control

mesh and the limit surface over a single mesh element (triangle or quadrilateral) to

evaluate the surface at an arbitrary parameter value. Another method was introduced

by Wu-Peters [24]. It uses the linearity of the subdivision process, and a certain pa-

rameterization of the limit surface, centered at each vertex, such that the limit surface

is evaluated as the linear combination of the basis functions, weighted by the original

control points [2, Sec. 6.5][15].
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2.2.1 Stam’s Method

Stam’s method is based on the fact that subdivision surfaces, such as those generated by

Catmull-Clark and Loop subdivisions, can be evaluated in terms of a set of eigenbasis

functions which depend only on the subdivision scheme. Further, we can derive ana-

lytical expressions for these basis functions [21, 20]. Stam’s method can be viewed as a

generalization of algorithms that evaluate B-spline surfaces using the explicit definitions

of the B-spline nodal functions.

We present an overview of the algorithm for the Catmull-Clark case [21] in order to

establish the theoretical foundations of this type of method, and to compare it informally

with the Wu-Peters method. Otherwise the method is not used in this thesis. We

implemented Stam’s method, in order to ensure that all the details were understood.

In the following descriptions, several of the figures are taken directly from [21].

We assume that the initial mesh has been subdivided at least once, isolating the

extraordinary vertices so that each face is a quadrilateral and contains at most one

extraordinary vertex (n 6= 4). The surface is viewed as a regular surface made up

of ordinary B-spline patches, except near the extraordinary vertex, where there are n

patches adjacent to the extraordinary vertex, n 6= 4, as illustrated in Figure 2.1:

Figure 2.1: Five surface patches around an extraordinary vertex.
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The Catmull-Clark subdivision scheme generalizes uniform B-spline knot insertion [6]

to meshes of arbitrary topology. For the regular case, Catmull-Clark subdivision is

equivalent to midpoint uniform B-spline knot insertion. Therefore, the 16 vertices sur-

rounding a face are the control points of a uniform bi-cubic B-spline patch.

Figure 2.2: A bi-cubic B-spline is defined by 16 control points. The numbers are the

ordering of the corresponding B-spline basis functions in the vector b(u, v) defined by

Stam.

Because the control vertex structure near an extraordinary vertex is not a rectan-

gular grid, the faces containing extraordinary vertices cannot be evaluated as uniform

B-splines. We need to demonstrate how to evaluate a patch corresponding to a face with

an extraordinary vertex. Our goal is to find a surface patch s(u, v) defined over the unit

square Ω = [0, 1] × [0, 1] which can be evaluated directly in terms of the K = 2n + 8

vertices that influence the shape of the patch corresponding to the face [21]. We assume

that the extraordinary vertex corresponds to (0, 0) and the ordering of the control points

is defined as in Figure 2.3.

We define a surface patch around an extraordinary vertex and choose a certain

ordering of the control points of the patch, as shown in Figure 2.3. We denote the

initial vector of control points by

CT
0 = (c0,1, ..., c0,K).

Through subdivision we can generate a new set of M = K + 9 vertices shown in
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1

2

3

4

5

6
7

8

9

2n+1

2n+2

2n+3

2n+4 2n+6

2n+7

2n+8

2n+5

Figure 2.3: Domain for surface patch adjacent to a vertex with valence n= 5.

Figure 2.4 as circles super-imposed on the initial vertices. The initial control points of

the surface patch are shown in Figure 2.3. This is what is required to completely define

the patch in the dark-shaded area in Figure 2.3. With a K ×K subdivision matrix A,

we have:

C1 = AC0,

where A is K ×K subdivision matrix having the form:

A =

(

S 0
S11 S12

)

,

and where S is a (2n + 1)× (2n + 1) subdivision matrix [13]. The matrices S11 and S12

are two matrices for regular knot insertion for B-splines. An extra set of vertices is also

needed to evaluate the three B-spline patches that are defined using a bigger matrix Ā

(see Figure 2.4):

C̄κ = ĀAκ−1C0, κ > 1,

where Ā is a (2n + 17)×K matrix, the matrix A is K×K, and C0 is K× 3. The value

of κ is the number of subdivision steps.
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1

2

3

4

5
6

7

8

9

2n+1

2n+2

2n+3
2n+42n+5

2n+13
2n+12

2n+11
2n+10

2n+8

2n+17

 2n+16

2n+7

2n+15

2n+14

2n+6

2n+9

Figure 2.4: Addition of new vertices by applying the Catmull-Clark subdivision rule to

the vertices in Figure 2.3.

For each level κ ≥ 1, a subset of the vertices of C̄κ becomes the set of control vertices

of three B-spline patches. These control vertices can be defined by selecting 16 control

vertices from C̄κ and storing them in three 16× 3 matrices:

Bk,κ = PkC̄κ,

where Pk is a 16×M matrix and k = 1, 2, 3. Let b(u, v) be the 16× 3 vector containing

the 16 cubic B-spline basis functions, then the surface patch corresponding to each

matrix of control vertices is defined as:

sk,κ(u, v) = BT
k,κb(u, v) = C̄T

κ P T
k b(u, v),

where (u, v) ∈ Ω, κ ≥ 1 and k = 1, 2, 3. There is an infinite sequence of uniform B-spline

patches defined by the above equations which form our surface s(u, v). This is done by

partitioning the unit square Ω into an infinite set of tiles Ωκ
k , κ ≥ 1, k = 1, 2, 3, as shown

in Figure 2.6.
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2n+17 2n+16 2n+15 2n+14

2n+8 2n+7  2n+6   2n+2

3          4         5        2n+3

2          1          6       2n+4

2n+16 2n+15 2n+14 2n+9

2n+7   2n+6   2n+2  2n+10

  4         5       2n+3    2n+11

2n+7  2n+6   2n+2   2n+10

  4          5        2n+3    2n+11

 1         6         2n+4   2n+12

8         7         2n+5    2n+13 1         6         2n+4   2n+12

Figure 2.5: Indices of the control vertices of the three bi-cubic B-spline patches.

However, it is very costly to evaluate the surface, since it involves κ−1 multiplications

of the K × K matrix A. The evaluation can be simplified considerably by computing

the eigenstructure of A.

Figure 2.6: Partition of the unit square into an infinite family of tiles.

Eigenstructure

In the Catmull-Clark case, for the K ×K matrix A, there exist K linearly independent

eigenvectors and the matrix A can be decomposed as:

A = V DV −1,
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by singular value decomposition, where D is a diagonal matrix containing the eigenvalues

of A, and V is an invertible matrix whose columns are the corresponding eigenvectors.

Therefore, given the singular value decomposition, we can compute Aκ−1 as:

Aκ−1 = V Dκ−1V −1 = V diag(λκ−1
0 , λκ−1

1 , . . . , λκ−1
K−1)V

−1.

where κ is the number of multiplications of the matrix A and K is the number of eigen-

values of the matrix A. The evaluation of the surface requires only O(K3) operations

and it is independent of the value of κ.

2.2.2 Wu-Peters Method

The capability of evaluating subdivision surfaces is only one aspect of the Wu-Peters

method. The method is mainly used to do safe and efficient interference detection for

subdivision surfaces [24] and to measure errors for adaptive subdivision surfaces [25].

Both interference detection for subdivision surfaces and accurate error measures for

adaptive subdivision surfaces require safe linear approximations of the limit surfaces.

Approximation of the limit surface by the subdivided control polyhedron can be both

inaccurate and costly (there is exponential growth of the number of faces). The Wu-

Peters method permits us to define a bound on the maximum distance between the

limit surface and its linear approximation. The bound can be computed locally and

efficiently.

Wu and Peters [24, 25] illustrated their approach with Loop’s subdivision scheme [18].

The basic and the most important step of the Wu-Peters method is to define a set of

Loop patches. A Loop patch is a piece of the limit surface under Loop subdivision

applied to the triangle and its one-ring neighbors. If each of the vertices of the tri-

angles has six neighbors, it is called a regular patch. Otherwise, it is irregular. We

assume that at most one of the vertices has n 6= 6 neighbors. We assume that extraor-

dinary vertices are separated by at least one ordinary vertex. This is always the case

after one local subdivision step. The principle of patch design is to ensure that the

domains of the Loop patches lie inside the center triangles. This is important because

the bounding volume is parametrized over the center triangle. On the other hand, the

patch domain should cover the center triangle as much as possible, since a larger gap

means a larger overestimate. Having the Loop patches, we can approximate the nodal

functions and build local bounding volumes that tightly sandwich the limit surfaces.
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These local bounding volumes are created using linear upper and lower bounds on each

of the x, y, z components of the limit surfaces. The x, y and z components of the limit

surfaces are bounded by forming a linear combination of pre-computed bounds on the

nodal functions [2, Sec. 2.2].

In this thesis, we mainly focus on the parametrization of the subdivision surfaces.

We extend the Wu-Peters method to the Catmull-Clark and 4-8 subdivision surfaces.

Thus, in the following sections we present two important aspects of the Wu-Peters

method: finding the nodal functions and parametrization of the Loop patches.

Nodal Functions and Evaluation of Subdivision Surfaces

The so-called basis functions in the Wu-Peters method, an inaccurate word in the case

of the Loop method, are called nodal functions. Given the control patch, the spanning

functions of one spatial coordinate of a generalized subdivision surface are called nodal

functions. They can be obtained by simply applying the subdivision process, provided

it is convergent, until the approximation is satisfactory, to control points that associate

the value one with one node and zero with all others [2, Sec. 2.2].

According to the Wu-Peters method, a nodal function ξi corresponds to the ith

control point of the Loop patches, where i = 0, . . . , µ and µ + 1 is the number of

control points of one Loop patch. Suppose we have a regular Loop patch and we want

to compute the nodal function ξ0 which is associated with the node v0 in the (u, v)

domain. We set the z component of the control point associated with v0 equal to one

and the z component of all other control points equal to zero. Since the bounding

volumes of the limit surfaces are naturally parametrized over the center triangles of

the Loop patches, we are only interested in the nodal function’s range over the center

triangle: 2D parameter domain (see Figure 2.7 where the nodes vi are denoted simply

by i, i = 0, ..., 11). Notice that the calculation of the nodal functions of the Wu-Peters

method is independent of the type of the Loop patches, that is to say, whether the patch

is regular or irregular, we use the same method to find the nodal functions.

Now we can just apply the Loop subdivision scheme to these control points. After

seven subdivision steps (we use the same number of subdivision steps as Wu-Peters),

we obtain an adequate approximation of the nodal function ξ0 (see Figure 2.8).

s(u, v) =

µ
∑

i=0

ξi(u, v)pi
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Figure 2.7: The grid in R2 contains all vertices that have influence on the surface patch

corresponding to the center triangle. Each vertex is associated with a specific nodal

function.

where pi is the control point of the patch and ξi is the nodal function corresponding to

pi, i = 0, . . . , µ and µ is the number of control points of the patch.

1 2

3

4 6

7

8

910

11

5

0

z

v

u

(V0, 1)∈ R3

Figure 2.8: We associate one with v0 and zero with all other vertices. The shaded area

over the center triangle 0-1-2 (see Figure 2.7) corresponds to the approximation of the

nodal function ξ0 associated with v0. That is to say, for a point over the center triangle

defined in Figure 2.7, the components u and v of the point correspond to one (u, v)

coordinate and the component z is the nodal function for this (u, v) coordinate.
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With the pre-computed nodal functions, the evaluation of the patch is simple and

straightforward:

s(u, v) =

µ
∑

i=0

ξi(u, v)pi

where pi is the control point of the patch and ξi is the nodal function corresponding to

pi, i = 0, . . . , µ and µ is the number of control points of the patch.

Parametrization

The parametrization of the Loop patch is the fundamental step of the Wu-Peters

method. The so-called exact parametrization of the Loop patch by Wu-Peters is defined

by the following construction (cf. Figure 2.9):

1. Set v0 to be the origin of the (u, v) plane.

2. The direct neighbors vi of v0 form a regular unit n-gon.

3. Extend the edges v0v1 and v0v2 by kn to get v4 and v6.

4. v5 is the average of v4 and v6.

5. v3, v7 are the reflection of v5, across v0v4 and v0v6.

kn is defined by the following formula:

kn :=

{

−4(c2 − 2)/(1 + 2c2)− 1 if n ≥ 6
−6(2c2 − 7)/(15 + 2c2)− 1 if n < 6

where c := cos π
n
.

The domain Ωn of the Loop patch is the limit of the subdivision applied to the initial

mesh of the abscissae vi [2, Sec. 6.5]. We choose the abscissae mesh to be symmetric

with respect to the extraordinary node. The Ωn falls into the sector formed by the

initial abscissa triangle △n with vertices v0, v1, v3 (see Figure 2.9) [24].

As mentioned above, the purpose of the parametrization is to ensure that the domain

of the patch is strictly within the center triangle. This can be done, in the case n ≥ 6, if

vi is mapped into vi (the limit positions are equal to their original positions), i = 0, 1, 2;

in the case 3 ≤ n ≤ 5, let vm be the middle point between v1 and v2; in this case the

vi are chosen so that the limit position of vm is 1
2(v1 + v2). The proof that the vertices,

given in the itemized list above, give the desired limit positions, is given below.
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Figure 2.9: Shaded areas are the domains of the patches.

Wu-Peters also presented another parametrization: uniform parametrization. With

the same construction as above, but with kn = 1 for all n, we obtain the uniform

parametrization. The bottom boundary of the domain will either, for n < 6, pull back

from the boundary of the center triangle or, for n > 6, push out of the center triangle.

Therefore, for n < 6, we have a large overestimate due to the larger gap between the

center triangle and the domain compared to the exact parametrization, while for n > 6,

we cannot have a guaranteed bounding volume to envelope the limit surface as the

domain pushes out of the center triangle (see Figure 2.10).
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Figure 2.10: The domains of uniform parametrization with n = 3 (left) and n = 9

(right).

One technique that will be used to establish appropriate values of the constants in

the exact parametrization is to compute the limit positions directly from the control

point pm
i on some levels m without going through the iterative refinement. The standard

technique in the analysis of subdivision schemes is:

1. Construct a local subdivision matrix.

2. Transform the local subdivision matrix into basis of eigenvectors.

Because our Loop patch has at most one extraordinary vertex and only v0 is possibly

an extraordinary vertex, we just need the local subdivision matrix for regular vertices.

The local subdivision matrix for a regular vertex is [18]:

S̃ =
1

16





















10 1 1 1 1 1 1
6 6 2 0 0 0 2
6 2 6 2 0 0 0
6 0 2 6 2 0 0
6 0 0 2 6 2 0
6 0 0 0 2 6 2
6 2 0 0 0 2 6





















,
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which can be decomposed into S̃ = V −1DV by singular value decomposition,

where

V −1 =





















1 0 0 0 0 1 0
1 1 −1 0 1 0 −1
1 0 −1 −1 −1 −3 −1
1 −1 0 1 0 0 −1
1 −1 1 0 1 0 1
1 0 1 −1 −1 −3 −1
1 1 0 1 0 0 1





















,

D =
1

16





















16 0 0 0 0 0 0
0 8 0 0 0 0 0
0 0 8 0 0 0 0
0 0 0 4 0 0 0
0 0 0 0 4 0 0
0 0 0 0 0 4 0
0 0 0 0 0 0 2





















,

V =
1

12





















6 1 1 1 1 1 1
0 2 −2 −4 −2 2 4
0 −2 −4 −2 2 4 2
−6 −1 −1 5 −1 −1 5
−6 5 −1 −1 5 −1 −1
6 −1 −1 −1 −1 −1 −1
0 −2 2 −2 2 −2 2





















.

The first row of the matrix V is the left eigenvector which will be used as the mask

to compute the vertex’s limit position of Loop subdivision scheme without iterative

refinement step.

We now have the regular vertex limit position mask [17]:

(

6

12
,

1

12
,

1

12
,

1

12
,

1

12
,

1

12
,

1

12

)

.

Having the limit position mask for regular vertex of the Loop subdivision scheme,

we can compute the parameters of exact parametrization for the Loop scheme [2, Sec.

6.8].

First, we consider the case n ≥ 6. To envelop the limit surface of one Loop patch, we

need to consider v0, v1, and v2 (see Figure 2.9). The limit position of v0 is always equal

to its original position by the central symmetry of its one-ring neighbors. For v1 and

v2, we should adjust their one-ring neighbors’ positions to assure their limit positions

are equal to their original positions; since v1 and v2 are regular vertices, we can use the

above limit position mask.

First, we consider v2; the one-ring neighbors of v2 are v0, v1, v5, v6, v7, and v8.



CHAPTER 2. LITERATURE REVIEW 18

To fix v2, we have the following formula by the limit position mask:

v2 =
6

12
v2 +

1

12
(v0 + v1 + v5 + v6 + v7 + v8). (2.1)

v0

v1

v2

v5

v6

v7

v8

Figure 2.11: Rotated planar grid.

For easier computation, we rotate the planar grid in Figure 2.9 by αn (see Fig-

ure 2.11, which is valid for all n > 6.). It is clear by symmetry that the horizontal

component of the average of the points v0, v1, v5, v6, v7, and v8 is equal to the horizontal

component of v2. So we just need to consider the vertical components.

The vertical component of

v0 is 0,
v1 is 1− 2c2,
vn+5 is − cos(2π/n) = 1− 2 cos2(π/n) = 1− 2c2,
v2 is −1,
v7 is −(1 + kn)c2 (since v0v7 has length (1 + kn) cos(π/n)),
v5 is −(1 + kn)c2,
v6 is −(1 + kn).

With the vertical components of v0, v1, v2, v5, v6, v7, and v8, we transform Equation

(2.1) into

−1 = −
1

2
+

1

12
(1− 2c2 + 1− 2c2 − 2(1 + kn)c2 − 1− kn), (2.2)

=⇒ 6c2 + 2c2kn + kn = 7, (2.3)
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=⇒ kn =
−4(c2 − 2)

2c2 + 1
− 1 (2.4)

where c = cos(π
n
) and n ≥ 6. Consequently, this choice of kn [24] ensures that the limit

position of v2 is equal to its origin position.

Now consider the case 3 ≤ n ≤ 5. In this case, it is not necessary to rotate the

coordinate system in Figure 2.9. It is clear by symmetry that the horizontal component

of the limit position vm is equal to the horizontal component of 1
2 (v1 + v2) where vm is

the middle point between v1 and v2. The vertex vm is influenced at the next subdivision

step by the same vertices of the patches with valences 3 ≤ n ≤ 5 (see Figure 2.12 and

Figure 2.13 where the v
′

denote the values at the next subdivision step). Let αn = π/n,

c = cos(π/n) = cos αn. The vertical components of

v0 is 0,
v1, v2 are −c (c > 0 since π/n < π/2),
v4, v5, v6 are sin(3π/2 − αn)(1 + kn) = −c(1 + kn),
v3, v7 are − sin(3π/2 − 2π/n)[sin(3π/2 − αn)(1 + kn)] = −2(c2 − 1)c(1 + kn),
v8 (n = 3) is sin(3π/2 + 2π/n + π/n) = −4(4c3 − 3c),
v8, v9 (n = 4) is sin(3π/2 + 2π/n + π/n) = −4(4c3 − 3c),
v8, v10 (n = 5) is sin(3π/2 + 2π/n + π/n) = −4(4c3 − 3c),
vm is 3/8(−2c) + 1/8(−c(1 + kn)) = −c/8(7 + kn).

v15 v25

1

1
1

v
′

4 v
′

5 v
′

6

v
′

3

v
′

8

v
′

7

v
′

2v
′

1

v
′

0

v02

kn kn

v01
αn

vm

Figure 2.12: The patches with valence n = 3.
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′ v
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6

v1
′ v

′

2

v
′

0

v
′
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′

v9
′

v
′

3

vm

v02

v01

v15
v25

αn

v
′

0

v1
′ v2

′

v3
′

v4
′

v
′

5
v

′

6

v
′

7

v
′

8

v
′
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v
′
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v02v01

v15 v25

αn

vm

Figure 2.13: The patch with valences n = 4 and n = 5.

Since vm is a regular vertex, the limit position of vm is computed as 1
2vm + 1

2vavg,

where vavg is the average of the six neighbors of vm after the first subdivision step. Its

neighbors are

v01 = 3/8(v0 + v1) + 1/8(v2 + vn+5),
v15 = 3/8(v1 + v5) + 1/8(v2 + v4),
v25 = 3/8(v2 + v5) + 1/8(v1 + v6),
v02 = 3/8(v0 + v2) + 1/8(v1 + v8),

v
′

1 = (5/8)v1 + (1/6)(3/8)(v0 + vn+5 + v3 + v4 + v5 + v2),

v
′

2 = (5/8)v2 + (1/6)(3/8)(v0 + v1 + v5 + v6 + v7 + v8).

A straightforward calculation now shows that the vertical component of vm = 1
2vm+

1
2vavg = −c and with the six neighbors of vm, we have the equation:

vm =
1

2
vm +

1

2
vavg , (2.5)

=⇒ vm =
1

2
vm +

1

12
(v01 + v15 + v25 + v02 + v

′

1 + v
′

2), (2.6)

=⇒ 189v1 + 3v3 + 48v5 + 9v8 = 288vm, (2.7)

=⇒ kn(2c2 + 15) = 27− 14c2, (2.8)

=⇒ kn =
−6(2c2 − 7)

15 + 2c2 − 1, (2.9)

where c = cos(π
n
) and 3 ≤ n ≤ 5. Consequently, this choice [24] ensures that the limit

position of vm is equal to its origin position.



Chapter 3

Catmull-Clark and 4-8

Subdivision

Since it was introduced by Edwin Catmull and Jim Clark in 1978, the Catmull-Clark

subdivision method [7] has become a graphics-industry standard. As one of the first sur-

face subdivision methods, it is also widely used in the study of properties of subdivision

surfaces.

In 2000, Luiz Velho and Denis Zorin introduced the 4-8 subdivision method [23].

This method has the advantage that it uses bisection refinement as elementary refine-

ment operation, rather than the commonly used face or vertex splits. Because 4-8

meshes are refinable triangulated quadrangulations, they provide a powerful hierarchical

structure for multi-resolution applications.

While the Catmull-Clark subdivision method is widely used in the graphics indus-

try, the 4-8 method is a newer method which has several advantages. But there is a

common challenge for the two methods: how to construct simple and efficient bounding

volumes for the patches of the subdivision surfaces. In the next chapter, we will intro-

duce a method which extends the method of Wu-Peters [24] which was derived for the

Loop method, to the parametric surfaces of Catmull-Clark and 4-8 subdivision. Before

doing the extension of the Wu-Peters method, we should have a good understanding of

Catmull-Clark and 4-8 subdivision.
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3.1 Catmull-Clark Subdivision

The Catmull-Clark method generalizes the uniform bicubic B-spline, which is the tensor

product of two cubic B-splines. The Catmull-Clark subdivision method belongs to the

class of primal methods, which use rules that work directly with the mesh defined in

terms of its vertices, edges and faces. One important type of splitting used in this context

is quadrilateral splitting, the pQ4 splitting schema [16] described in Section 3.1.1 below.

In particular, this is the splitting schema used by the Catmull-Clark method. A vertex

with valence n 6= 4 is called an extraordinary vertex, and a face with a number of edges

e 6= 4 is called an extraordinary face. No extraordinary faces will remain in the mesh

after the first subdivision step, and no extraordinary vertices will be introduced after

the first subdivision step.

The subdivision rules for computing face points, edge points and vertex points are

given as follows [7]:

1. A new face point is the average of all old points defining the face.

2. Each edge point is equal to the average of the midpoint of the old edge with the

average of the two new face points of the two incident faces.

3. A vertex point is updated by the average 1
n
[(n − 3)V + 2R + Q], where V is the

old vertex of valence n, R is the average of the midpoints of all old edges sharing

the vertex, and R is the average of the new face points of all faces adjacent to the

vertex.

As one of the first surface subdivision methods introduced, there are many different

descriptions of the method in the literature [2, Sec. 8.1].

Jos Stam [22] extended the Catmull-Clark method to generalize uniform tensor

product B-spline surfaces of any bi-degree to meshes of arbitrary topology. This method

uses only one-ring neighborhoods.

Subdivision methods consume a lot of memory, so a method permitting in-place

computation will be a good choice. We will see in the following sections that the

realization of in-place computation for the Catmull-Clark subdivision method is very

easy.

In the following two sections, we give a fairly detailed introduction to two versions

of the Catmull-Clark subdivision method based on the book [2]:
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1. Linear-Subdivision plus Smoothing formulation (LSS formulation)

2. In-place formulation.

More detailed information about the Catmull-Clark subdivision method and other

subdivision methods is available in this book.

3.1.1 Catmull-Clark (LSS formulation)

The presentation of the LSS (Linear-Subdivision plus Smoothing) formulation of the

Catmull-Clark algorithm is based on ideas of Stam [22] and Zorin and Schröder [27],

while the formulation in Section 3.1.2 is very close to the original description of [7].
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Figure 3.1: Result of subdivision using pQ4 scheme.

The Catmull-Clark method begins by refining the mesh according to the pQ4 schema

(see Figure 3.1):

1. Each edge is subdivided to create a new vertex (edge vertex) in the middle of the

edge.

2. A new vertex (face vertex) is added in the middle of each face.

3. This new face vertex is joined to each of the new edge vertices.

The refinement of the mesh is followed by assignment of geometric data to the newly

added vertices, and modification of the geometric data associated with existing vertices.

Here we have distinguished between the logical vertices in the mesh and the geometric
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data associated with these vertices. It is standard in the subdivision literature, however,

to refer to them together as a point. Thus, for example, in Figure 3.1, “Vertex Point”

refers to an existing logical vertex for which the associated geometric data must be

modified.

The LSS formulation [22] of the Catmull-Clark method is a very natural description

of the method, and it is very close to the fundamental Lane-Riesenfeld algorithm on

which the Catmull-Clark method is based. This formulation consists of two sub-steps:

1. The polyhedral mesh is linearly subdivided, which means that the new face point

is assigned the value equal to the centroid of the face and the new edge point

is assigned the value equal to the average of the two control points at its two

neighboring vertices.

2. Each point (including new face points and new edge points) in the subdivided

mesh is smoothed using the mask shown in Figure 3.2.

1
16

1
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1
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1
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1
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n
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Figure 3.2: Catmull-Clark smoothing mask with n = 4 and n = 6.

The weights of the Catmull-Clark smoothing masks are defined by

α∗

n =
n− 3

n
, β∗

n =
2

n2
, γ∗

n =
1

n2
.

3.1.2 Catmull-Clark (In-place formulation)

For most common quadrilateral subdivision schemes, a single uniform refinement step

increases the number of faces or vertices by a factor 4. Consequently, the implementa-

tions of subdivision methods will need much memory. An in-place formulation means
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that during the refinement of a given mesh, we do not need to create temporary vertices

to store data. In this case, we can save a lot of memory and improve the performance.

An in-place version of the Catmull-Clark computation is very easy to obtain. We

just perform the calculations in a different order compared to the LSS formulation.

Assume that the current values of V , Ei and Fi are stored, that memory has been

allocated for each new face point (denoted F
′

i ) and each new edge point (denoted E
′

i).

Then the computation can be done in the following order:

1. Compute F
′

i : F
′

i is the centroid of the face’s old vertex points:

F
′

i ←
1
4 [V + Ei + Fi + Ei+1] if the face is quadrilateral.

2. Compute E
′

i (preliminary value): E
′

i ←
1
2 [V + Ei].

3. Smooth the vertex point V
′

: V
′

← α∗

nV + nβ∗

nR + nγ∗

nQ.

4. Compute E
′

i (final value): E
′

i ←
1
2 [E

′

i + 1
2 (F

′

i−1 + F
′

i )].

In step 3, R is the average of the midpoints of all edges (values are available from

step-2) incident to the vertex, Q is the average of the new face points (values are available

from step-1) of all faces incident to the vertex, where

α∗

n =
n− 3

n
, β∗

n =
2

n2
, γ∗

n =
1

n2
.

The only difference between the in-place version and the original Catmull-Clark

formulation [7] is the order of computation.

We can easily prove that the in-place formulation of Catmull-Clark is exactly equiv-

alent to the LSS formulation.

1. Computation of Face Points in the in-place formulation:

F
′

i ←
1

4
[V + Ei + Fi + Ei+1] i = 0, . . . , n− 1.

The first step of computing Edge Points of in-place formulation is

E
′

i ←
1

2
[V + Ei] i = 0, . . . , n− 1.

These two computations are exactly the same thing as the first step of the LSS

formation.
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2. Smooth the vertices V in the LSS formulation:

V
′

← α∗

nV + β∗

n





n−1
∑

j=0

1

2
(V + Ej)



+ γ∗

n





n−1
∑

j=0

1

4
(V + Ej + Fj + Ej+1)



 ,

which can be written as

V
′

← α∗

nV + nβ∗

nR + nγ∗

nQ.

This is the same thing as step 3 of the in-place formulation.

3. Smooth the Edge Points E
′

i in the LSS formulation:

E
′

i =
1

4

[

1

2
(V + Ei)

]

+
1

8

[

V +
1

4
(V + Ei−1 + Fi−1 + Ei) + Ei +

1

4
(V + Ei + Fi + Ei+1)

]

+
1

16

[

1

2
(V + Ei−1) +

1

2
(Ei + Fi−1 +

1

2
(Ei + Fi) +

1

2
(V + Ei+1)

]

=
3

8
(V + Ei) +

1

16
(Ei−1 + Fi−1 + Fi + Ei+1).

This is the same thing as step 4 of the in-place formulation.

4. Smooth the Face points in the LSS formulation:

F
′

i =
1

4

[

1

4
(V + Ei + Fi + Ei+1)

]

+
1

8

[

1

2
(V + Ei) +

1

2
(Ei + Fi) +

1

2
(Fi + Ei+1) +

1

2
(Ei+1 + V )

]

+
1

16
[V + Ei + Fi + Ei+1]

=
1

4
[V + Ei + Fi + Ei+1] .

This is exactly the same thing as the first step of the in-place formulation.

3.1.3 Ball-Storry Formulation

We also present the Ball-Storry formulation of the Catmull-Clark method [4], because

we use this formulation in our project. We can construct the local subdivision matrix

explicitly using the Ball-Storry formulation.

In the project, we are interested in computing the limit points directly from the

control points pm
i on some level m without going through the iterative refinement. Since
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the local subdivision matrix controls the behavior of the surface in a neighborhood of

the vertices of the mesh, it comes as no surprise that many properties of subdivision

surfaces can be inferred from the properties of the local subdivision matrix [23]. The

standard technique of the analysis of subdivision methods is:

1. Construct a local subdivision matrix.

2. Transform it into its basis of eigenvectors.

Assume S̃ is a local subdivision matrix, the direct computation of the limit posi-

tions of the control points pm
i on some level m can be done using the decomposition

of S̃ = V −1DV into a diagonal matrix D and a basis of left eigenvectors [2, Sec. 5.4].

The convergence of the iterative scheme implies the affine invariance of the subdivision

scheme [2], which means that the dominant eigenvalue of S̃ is λ1 = 1 and that cor-

responding eigenvector is [1, ..., 1]T . The first column of V −1 is associated with this

eigenvalue.

Now we present the Ball-Storry formulation and verify that it produces the same

result as the two formulations we have presented. We can write the new vertex point of

Ball-Storry formulation in an inner-product-like notation [2]:

[

4n− 7

4n

3

2n

1

4n

]

·



V
1

n

n−1
∑

j=0

1

n

n−1
∑

j=0

Fj





Now we prove that the Ball-Storry formulation produces the same result as the two

previous formulations.

1. Compute F
′

F
′

←
1

4
(V + Ej + Fj + Ej+1),

which is the same computation as two previous formulations.

2. Compute E
′

E
′

←
3

8
(V + Ej) +

1

16
(Ej1 + Fj−1 + Fj + Ej+1) .

We can verify in a straightforward way that this is the same computation as in

the previous formulations.
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3. Smoothing the vertex points V
′

V
′

← αnV + βn





1

n

n−1
∑

j=0

Ej



+ γn





1

n

n−1
∑

j=0

Fj





where

αn =
4n− 7

4n
, βn =

3

2n
, γn =

1

4n
.

We can also verify that this is the same computation as two previous formulations,

as follows. In the original form [7] of the method, the smoothing of a vertex point was

defined as

V
′

=

(

n− 3

n

)

S +

(

2

n

)

R +

(

1

n

)

Q

=

(

n− 3

n

)

V +
1

n2

n−1
∑

j=0

(V + Ej) +
1

4n2

n−1
∑

j=0

(V + Ej + Fj + Ej+1)

=

(

4n − 7

4n

)

V +
3

4n

n−1
∑

j=0

Ej +
1

4n

n−1
∑

j=0

Fj

where
S = V

R = 1
n

∑n−1
j=0

1
2 (V + Ej)

Q = 1
n

∑n−1
j=0 F

′

j .

Now we can obtain the local subdivision matrix [26, Sec. 3.3] of the Catmull-Clark

scheme for the regular case (valence of the vertex is 4).

S̃ =
1

64





























36 6 6 6 6 1 1 1 1
24 24 4 0 4 4 0 0 4
24 4 24 4 0 4 4 0 0
24 0 4 24 4 0 4 4 0
24 4 0 4 24 0 0 4 4
16 16 16 0 0 16 0 0 0
16 0 16 16 0 0 16 0 0
16 0 0 16 16 0 0 16 0
16 16 0 0 16 0 0 0 16





























,

which can be decomposed into S̃ = V −1DV , where

V −1 =





























1 0 0 −2 −2 −2 0 0 1
1 3 −3 1 1 −8 −3 3 −2
1 −3 −3 1 1 10 3 3 −2
1 −3 3 1 1 −8 3 −3 −2
1 3 3 1 1 10 −3 −3 −2
1 0 −6 −5 13 4 0 −12 4
1 −6 0 13 −5 4 −12 0 4
1 0 6 −5 13 4 0 12 4
1 6 0 13 −5 −4 12 0 4





























,
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D =
1

16





























16 0 0 0 0 0 0 0 0
0 8 0 0 0 0 0 0 0
0 0 8 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0
0 0 0 0 4 0 0 0 0
0 0 0 0 0 4 0 0 0
0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 1





























,

V =
1

36





























16 4 4 4 4 1 1 1 1
0 2 −2 −2 2 0 −1 0 1
0 −2 −2 2 2 −1 0 1 0
−4 1 0 1 0 0 1 0 1
−4 1 0 1 0 1 0 1 0
0 −1 1 −1 1 0 0 0 0
0 −1 1 1 −1 0 −1 0 1
0 1 1 −1 −1 −1 0 1 0
4 −2 −2 −2 −2 1 1 1 1





























.

The first row of the matrix V is the left eigenvector, which will be used as the mask

to compute the vertex’s limit position of the Catmull-Clark subdivision scheme, in the

chapter on the parametrization of subdivision surfaces.

3.2 4-8 Subdivision

The 4-8 subdivision scheme was proposed by Luiz Velho and Denis Zorin [23] in 2001.

This method generalizes the four directional box spline of class C4 [2, Sec. 3] to surfaces

of arbitrary topological type. Recall that an important part of the definition of a

subdivision scheme is the refinement rule, as in the Catmull-Clark subdivision scheme

which is based on the pQ4 [16] scheme, the Loop subdivision scheme which is based

on the pT4 [16] scheme and the Doo-Sabin schema which is based on the dQ4 [16]

scheme. As mentioned above, one of the advantages of the 4-8 subdivision scheme is

that it uses bisection refinement as an elementary refinement operation, rather than

the more commonly used face or vertex splits of the Catmull-Clark, Doo-Sabin or Loop

subdivision schemes.

The 4-8 subdivision scheme has several advantages [23]:

1. The basic refinement operation is bisection. The result of applying a single bisec-

tion to a conforming mesh [19] is a conforming mesh: no cracks can appear. This

simplifies adaptive refinement.
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2. Gradual refinement. The splitting scheme increases the number of faces by only

a factor of 2 at each refinement step. In contrast, for the Catmull-Clark case, the

increase is a factor of 4.

3. Small support and high smoothness. The support for a vertex mask is smaller than

that of the Catmull-Clark scheme (smaller support implies less computation) and

the support for a face mask is the same. The resulting surface is C4-continuous

on the regular mesh, which is higher than the Catmull-Clark subdivision, which

is only C2-continuous.

4. High symmetry. The basis function in the regular case is invariant with respect to

rotations by π/8; thus it has a larger symmetry group compared to basis functions

of tensor-product and three-directional box splines.

3.2.1 4-8 Meshes and Refinement

In this section we introduce the basic concepts of regular 4-8 meshes and bisection

refinement.

Typical mesh refinement methods are closely related to regular tilings. A tiling is

said to be regular if every vertex has a fixed number of incident vertices. There are only

three types of regular plane tilings [12]; the tile has to be either a square, an equilateral

triangle, or a regular hexagon. Most known refinement schemes are based on square or

triangular tilings.

The 4-8 subdivision scheme is based on a different plane tiling namely one of the

monohedral tilings with regular vertices, also known as Laves tilings, named after the

crystallographer Fritz Laves [12].

In a monohedral tiling, every tile is congruent to one fixed tile, called the prototile.

The prototile of the [4.82] Laves tiling is an isosceles right triangle. We call it the

4-8 tiling as it has alternating vertices of valence 4 and 8 (see Figure 3.3). Here are

some definitions used in 4-8 meshes [23] (we assume that the 4-8 mesh is made up of

quadrilaterals, this can be done by applying one Catmull-Clark subdivision step to the

4-8 mesh):

1. Basic block. The basic structure of 4-8 tiling is a pair of triangles forming a block

divided along one of its diagonals. We call this structure a basic block. A 4-8 mesh



CHAPTER 3. CATMULL-CLARK AND 4-8 SUBDIVISION 31

Figure 3.3: Laves [4.82] tilings with one of the basic blocks outlined.

is made up of basic blocks.

2. Interior edge. We call the common edge of the two triangles of the block an

interior edge.

3. Exterior edge. We call all other edges of 4-8 meshes exterior edges.

4. Tri-quad mesh. The 4-8 tiling forms a triangulated quadrangulation. We also call

a 4-8 mesh a tri-quad mesh.

A regular 4-8 mesh has the same block structure as the 4-8 tiling. The basic structure

of a 4-8 mesh is formed by two triangles. Each triangle has a single interior edge and

two exterior edges. We use bisection as a primitive refinement operation: we bisect only

the interior edge of each block.

We have said that the important advantage of the 4-8 subdivision scheme is that

it uses bisection refinement as an elementary refinement operation. We introduce the

bisection refinement operation for the regular case (see Figure 3.4):

1. Add a split vertex on interior edges of blocks.

2. Subdivide each face into two sub-faces and link the split vertex on the interior

edge to the opposite vertex of the face.
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Figure 3.4: Two bisections in the regular case [2, Sec. 3.7].

Bisection refinement is used in a 4-8 mesh. Each 4-8 subdivision step is made up of

two consecutive bisection sub-steps. We need to produce a 4-8 mesh from a given mesh.

Bisection refinement can be applied to an arbitrary mesh partitioned into blocks of two

triangles sharing an edge. In our project, the initial mesh is a quadrilateral mesh, so

we just split each quad into two triangles to produce tri-quad meshes.

3.2.2 Definition of 4-8 Subdivision

In this section we define the 4-8 subdivision scheme based on bisection refinement for

computing positions of the new face vertices of the basic blocks and updating the po-

sitions of the existing vertices. We can classify these definitions into two classes: face

rule and vertex rule. The same rules are used in each bisection sub-step.

1. Face rule: Each new face vertex inserted into the basic block is computed as the

barycenter of the block.

2. Vertex rule: The new position of an existing vertex v is computed as the average

of the old position and barycenter of the vertices sharing an exterior edge with v.

The 4-8 regular mesh is a tri-quad mesh which has only vertices of valences 4 and

8 and the one-neighborhood of every internal vertex of valence 4 has only neighbors of

valence 8, and the one-neighborhood of every internal vertex of valence 8 consists of

one-ring of vertices with alternating valences 4 and 8.

We have an important observation about the vertices:

1. A vertex added by a refinement step has valence 4.
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Figure 3.5: Face and vertex masks (regular case).

2. Each refinement step converts existing vertices of valence 4 to vertices of valence

8 by a refinement step.

3. The valence of vertices of valence 8 is not changed by refinement.

As already mentioned, complete refinement of a regular 4-8 mesh needs two bisection

steps, and a bisection step has two sub-bisection steps: splitting faces and forming basic

blocks.

1. The first bisection step:

(a) Split face: A new vertex is added at every interior edge of every basic block.

The adjoining triangular faces are split into two surfaces by linking the vertex

to the opposite vertex of the face.

(b) Form basic block: Convert two triangles sharing an exterior edge to a basic

block. We observe that we can find which interior edges at the previous

sub-step become exterior edges, and exterior edges at the previous sub-step

which become interior edges at this step.

2. The second bisection step: Repeat the first bisection step.

Now we can obtain the local subdivision matrix using the method described in [26,

Sec. 3.3] of the 4-8 subdivision scheme. Because the 4-8 subdivision scheme has two

sub-steps, we have also two local subdivision matrices corresponding respectively to two

sub-steps of refinement (the numbering of the rows of the matrix corresponds to the

number indexing of the figures). The rows and columns are labelled here as in Figure 3.6

(a).
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(a) A basic block

1
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3 4 5

6

7
8

1’

3’ 5’
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0’

(b) Sub-step1

1

2

3 4 5

6

7
8

2’

3’ 4’

6’

7’8’1’

0’’

5’

(c) Sub-step2

Figure 3.6: 4-8 subdivision.

From sub-step 1 of the regular case of the 4-8 subdivision scheme, we have

S̃1 =
1

8





























4 0 1 0 1 0 1 0 1
2 2 2 0 0 0 0 0 2
0 0 8 0 0 0 0 0 0
2 0 2 2 2 0 0 0 0
0 0 0 0 8 0 0 0 0
2 0 0 0 2 2 2 0 0
0 0 0 0 0 0 8 0 0
2 0 0 0 0 0 2 2 2
0 0 0 0 0 0 0 0 8





























.

From sub-step 2 of the regular case of the 4-8 subdivision scheme, we have

S̃2 =
1

8





























4 1 0 1 0 1 0 1 0
0 8 0 0 0 0 0 0 0
2 2 2 2 0 0 0 0 0
0 0 0 8 0 0 0 0 0
2 0 0 2 2 2 0 0 0
0 0 0 0 0 8 0 0 0
2 0 0 0 0 2 2 2 0
0 0 0 0 0 0 0 8 0
2 2 0 0 0 0 0 2 2





























.

Finally, we can get the local 4-8 subdivision matrix S̃ for the regular case S̃ = S̃2S̃1

S̃ =
1

32





























12 1 4 1 4 1 4 1 4
8 8 8 0 0 0 0 0 8
8 2 13 2 3 0 1 0 3
8 0 8 8 8 0 0 0 0
8 0 3 2 13 2 3 0 1
8 0 0 0 8 8 8 0 0
8 0 1 0 3 2 13 2 3
8 0 0 0 0 0 8 8 8
8 2 3 0 1 0 3 2 13





























,
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which can be decomposed into

S̃ = V −1DV

where

V −1 =
1

12





























12 0 0 0 0 −12 −3 −12 −3
12 28 0 0 −21 −40 18 16 −10
12 0 −7 −21 0 9 4 −5 4
12 −28 −14 0 21 16 −10 16 18
12 −28 −7 21 0 −5 4 9 −10
12 −28 0 0 −21 16 18 −40 46
12 0 7 −21 0 9 −10 23 −10
12 28 14 0 21 −40 49 −40 18
12 28 7 21 0 23 −10 9 4





























,

D =
1

8





























8 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 0 0
0 0 4 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0
0 0 0 0 2 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1





























,

V =
1

28





























8 1 4 1 4 1 4 1 4
0 2 4 0 −4 −2 −4 0 4
0 −4 −16 −4 0 4 16 4 0
0 0 −4 0 4 0 −4 0 4
0 −4 0 4 0 −4 0 4 0
−8 −4 8 −4 4 0 0 0 4
−16 0 8 −4 8 0 0 4 0
−8 4 −4 4 0 0 4 0 0
0 4 −8 8 −8 4 0 0 0





























.

We suppose ai,j is an entry of the matrices S̃1, S̃2 and S̃. The subscript ranges (i,

j) of these matrices are from 0 to 9. The entries of the rowi represent the weights of

subdivision mask applied to vi and the j’s entry of the rowi indicates this entry (weight)

connected to vj (see Figure 3.6).

The first row of the matrix V is the left eigenvector that will be used as the mask to

compute the vertex’s limit position of 4-8 subdivision scheme without iterative refine-

ment steps. It is used below to parametrize the subdivision surfaces.



Chapter 4

Parametrization of Subdivision

Surfaces

In [24], Wu and Peters introduced a new bound on maximum distance of the subdivision

surfaces between the limit surface and its linear approximation. The bound can be

computed locally and efficiently. The method of Wu-Peters is used for Loop’s subdivision

scheme [18]. In this thesis we apply the idea of Wu-Peters to parametrize Catmull-Clark

and 4-8 subdivision surfaces and show how to compute linear approximations.

One problem related to subdivision surfaces is that of finding an explicit descrip-

tion for the limit surface. It is useful to be able to evaluate these surfaces directly, by

parameterizing them, without explicitly subdividing. There are several methods allow-

ing us to do this. For example, as already described above, Stam [21] evaluated and

parametrized the subdivision surfaces in terms of a set of eigenbasis functions which

depend on the subdivision scheme and these eigenbasis functions can be derived by

eigendecomposition.

In our project, we use an alternate method developed in [17, 24, 25] to parametrize

Catmull-Clark and 4-8 subdivision surfaces.

4.1 Parametrization of Catmull-Clark Subdivision Surfaces

In this section, we discuss the (u,v)-parametrization of the Catmull-Clark surface patches

and compare two kinds of (u,v)-parametrizations: uniform parametrization and exact

parametrizations.
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We begin by discussing the parametrization of Catmull-Clark subdivision surfaces

based on Catmull-Clark patches. A Catmull-Clark patch is a piece of the limit surface

under Catmull-Clark subdivision applied to the quadrilateral and its one-ring neighbors.

If each of the vertices of the quadrilateral has valence n = 4, it is called a regular patch.

Otherwise, it is irregular. A Catmull-Clark patch has at most one extraordinary vertex

which has n 6= 4 neighbors, since we assume that the initial mesh has been subdivided

at least once, isolating the extraordinary vertices so that each Catmull-Clark patch

contains at most one extraordinary vertex. We also assume that if a Catmull-Clark

patch is irregular, the extraordinary vertex corresponds to the origin of the parametric

domain of the patch.

In analogy with the development in [24, 25], we now derive parametrization for the

Catmull-Clark method. We begin with a parametrization designed to be exact.

4.1.1 Exact Parametrization of Catmull-Clark Subdivision Surfaces

0
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8
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(a) valence n= 3
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1314
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17 1
βn

αnkn

(b) valence n= 5

Figure 4.1: Parametrization around an extraordinary vertex.

We follow [24, 25] in replacing vi by i in the figures below. To avoid confusion,

lengths of edges are enclosed in circles in the figures.

To find a so-called exact parametrization for a patch adjacent to an extraordinary
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vertex we propose the following construction (see Figure 4.1):

1. Set v0 = 0, the origin of the (u, v) plane.

2. The direct neighbors v1, v3, v12, ..., v2n+6 of v0 form a regular unit n-gon.

3. Define the angle formed by v0 and two direct edges ei and ei+1 of the n-gon as

2αn (αn = π/n).

4. Define the angle which is diagonal to 2αn as 2βn. The angle βn is to be determined

below.

5. Define the length of the edge between v0 and direct neighbors of v0 to be 1.

6. Define the length of other edges of the quadrilaterals of the one-ring neighborhood

of v0 to be kn. The length of kn is fixed by the choice of βn and this fixes the

values of v2, v11, ..., v2n+7.

7. Define the v2, v11, ..., v2n+7 using αn, βn, and kn.

8. Extend the edges v11v12 and v16v17 by kn to get v10 and v4.

9. Extend the edges v0v1 and v0v3 by kn to get v5 and v9.

10. Extend the edges v1v2 and v3v2 by kn to get v8 and v6.

11. Extend the vertex v2 in the direction of v0v2 by the length between v0 and v2 to

get v7.

With this kind of the parametrization, the vertices of v0, v1, v2, and v3 of Catmull-

Clark patches are fixed (their original positions are equal to their limit positions) as will

be shown below.

The angle βn is defined by the following formula:

βn =







αn if n ≤ 4

arcsin

(

bc +

√

a4 + a2b2 − a2c2

a2 + b2

)

if n > 4

where
a = −3 sin(αn) cos(αn),
b = 4 + 3 cos2(αn),
c = sin(αn).
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The constant kn is defined by the following formula:

kn =







1 if n ≤ 4
sin(αn)
sin(βn)

if n > 4

The choice of a, b, and c is explained below.

We find that kn < 1 and αn < βn < π
2 when n > 4.

4.1.2 Uniform Parametrization of Catmull-Clark Subdivision Surfaces

To show the advantages of the exact parameterization, we compare it with the simpler

uniform parameterization, described here.

Using the same construction as the exact parametrization, but with kn = 1 and

βn = αn, we have the uniform parametrization. With the uniform parametrization, we

have a big problem: when n > 4, the domain of the patch pushes out of the center

quadrilateral (see Figures 4.2 and 4.3).

Figure 4.2: The domain (shaded area) of the uniform parametrization with n = 5.

Since the bounding volume is parametrized over the center quadrilateral, the bound

is only safe if the patch domain lies inside the center quadrilateral. With the uniform

parametrization, we can not bound the subdivision surfaces safely. We will show below

that this problem is resolved by the exact parametrization.
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Figure 4.3: The domain (shaded area) of the uniform parametrization with n = 7.

4.1.3 Regular Vertex Limit Position Mask of Catmull-Clark Scheme

The uniform parametrization may not provide guaranteed bounding envelopes for sur-

face patches when n > 4. So we should find a method to fix the value of βn to envelop

the patch domain within the center quadrilateral. To do this, we will choose βn (and

therefore kn, v2, v12, etc.), so that the limit positions of v1 and v3 are equal to their

original positions. The same will be true for v0 and v2.

To ensure that the limit positions of v1 and v3 are equal to their original positions,

we compute the limit positions directly from the control points pm
i on some level m

without going through the iterative refinement. The standard technique in the analysis

of subdivision schemes is:

1. Construct a local subdivision matrix.

2. Transform the local subdivision matrix into a basis of eigenvectors.

The Catmull-Clark subdivision scheme generalizes the bi-cubic B-spline surfaces of

arbitrary topological type. The local support of the refinement rules for bi-cubic B-

spline implies that the one-ring neighborhood of a vertex pm+1 only depends on the

one-ring neighborhood of pm. From the previous section, we have the local subdivision

matrix of Catmull-Clark for the regular case (in our case, v1 and v3 are regular vertices):
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Figure 4.4: Limit position mask of regular vertex of the Catmull-Clark subdivision.

S̃ =
1

64





























36 6 6 6 6 1 1 1 1
24 24 4 0 4 4 0 0 4
24 4 24 4 0 4 4 0 0
24 0 4 24 4 0 4 4 0
24 4 0 4 24 0 0 4 4
16 16 16 0 0 16 0 0 0
16 0 16 16 0 0 16 0 0
16 0 0 16 16 0 0 16 0
16 16 0 0 16 0 0 0 16





























,

which can be decomposed into S̃ = V −1DV , where

V −1 =





























1 0 0 −2 −2 −2 0 0 1
1 3 −3 1 1 −8 −3 3 −2
1 −3 −3 1 1 10 3 3 −2
1 −3 3 1 1 −8 3 −3 −2
1 3 3 1 1 10 −3 −3 −2
1 0− 6 −5 13 4 0 −12 4
1 −6 0 13 −5 4 −12 0 4
1 0 6 −5 13 4 0 12 4
1 6 0 13 −5 −4 12 0 4





























,

D =
1

16





























16 0 0 0 0 0 0 0 0
0 8 0 0 0 0 0 0 0
0 0 8 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0
0 0 0 0 4 0 0 0 0
0 0 0 0 0 4 0 0 0
0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 1





























,



CHAPTER 4. PARAMETRIZATION OF SUBDIVISION SURFACES 42

V =
1

36





























16 4 4 4 4 1 1 1 1
0 2 −2 −2 2 0 −1 0 1
0 −2 −2 2 2 −1 0 1 0
−4 1 0 1 0 0 1 0 1
−4 1 0 1 0 1 0 1 0
0 −1 1 −1 1 0 0 0 0
0 −1 1 1 −1 0 −1 0 1
0 1 1 −1 −1 −1 0 1 0
4 −2 −2 −2 −2 1 1 1 1





























.

From the above analysis of the local subdivision matrix (this decomposition was

done by using Mathematica), we know that the Catmull-Clark subdivision scheme has

eigenvalues

(λ0, λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8) =

(

1,
1

2
,
1

2
,
1

4
,
1

4
,
1

4
,
1

8
,
1

8
,

1

16

)

.

We now have the regular vertex limit position mask [2, Sec. 5.4]:

(

16

36
,

4

36
,

4

36
,

4

36
,

4

36
,

1

36
,

1

36
,

1

36
,

1

36

)

.

With this mask, we can compute a regular vertex’s limit position directly considering

the one-ring neighborhood of the vertex. The ability to compute the regular vertex’s

limit position directly is important in the phase of the exact parametrization of Catmull-

Clark subdivision surfaces.

4.1.4 Computation of Exact Parametrization of Catmull-Clark Sur-

faces

Having the limit position mask for regular vertex of the Catmull-Clark subdivision

scheme, we can compute the parameters of exact parametrization for the Catmull-Clark

subdivision scheme. To envelop the limit surface of one Catmull-Clark patch, we need

to consider the v0, v1, v2, v3 and from the limit position mask we know that we just need

one-ring neighborhood of the vertex to compute the limit position. The limit positions

of the v0 and v2 are always equal to their original positions by the central symmetry of

their one-ring neighborhood. For v1 and v3, we should adjust their one-ring neighbors’

positions to assure their limit positions are equal to their original positions if the valence

of v0 is n > 4.

We use the patch of valence n = 5 to illustrate. First, we consider v1; the one-ring

neighbors of v1 are v0, v2, v3, v4, v5, v6, v16, and v17.
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To fix v1, we have the following formula by the limit position mask:

v1 =
16

36
v1 +

4

36
(v0 + v17 + v5 + v2) +

1

36
(v3 + v16 + v4 + v6). (4.1)

For easier computation, we rotate the planar grid by αn. It is clear by symmetry

that the horizontal components in the new coordinate system of the average of the one-

ring neighbors of v1 does not affect the horizontal component of v1. So we just consider

the vertical components.

0

1

2

3

4 5 6

16

17

1 1

1

kn kn

kn

kn
knkn

αn

βn

kn

v
′

u
′

Figure 4.5: Control points for Catmull-Clark patch with n = 5.

The vertical component (positive downwards) of each relevant vertex is:

v0 = 0 (4.2)

v1 = 1 (4.3)

v3 = v16 (4.4)

v2 = v17 (4.5)

v4 = v6 = v2 + (v2 − v3) = 2v2 − v3. (4.6)
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From Equation (4.1), we have

v1 =
16

36
v1 +

4

36
(v0 + v17 + v5 + v2) +

1

36
(v3 + v16 + v4 + v6) (4.7)

=⇒
5

9
v1 =

1

9
(2v2 + v5) +

1

36
(2v4 + 2v3) (4.8)

=⇒ 10v1 = 4v2 + 2v5 + v6 + v3 (4.9)

=⇒ 5v1 = 3v2 + v5 (4.10)

where the vertical components of vertices are

v1 = 1 (4.11)

v2 = −
sin(αn + βn)

sin βn

cos αn (4.12)

v5 = 1 +
sin αn

sin βn

. (4.13)

Equations (4.12) and (4.13) follow immediately from the law of sines.

With Equations (4.11), (4.12) and (4.13), we transform the vertical component of

Equation (4.10) into
−3 sin(αn + βn) cos αn

sin βn

+
sin αn

sin βn

= 4 (4.14)

=⇒ −3 sin(αn + βn) cos αn + sin αn = 4 sin βn (4.15)

=⇒ −3 sin αn cos αn cos βn − sinβn(4 + 3 cos2 αn) + sin αn = 0. (4.16)

In Equation (4.16), we set

a = −3 sin αn cos αn (4.17)

b = 4 + 3 cos2 αn (4.18)

c = sinαn. (4.19)

With Equations (4.17), (4.18), and (4.19), we can transform Equation (4.16) into

a

√

1− sin2 βn − b sin βn + c = 0 (4.20)

=⇒
(

a2 + b2
)

sin2 βn − 2bc sin β + c2 − a2 = 0 (4.21)

From Equation (4.21), we have the solutions

sin βn =
bc±

√

a4 + a2b2 − a2c2

a2 + b2
. (4.22)
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Since 0 < βn < π
2 , we have the unique result

sin βn =
bc +

√

a4 + a2b2 − a2c2

a2 + b2
. (4.23)

=⇒ βn = arcsin

(

bc +
√

a4 + a2b2 − a2c2

a2 + b2

)

(4.24)

where
αn = π

n

a = −3 sin αn cos αn

b = 4 + 3 cos2 αn

c = sinαn.

With this kind of parametrization, we see empirically that the domain the Catmull-

Clark patch is strictly within the center quadrilateral (cf. Figures 4.2 and 4.3).

Figure 4.6: The domain (shaded area) of the exact parametrization of the Catmull-Clark

patch with n = 5.
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Figure 4.7: The domain (shaded area) of the exact parametrization of the Catmull-Clark

patch with n = 7.

We have observed the domains of the Catmull-Clark patches with valence up to 15

are strictly within the center quadrilaterals. The domain Ωn of the Catmull-Clark patch

is the limit of the subdivision applied to the initial mesh of the abscissae vi [2, Sec. 6.5].

We choose the abscissae mesh to be symmetric with respect to the extraordinary node.

The Ωn falls into the sector formed by the initial abscissa quadrilateral with vertices

v0, v1, v2, and v3 (see Figure 4.1).

We note with satisfaction that the domains are visually close to the quadrilaterals.

Thus the bounds will be safe and realistic. It would be interesting to quantify the

discrepancy referred to by the word “close”, but it would not be trivial to give an exact

value for the maximum value of this discrepancy. A more practical approach would be

to examine empirically the consequences of the discrepancy in model space R3.

4.2 Parametrization of 4-8 Subdivision Surfaces

In this section, we discuss the (u, v)-parametrization of 4-8 subdivision surfaces and

again compare two kinds of (u, v)-parametrizations: uniform and exact parametriza-

tions.

Compared to the parametrization of the Catmull-Clark subdivision surfaces, the

parametrization of the 4-8 subdivision surfaces is more complex. We know that a

Catmull-Clark patch is a piece of the limit surface under Catmull-Clark subdivision
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applied to the quadrilateral and its one-ring neighbors. But a 4-8 patch is a piece

of the limit surface under 4-8 subdivision applied to the quadrilateral and its two-

ring neighbors (see Figure 4.8). Because there are more one-ring neighbors than for a

Catmull-Clark patch, the parametrization of the 4-8 subdivision surfaces becomes more

complex.

For the Catmull-Clark subdivision scheme, after one local subdivision, we may as-

sume that a Catmull-Clark patch has at most one extraordinary vertex and we can

assume if a Catmull-Clark patch has an extraordinary vertex, this vertex is the origin

by transforming the patch by a rigid motion. But this is not true for the 4-8 subdivision

scheme:

1. The 4-8 subdivision scheme needs two complete subdivision steps to ensure that

each 4-8 patch has at most one extraordinary vertex.

2. Even if we can assure that a 4-8 patch has at most one extraordinary vertex, we

cannot assure that the extraordinary vertex belongs to the center quadrilateral

(see Figures 4.9, 4.10, and 4.11).

Fortunately, we can guarantee that there are only two situations for a 4-8 patch’s

extraordinary vertex:

1. It belongs to the center quadrilateral.

2. It belongs to the one-ring neighbors of the center quadrilateral.

We can classify all situations into four categories:

1. Category I: Each vertex of the patch is regular or v0 is an extraordinary vertex

(see Figure 4.8).

2. Category II: Extraordinary vertex is v4 (see Figure 4.9).

3. Category III: Extraordinary vertex is v15 (see Figure 4.10).

4. Category IV: Extraordinary vertex is v5 (see Figure 4.11).

If an extraordinary vertex belonging to the center quadrilateral is not v0 or an

extraordinary vertex belonging to the one-ring neighbors of v0 are not v4, v5, or v15, we

can rotate the coordinate domain to obtain one of the four categories we defined here.
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Figure 4.8: Parametrization of 4-8 patch (n=5): Category I.
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Figure 4.9: Parametrization of 4-8 patch: Category II.
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Figure 4.10: Parametrization of 4-8 patch: Category III.
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Figure 4.11: Parametrization of 4-8 patch: Category IV.

4.2.1 Exact Parametrization of 4-8 Surfaces (Category I)

The parametrization of Category I is defined by the following construction (Figure 4.8

illustrates the case n = 5). The construction is similar to the one used for the Catmull-
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Clark scheme:

1. Set v0 = 0, the origin of the (u, v) plane.

2. The n quadrilaterals around v0 form a one-ring neighborhood of v0. Define the

angles formed by v0 and two consecutive direct neighbors vi and vi+1 as 2αn.

Define the angle which is diagonal to 2αn as 2βn (βn is to be determined in

Sec. 4.2.4 (see Equation (4.35))). The length of the edges between v0 and direct

neighbors of v0 is defined to be 1. Define the length of the other edges of the

one-ring neighborhood of v0 to be kn. The value of kn is fixed by the choice of βn.

3. Define the two-ring neighborhood of v0. The two-ring neighborhood of v0 can be

divided into n sectors (n is the valence of v0):

(a) Define the first sector of the two-ring neighborhood of v0:

i. Extend the edges v0v1 and v0v3 by kn to get v4 and v8.

ii. Extend the edges v2v3 and v1v2 by kn to get v5 and v7.

iii. Choose v6 at distance v0v2 from v2 in the direction of v0v2 to get v6.

(b) Use the same rules as those defining v5, v6, v7, and v8 of the first sector for the

corresponding vertices of the other sectors of the second-ring neighborhood

of v0 (the vertex in each of the sectors which corresponds to v4 of the first

sector has in each case been defined in the previous sector. Thus, there are

two vertices of the final sector that have been defined in the first sector and

the sector n− 1).

4. The parametrization of vertices can now be fixed whatever the valence of v0:

(a) Extend the edges v1v4 and v3v8 by wn to get v11 and v17. The value of wn is

given below; it is fixed by the choice of βn.

(b) Add an edge of length wn from the vertex v11 parallel to the direction of v4v5

to get v12.

(c) Add an edge of length wn from the vertex v17 parallel to the direction of v7v8

to get v16.

(d) Extend the edge v11v12 by kn to get v13. Make the edge v12v13 parallel to

the edge v5v6.
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(e) Extend the edge v16v17 by kn to get v15. Make the edge v15v16 parallel to

the edge v6v7.

(f) Extend the edge v12v13 by wn to get v14. Make the edge v13v14 parallel to

the edge v6v15.

(g) Add an edge from the vertex v11 in the direction of v4v41 by wn to get v10.

Make the edge v10v11 parallel to the edge v4v41.

(h) Add an edge from the vertex v17 in the direction v8v22 by wn to get v18.

Make the edge v17v18 parallel to the edge v8v22.

(i) Extend the edge v10v11 by kn to get v9. Make the edge v9v10 parallel to the

edge v40v41.

(j) Extend the edge v17v18 by kn to get the v19. Make the edge v18v19 parallel

to the edge v22v23.

With this kind of the parametrization, the vertices of v0, v1, v2, and v3 of 4-8 patches

(category I) are fixed (their original positions are equal to their limit positions).

The angle βn is defined by the following formula

βn =







αn if n ≤ 4

arcsin

(

bc +

√

a4 + a2b2 − a2c2

a2 + b2

)

if n > 4

where
a = −3 sin(αn) cos(αn)
b = 4 + 3 cos2(αn)
c = sin(αn).

The choice of a, b, and c is explained below.

The constant kn is defined by the following formula

kn =







1 if n ≤ 4
sin(αn)
sin(βn)

if n > 4

where αn = π
n
, and wn is the length between v4 and v5 in the plane xy. We also have

αn < βn < π
2 and kn < 1 when n > 4.

This choice of wn was made on intuitive grounds. We have verified for valences up

to n = 25 that this choice for wn leads to a well-formed mesh [5] in the plane.
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4.2.2 Uniform Parametrization of 4-8 Surfaces (Category I)

Again for purposes of comparison, we consider the simpler uniform parametrization.

With the same construction as the exact parametrization, but kn = 1, βn = αn, we

have the uniform parametrization (wn will be automatically equal to 1). With the

uniform parametrization, we have a big problem. When n > 4, the domain of the 4-8

patch pushes out of the center quadrilateral. This phenomenon is exactly as that of

uniform parametrization of Catmull-Clark subdivision surfaces (see Sec. 4.1.2) and it

recurs for the other categories of parametrization of 4-8 subdivision surfaces.

Figure 4.12: The domain (shaded area) of the uniform parametrization (n = 5).

Figure 4.13: The domain (shaded area) of the uniform parametrization (n = 7).
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4.2.3 Regular Vertex Limit Position Mask of 4-8 Scheme

We see that the uniform parametrization does not provide guaranteed bounding en-

velopes for surface patches when n > 4. We must find a solution to fix the value of βn

to envelop the limit surface within the center quadrilateral. To do this, we will choose

βn (and therefore kn, wn, etc.), so that the limit positions of v1 and v3 are equal to their

original positions. The same will be true for v0 and v2.

To ensure that the limit position of v1 or v3 is equal to its original position, we

compute the limit position directly from the control points pm
i on some level m without

going through the iterative refinement. We again use the standard technique in the

analysis of subdivision schemes:

1. Construct a local subdivision matrix.

2. Transform the local subdivision matrix into a basis of eigenvectors.

The 4-8 subdivision scheme generalizes the four directional box splines of class C4

to arbitrary locally-planar meshes. The local support of the refinement rules for four

directional box splines imply that the corresponding patch only depends on the one-ring

neighborhood of pm. The limit positions of v0 and v2 are always equal to their original

positions by the symmetry of their one-ring neighbors. We will also choose parameter

values so that v1 and v3 are mapped into themselves by the subdivision process. In the

previous section, we have the local subdivision matrix of the 4-8 subdivision scheme for

the regular case (in our case, v1 and v3 are regular vertices) from which we can get the

limit position mask of the regular vertex and we can compute the limit position of v1

and v3 directly.

We have the local 4-8 subdivision matrix S̃ from Section 3.2.2 for the regular vertex

with valence 4:

S̃ =
1

32





























12 1 4 1 4 1 4 1 4
8 8 8 0 0 0 0 0 8
8 2 13 2 3 0 1 0 3
8 0 8 8 8 0 0 0 0
8 0 3 2 13 2 3 0 1
8 0 0 0 8 8 8 0 0
8 0 1 0 3 2 13 2 3
8 0 0 0 0 0 8 8 8
8 2 3 0 1 0 3 2 13





























,

which can be decomposed into

S̃ = V −1DV



CHAPTER 4. PARAMETRIZATION OF SUBDIVISION SURFACES 54

where

V −1 =
1

12





























12 0 0 0 0 −12 −3 −12 −3
12 28 0 0 −21 −40 18 16 −10
12 0 −7 −21 0 9 4 −5 4
12 −28 −14 0 21 16 −10 16 18
12 −28 −7 21 0 −5 4 9 −10
12 −28 0 0 −21 16 18 −40 46
12 0 7 −21 0 9 −10 23 −10
12 28 14 0 21 −40 49 −40 18
12 28 7 21 0 23 −10 9 4





























,

D =
1

8





























8 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 0 0
0 0 4 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0
0 0 0 0 2 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1





























,

V =
1

28





























8 1 4 1 4 1 4 1 4
0 2 4 0 −4 −2 −4 0 4
0 −4 −16 −4 0 4 16 4 0
0 0 −4 0 4 0 −4 0 4
0 −4 0 4 0 −4 0 4 0
−8 −4 8 −4 4 0 0 0 4
−16 0 8 −4 8 0 0 4 0
−8 4 −4 4 0 0 4 0 0
0 4 −8 8 −8 4 0 0 0





























.

From the above subdivision matrix analysis, we see that the 4-8 subdivision scheme

has eigenvalues:

(λ0, λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8) =

(

1,
1

2
,
1

2
,
1

4
,
1

4
,
1

8
,
1

8
,
1

8
,
1

8

)

.

We now have the regular vertex limit position mask (the mask is the first row of the

matrix V ) [2, Sec. 5.4]:

(

8

28
,

1

28
,

4

28
,

1

28
,

4

28
,

1

28
,

4

28
,

1

28
,

4

28

)

.

With this mask, we can compute a regular vertex’s limit position directly just con-

sidering the one-ring neighborhood of the vertex. The ability to compute the regular

vertex’s limit position directly is important in the phase of the exact parametrization

of 4-8 subdivision surfaces.
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Figure 4.14: Regular vertex limit position mask for 4-8 subdivision scheme.

4.2.4 Computation of Exact Parametrization (Category I)

To envelop the limit surface, we just need to consider the vertices v0, v1, v2, v3 and from

the limit position mask we know that we just need the one-ring neighborhood of the

vertex to compute the limit position. These limit positions of v0 and v2 are always equal

to their original positions by the symmetry of their one-ring neighborhood. For v1 and

v3, we should adjust their one-ring neighbors’ positions to assure their limit positions

are equal to their original positions if the valence of v0 is n > 4.

We use the patch of valence 5 to illustrate. First, we consider v1: the neighbors of

v1 are v0, v2, v3, v4, v5, v6n+3, v6n+8, and v6n+11.

To fix v1, we have the following formula from the limit position mask

8

28
v1 +

4

28
(v0 + v6n+8 + v4 + v2) +

1

28
(v6n+3 + v6n+11 + v5 + v3) = v1. (4.25)

For easier computation, we rotate the planar patch by αn; it is clear by symmetry

that the horizontal components in the new coordinate system of the one-ring neighbors

of v1 and v3 do not affect the horizontal component of v1 and v3. Consequently, we just

consider the vertical components.

The vertical component (positive downwards) of

v0 = 0 (4.26)

v1 = 1 (4.27)

v3 = v33 (4.28)

v2 = v38 (4.29)
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Figure 4.15: Control points for 4-8 patch.

v5 = v41 = v2 + (v2 − v3) = 2v2 − v3. (4.30)

With Equations (4.26), (4.27), (4.28), (4.29), and (4.30), we can reduce Equation

(4.25) to

5v1 = 2v2 + v4 (4.31)

where the vertical component of

v1 = 1 (4.32)

v2 = −
sin(αn + βn)

sin βn

cos αn (4.33)

v4 = 1 +
sin αn

sin βn

. (4.34)

Equations (4.33) and (4.34) follow immediately from the law of sines.

We find that Equations (4.31), (4.32), (4.33), and (4.34) have the corresponding

equations: Equations (4.10), (4.11), (4.12), and (4.13) in Section Parametrization of

Catmull-Clark Subdivision Surfaces (Sec. 4.1.4). Using the same methods as the previ-
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ous section, we have the value of βn:

βn = arcsin

(

bc +
√

a4 + a2b2 − a2c2

a2 + b2

)

. (4.35)

where
αn = π

n

a = −3 sin(αn) cos(αn)
b = 4 + 3 cos2(αn)
c = sin(αn)

and 0 < βn < π
n
; kn < 1 when n > 4.

Figure 4.16: The domain (shaded area) of the 4-8 patch: n = 5.

Figure 4.17: The domain (shaded area) of the 4-8 patch: n = 7.
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Having the value of βn, we can get the value of kn and wn. Now we can obtain the

exact parametrization of 4-8 subdivision surfaces (cf. Figures 4.12 and 4.13).

The domain Ωn of the 4-8 patch is the limit of the subdivision applied to the initial

mesh of the abscissae vi. We choose the abscissae mesh to be symmetric with respect

to the extraordinary vertex. Then Ωn falls into the sector formed by the initial abscissa

quadrilateral with vertices v0, v1, v2, and v3 (see Figure 4.8). We find that the domains of

the patches are strictly within the center quadrilaterals and the domains of the patches

cover almost all the center quadrilaterals. Therefore, the bounds on subdivision surfaces

are safe and efficient.

4.2.5 Computation of Exact Parametrization (Category II)

The parametrization of Category II is divided into two sub-categories:

1. The valence of the extraordinary vertex of the patch n = 3.

2. The valence of the extraordinary vertex of the patch n > 4.
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Figure 4.18: Parametrization of the 4-8 patches: Category II.

The construction of the parametrization of the first sub-category of category II is

defined as follows:

1. Set v0 = 0, the origin of the (u, v) plane.
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2. The center quadrilateral is square, the length of each edge of the square is 1.

3. Let the edge v0v1 be situated on the v axis and the edge v0v3 situated on the u

axis.

4. Extend the edge v0v1 by λ to get v4. The value of λ is to be defined below.

5. Extend the edge v3v2 by ζ to get v5. The value of ζ is to be defined below.

6. Extend the edges v1v2, v0v3, v2v3, v0v1, v0v3, and v1v2 by 1 to get v7, v8, v10, v11, v13,

and v14.

7. Extend the edge v7v8 by γ to get v6. The value of γ is to be defined below.

8. Extend the edges v7v8, v10v11 by 1 to get v9, v12.

9. Extend the edges v13v14 by ζ to get v15.

10. Extend the edges v2v7, v3v8, v9v10, v8v9, v3v10, v0v11, v12v13, v11v12, v0v13, v0v14 by

1 to get v17, v18, v19, v21, v22, v23, v24, v26, v27, v28.

11. Extend the edges v17v18 by γ to get v16.

12. Extend the edges v18v19, v23v24 by 1 to get v20, v25.

13. Extend the edges v27v28 by ζ to get v29.

14. v33 defined by adding v5 − v4 to v15.

15. Extend the edge v28v29 by the length between v15 and v33 in the v direction.

16. Extend the edge v6v7 by the length between v6 and v33 in the v direction.

17. Extend the edge v17v16 by the length between v16 and v33 in the v direction.

We set λ = 0.9, γ = 0.3, and ζ = 1.2. The choices of λ, γ, and ζ are made on

intuitive grounds to ensure a well-formed mesh in the plane.

We know that to envelop a limit surface of this type, we need consider the vertices

v0, v1, v2 and v3 and their one-ring neighbors. The limit positions of v0 and v3 are

always equal to their original positions by the symmetry of their one-ring neighbors.

We will also choose parameter values so that v1 and v2 are mapped into themselves by

the subdivision process. Because v1 and v2 are regular vertices, we can compute their
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limit positions by using the regular vertex limit position mask computed in the previous

section:

(

8

28
,

1

28
,

4

28
,

1

28
,

4

28
,

1

28
,

4

28
,

1

28
,

4

28

)

.

To compute the limit position of v1, we consider v0, v2, v3, v4, v5, v13, v14, and v15. In

fact, just the vertical components of v4, v5, and v15 will affect the position of v1. The

vertical components (positive downwards) of v5 and v15 are 2.2, which are 0.2 unit more

than these of regular vertices. The vertical component (positive downwards) of v4 is

1.9, which is 0.1 unit less than that of regular vertex. From the limit position mask, we

know v4 has four times the weights of v15 and v5. The weights that affect the position

of v1 are

0.2 + 0.2 + 4 ∗ (−0.1) = 0. (4.36)

So the limit position of v1 is equal to the original position.

To compute the limit position of v2, we consider v0, v1, v3, v4, v5, v6, v7, and v8. In

fact, just the vertical components (positive downwards) of v4, v5, and v6 will affect the

position of v2. The vertical component of v4 is 1.9, which is 0.1 less than that of regular

case. The vertical component of v5 is 2.2, which is 0.2 more than that of regular case.

The vertical component of v6 is 1.3, which is 0.7 less than that of regular case.

From the limit position mask, we know v5 has four times the weights of v4 and v6.

The weights that affect the position of v2 are:

0.2 ∗ 4− 0.7 − 0.1 = 0. (4.37)

So the limit position of v2 is equal to the original position. We find that the domains

of the patches with this parametrization are strictly within the center quadrilaterals

and the domains are also close to the center quadrilaterals. Therefore, the bounds on

subdivision surfaces are safe and efficient.

The construction of the parametrization of the second sub-category of category II is

defined as follows:

1. Set v0 = 0, the origin of (u, v) plane.

2. The center quadrilateral is square, the length of each edge of the square is 1.

3. Let the edge v0v1 be situated on the v axis and the edge v0v3 situated on the u

axis.
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4. Extend the edges v0v1, v2v3, v1v2, v0v3, v2v3, v0v1, v0v3, and v1v2 by 1 to get v4,

v5, v7, v8, v10, v11, v13, and v14.

5. Extend the edges v4v5, v7v8, v10v11, and v13v14 by 1 to get v6, v9, v12, and v15.

6. Extend the edges v5v6, v2v7, v3v8, v9v10, v8v9, v3v10, v0v11, v12v13, v11v12, v0v13, v1v14,

and v4v15 by 1 to get v16, v17, v18, v19, v21, v22, v23, v24, v26, v27, v28, and v29.

7. From v4 between the edge v4v15 and v4v5 add (n−3) edges in the counterclockwise

direction. These edges from v4v35 to v4v32+n. The angles between two consecutive

edges are π
n−1 and the length of these edges is 1. After adding these edges, we get

vertices from v35 to v32+n.

8. From v15 and v29 add v35 − v4 to get v31 and v30.

9. From v5, v6, and v16 add v32+n − v4 to get v32, v33, and v34.

As mentioned, the choice of the layout around the extraordinary vertex v4 was made

on intuitive grounds to ensure a well-formed mesh in the plane.

We find that the one-ring neighbors of each of the vertices of the center quadri-

lateral are symmetric. We are sure that the domain of this patch matches the center

quadrilateral exactly.
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Figure 4.19: The domains (shaded areas) of the 4-8 patches (Category II).

4.2.6 Computation of Exact Parametrization (Category III)
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Figure 4.20: Parametrization of the 4-8 patches: Category III.

The parametrization of Category III is divided into two sub-categories:

1. The valence of the extraordinary vertex of the patch n = 3.



CHAPTER 4. PARAMETRIZATION OF SUBDIVISION SURFACES 63

2. The valence of the extraordinary vertex of the patch n > 4.

The construction of the parametrization of the first sub-category of category III is

defined as follows:

1. Set v0 = 0, the origin of the (u, v) plane.

2. The center quadrilateral is square, the length of each edge of the square is 1.

3. Let the edge v0v1 be situated on the v axis and the edge v0v3 situated on the u

axis.

4. Extend the edges v0v1, v2v3, v1v2, v0v3, v2v3, and v0v1 by 1 to get v4, v5, v7, v8, v10,

and v11.

5. Extend the edge v0v3 by σ to get v13. The value of σ is to be defined below.

6. Extend the edge v1v2 by ω to get v14. The value of ω is to be defined below.

7. Extend the edges v4v5 and v7v8 by 1 to get v6 and v9.

8. Extend the edge v10v11 by ϕ to get v12. The value of ϕ is to be defined below.

9. Extend the edge v4v5 by σ to get v15.

10. Extend the edges v1v4, v2v5, v6v7, v5v6, v2v7, v3v8, v9v10, v8v9, v3v10, and v0v11 by

1. to get v17, v18, v19, v21, v22, v23, v24, v26, v27, and v28.

11. Extend the edges v17v18, v18v19, and v24v25 by 1.0 to get v16, v20, and v25.

12. Extend the edge v27v28 by ϕ to get v29.

13. Extend the edges v27v28, v10v11, v0v3, and v4v5 by 2.0 to get v30, v31, v32, and v33.

We set σ = 0.8, ω = 1.1, and ϕ = 1.7. The choices of σ, ω, and ϕ on the intuitive

grounds to ensure a well-formed mesh in the plane.

We know that to envelop a limit surface of this type, we need consider the positions

of v0, v1, v2, v3 and their one-ring neighbors. The limit positions of v2 and v3 are always

equal to their original positions by the symmetry of their one-ring neighbors. We will

also choose parameter values so that v0 and v1 are mapped into themselves. Because v0
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and v1 are regular vertices, we can compute their limit positions by using the regular

vertex limit position mask computed in the previous section:

(

8

28
,

1

28
,

4

28
,

1

28
,

4

28
,

1

28
,

4

28
,

1

28
,

4

28

)

.

To compute the limit position of v0, we consider v1, v2, v3, v10, v11, v12, v13, and v14.

In fact, the horizontal components of these vertices affect the position of v0. We just

need adjust positions of v12, v13, and v14. The horizontal component (positive leftwards)

of v12 is 2.7, which is 0.7 unit more than that of regular case. The horizontal compo-

nent (positive leftwards) of v13 is 1.8, which is 0.2 less than that of regular case. The

horizontal component (positive leftwards) of v14 is 2.1, which is 0.1 unit more than that

of regular case. From the limit position mask, we know v13 has four times the weights

of v12 and v14. The weights that affect the position of v0 are:

−0.2 ∗ 4 + 0.1 + 0.7 = 0. (4.38)

So the limit position of v0 is equal to its original position.

To compute the limit position of v1, we consider the vertices of v0, v2, v3, v4, v5, v13, v14,

and v15. In fact, just the horizontal components of these vertices affect the position of v1.

We just need adjust positions of v13, v14, and v15. The horizontal component (positive

leftwards) of v13 is 1.8, which is 0.2 unit less than that of regular case. The horizontal

component (positive leftwards) of v14 is 2.1, which is 0.1 unit more than that of regular

case. The horizontal component (positive leftwards) of v15 is 1.8, which is 0.2 unit less

than that of regular case. From the limit position mask, we know v14 has four times

the weights of v13 and v15. The weights that affect the position of v1 are:

0.1 ∗ 0.4− 0.2− 0.2 = 0. (4.39)

So the limit position of v2 is equal to its original position.

We find that the domains of the patches with this parametrization are strictly within

the center quadrilaterals and the domains are also close to the center quadrilaterals.

Therefore, the bounds on subdivision surfaces are safe and efficient.

The construction of the parametrization of the second sub-category of category III

is defined as follows:

1. Set v0 = 0, the origin of (u, v) plane.
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2. The central quadrilateral is square, the length of each edge of the square is 1.

3. Let the edge v0v1 be situated on the v axis and the edge v0v3 situated on the u

axis.

4. Extend the edges v0v1, v2v3, v1v2, v0v3, v2v3, v0v1, v0v3, and v1v2 by 1.0 to get

v4, v5, v7, v8, v10, v11, v13, and v14.

5. Extend the edges v4v5, v7v8, v10v11, and v13v14 by 1.0 to get v6, v9, v12, and v15.

6. Extend the edges v1v4, v2v5, v6v7, v5v6, v2v7, v3v8, v9v10, v8v9, v3v10, and v0v11 by

1.0 to get v17, v18, v19, v21, v22, v23, v24, v26, v27 and v28.

7. Extend the edges v14v15, v18v19, v24v25, and v27v28 by 1.0 to get v16, v20, v25, and

v29.

8. Add (n − 3) edges incident at v15 between the edge v15v14 and the edge v15v16

in the direction counterclockwise. The angles between two consecutive edges are

π
(n−1) and the length of these edges is 1.0. After adding these edges, we get vertices

from v35 to v32+n.

9. From v29, v12, v13, and v14 add (v35 − v15) to get v30, v31, v32, and v33.

10. From v16 add v37 − v15 to get v34.

As mentioned, the choice of the layout around the extraordinary vertex v15 was

made on intuitive grounds to ensure a well-formed mesh in the plane.

We find that the one-ring neighbors of each of the vertices of the center quadri-

lateral are symmetric. We are sure that the domain of this patch matches the center

quadrilateral exactly.
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Figure 4.21: The domains (shaded areas) of the 4-8 patches (Category III).

4.2.7 Computation of Exact Parametrization (Category IV)
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Figure 4.22: Parametrization of the 4-8 patches: Category IV.

The parametrization of Category IV is divided into two sub-categories:

1. The valence of the extraordinary vertex of the patch n = 3.
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2. The valence of the extraordinary vertex of the patch n > 4.

The construction of the parametrization of the first sub-category of category IV is

defined as follows:

1. Set v0 = 0, the origin of the (u, v) plane.

2. The central quadrilateral is square, the length of each edge of the square is 1.

3. Let the edge v0v1 be situated on the v axis and the edge v0v3 situated on the u

axis.

4. Extend the edge v0v1 by κ to get v4. The value of κ is to be defined below.

5. Extend the edge v2v3 by ξ to get v5. The value of ξ is to be defined below.

6. Extend the edges v1v2, v0v3, v2v3, v0v1, v0v3, and v1v2 by 1.0 to get v7, v8, v10, v11, v13,

and v14.

7. Extend the edge v7v8 by κ to get v6.

8. Extend the edges v7v8 and v10v11 by 1.0 to get v9 and v12.

9. Extend the edge v13v14 by ̺ to get v15. The value of ̺ is to be defined below.

10. Extend the edges v2v7, v3v8, v9v10, v8v9, v3v10, v0v11, v12v13, v11v12, v0v13, and v1v14

by 1.0 to get v17, v18, v19, v21, v22, v23, v24, v26, v27, and v28.

11. Extend the edge v17v18 by κ to get v16.

12. Extend the edges v18v19, and v23v24 by 1.0 to get v20, and v25.

13. Extend the edge v27v28 by ̺ to get v29.

14. Extend the edges v27v28, v13v14, v2v3, and v17v18 by 2.0 to get v30, v31, v33, and v32.

We set κ = 1.2, ξ = 0.9, and ̺ = 0.3. The choices of κ, ξ, and ̺ are made on intuitive

grounds to ensure a well-formed mesh in the plane.

We know to envelop the limit surface of this type, we need consider the vertices

v0, v1, v2, v3 and their one-ring neighbors. The limit positions of v0 and v3 are always

equal to their original positions by the symmetry of their one-ring neighbors. We will

also choose parameter values so that v1 and v2 are mapped into themselves. Because v1
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and v2 are regular vertices, we can compute their limit positions by using the regular

vertex limit position mask computed in the previous section:
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To compute the limit position of v1, we consider v0, v2, v3, v4, v5, v13, v14, and v15. In

fact, the vertical components of these vertices affect the position of v1. We just need

adjust the positions of v4, v5, and v15. The vertical component (positive downwards)

of v15 is 1.3, which is 0.7 unit less than that in regular patch. The vertical component

(positive downwards) of v4 is 2.2, which is 0.2 unit more than that in regular case. The

vertical component (positive downwards) of v5 is 1.9, which is 0.1 unit less than that of

regular case. From the limit position mask, we know v4 has four times the weights of

v15 and v5. The weights that affect the position v1 are:

−0.2 ∗ 4 + 0.7 + 0.1 = 0.

So the limit position of v1 is equal to its original position.

To compute the limit position of v2, we consider v0, v1, v3, v4, v5, v6, v7, and v8. In

fact, the vertical components of these vertices affect the position of v2. We just need

adjust the positions of v4, v5, and v6. The vertical component (positive downwards)

of v4 is 2.2, which is 0.2 unit more than that of regular case. The vertical component

(positive downwards) of v5 is 1.9, which is 0.1 unit less than that of regular case. The

vertical component (positive downwards) of v6 is 2.2, which is 0.2 unit more than that

of regular case. From the limit position mask, we know v5 has four times the weights

of v4 and v6. The weights that affect the position of v2 are:

−0.1 ∗ 4 + 0.2 + 0.2 = 0.

So the limit position of v1 is equal to its original position.

We find that the domains of the patches with this parametrization are strictly within

the center quadrilaterals and the domains are also close to the center quadrilaterals.

Therefore, the bounds on subdivision surfaces are safe and efficient.

The construction of the parametrization of the second sub-category of category IV

is defined as follows:

1. Set v0 = 0, the origin of (u, v) plane.
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Figure 4.23: The domains (shaded areas) of the 4-8 patches (Category IV).

2. The central quadrilateral is square, the length of the square is 1.

3. Let the edge v0v1 be situated on the v axis and the edge v0v3 situated on the u

axis.

4. Extend the edges v0v1, v2v3, v1v2, v0v3, v2v3, v0v1, v0v3, and v1v2 by 1.0 to get

v4, v5, v7, v8, v10, v11, v13, and v14.

5. Extend the edges v4v5, v7v8, v10v11, and v13v14 by 1.0 to get v6, v9, v12, and v15.

6. Extend the edges v5v6, v2v7, v3v8, v9v10, v8v9, v3v10, v0v11, v11v12, v0v13, v1v14, and

v4v15 by 1.0 to get v16, v17, v18, v19, v21, v22, v23, v24, v26, v27, v28, and v29.

7. Add (n - 3) edges incident at v5 between the edge v5v4 and the edge v5v6 in the

direction counterclockwise. The angle between two consecutive edges is π
(n−2) and

the length of these edges is 1.0. After adding these edges, we get vertices v35+2i.

(i = 0, ..., n − 4).

8. Add v5 − v35+(2m+2) to the vertices v35+2m to get v35+(2m+1). (i = 0, ..., n − 5).

Again as mentioned, the choice of the layout around the extraordinary vertex v5 was

made on intuitive grounds to ensure a well-formed mesh in the plane.

We find that the one-ring neighbors of each of the vertices of the center quadrilateral

are symmetric. Yet again, we are sure that the domain of this patch matches center

quadrilateral exactly.



Chapter 5

Conclusion and Future Work

This chapter summarizes the thesis, reviews its contributions and proposes directions

for future work.

5.1 Summary

In this thesis, we presented our work on the parametrization of Catmull-Clark and 4-

8 subdivision surfaces. The parametrization of Catmull-Clark subdivision surfaces is

based on a set of Catmull-Clark patches and the parametrization of 4-8 subdivision sur-

faces is based on a set of 4-8 patches. Therefore, the main part of this thesis is to define

parametric domains for the Catmull-Clark and 4-8 patches which permit guaranteed but

realistic bounds on the patches themselves. The principle is to assure the domain of one

patch is strictly within the center quadrilateral of the patch. In addition, we ensured

that the vertices of the center quadrilateral of the patch are mapped to themselves by

the subdivision process. This is to be done by choosing carefully the parameter values of

the patch. This produced domains which matched the enclosing quadrilaterals closely.

We showed experimentally that the domains of the Catmull-Clark and 4-8 patches

with valence up to 25 are strictly within the center quadrilaterals. This fact is important

so that we can envelop the limit surfaces of the Catmull-Clark and 4-8 subdivision

surfaces with our method of parametrization.
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5.2 Future Work

A possible extension to the current work is a theoretic justification for the parametriza-

tion of the subdivision surfaces. In our thesis, we showed how to choose the parameter

values of the patch to map the vertices of the center quadrilateral of the patch to them-

selves by the subdivision process. It is true that the domain of the patch is strictly

within the center quadrilateral only if the domain bulges inward. We have only shown

experimentally that the domain of the patch (n > 4) bulges inward.

Another possible extension to the current work is to reduce as much as possible the

difference between the domain of the patch and the center quadrilateral by modifying

the parameter values of the patch. This would improve computational precision in the

various applications such as measuring the maximum error between the subdivision

surface and its linear approximation. We have not examined the effects in model space

of the parametric domains we have found.

An analysis of the empirical convergence of the subdivision surfaces of Catmull-Clark

and 4-8 subdivision is also an interesting subject. We can analyze these two kinds of

subdivision surfaces by measuring the flatness of the limit surface, or the maximum

bounding error between the subdivision surface and its linear approximation.

In our thesis, we showed how to parametrize the Catmull-Clark and 4-8 subdivision

surfaces. We can apply these parametrizations to many interesting domains, such as

interference detection and ray-tracing of the Catmull-Clark and 4-8 subdivision surfaces.
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